Exam exercise for Module 4: Low pass filter

Setup in lab.

First order low pass filter

We shall study data associated with the displayed circuit. The fundamental characteristics associated with the circuit is:

- R is the resistance measured in Ohm
- ${\cal C}$ is the capacitance measured in Farad
- f_c is the 3dB cut-off frequency measured in Hertz

In theory the relation between these quantities is

$$f_c = \frac{1}{2\pi RC}$$

Data

Peter Koch has spent quite some time in the lab producing data. Peter has measured R, C and f_c for different combinations of nominal R and C values.

Four resistors were used with nominal R values:

• 1, 1.1, 4.75 and 5.9 kOhm

Seven capacitors were used with nominal C values:

• 47, 56, 68, 330, 470, 560 and 680 nF

For each component, the actual R or C value has been measured once. Moreover, for each combination of capacitor and resistor, the frequency has been measured, that is, in total 4x7 = 28 measurements of frequency were made.

First load the data:

```
load(url("https://asta.math.aau.dk/datasets?file=RC_data.RData"))
head(RC_data)
```

##		R_nom	C_{nom}	R_measured	C_measured	f_c_measured
##	4	1000	4.7e-09	997.49	4.62e-09	29080
##	5	1100	4.7e-09	1100.46	4.62e-09	26500
##	8	4750	4.7e-09	4724.70	4.62e-09	6380
##	9	5900	4.7e-09	5880.50	4.62e-09	5120
##	14	1000	5.6e-09	997.49	5.25e-09	25700
##	15	1100	5.6e-09	1100.46	5.25e-09	23440

On a logarithmic scale the model is:

```
• ln(fc_true)=-ln(2*pi)-ln(R_true)-ln(C_true)
```

where "true" refers to the exact value of the variable for the components tested.

What we are actually measuring is

- ln(fc_measured)=ln(fc_true)+fc_error
- ln(R_measured)=ln(R_true)+R_error
- ln(C_measured)=ln(C_true)+C_error

1) Show that:

```
• log(fc_measured)=log_fc_predict+R_error+C_error+fc_error
```

where

- log_fc_predict= -log(2*pi)-log(R_measured)-log(C_measured)
- 2) Argue that if the meters have no systematic errors, then (log_fc_predict,log(fc_measured)) should vary around the identity line.
- Calculate and plot these points. You can use the code below to add the identity line to the plot.

```
# gf_point(...) %>% #plot the points
# gf_abline(slope=~1,intercept=~0) #adds the identity line
```

- Argue that the plot calls for a linear calibration of log(fc_measured).
- 3) Fit a simple linear regression of log(fc_measured) on log_fc_predict. Argue that
- the intercept is significantly different from zero.
- the slope is significantly different from one.

This shows that the meters must have systematic errors.

- 4) In the light of your conclusions do a calibration of log(fc_measured) and call it log_fc_corrected.
- Make a plot of (log_fc_predict,log_fc_corrected)
- 5) The data version of the RC-model is now
- log_fc_corrected=-log(2*pi)-log(R_measured)-log(C_measured)+error

Fit a multiple regression of $\log_fc_crected$ on $\log(R_measured)$ and $\log(C_measured)$ and test the hypotheses

- intercept is equal to -log(2*pi).
- slope of log(R_measured) is equal to -1.
- slope of log(C_measured) is equal to -1.
- 6) If the fitted model is called fit, then the residuals is obtained by resid(fit). Investigate whether the residuals follow a normal distribution using
- a qqnorm plot of the residuals
- Geary's test
- Godness-of-fit test with 5 bins
- Shapiro-Wilks test

What is your conclusion?