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1 Lot variation

• Picture of a “lot” of capacitors.

• The word lot is used to identify several components produced in a single run.

– A run is a production series limited to a given time interval and fixed production parameters.

• We expect components from the same lot to be more similar.

• Peter Koch has tested 269 of the capacitors in the displayed lot (one measurement for each).
Cap220=read.csv(url("https://asta.math.aau.dk/datasets?file=capacitor_lot_220_nF.txt"))[,1]
summary(Cap220)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 197.2 204.8 207.9 207.9 210.9 218.6

2 Testing for log normality

2.1 Log normality
• Last time we assumed log normality of the relative measurements:

ln
(measuredValue

nominalValue

)
∼ norm(µ, σ).

• The data we considered last time did not allow us check this assumtion.
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• We have seen that normality can be checked with a qqplot (lecture 1.3, [WMMY] Sec. 8.8).
Cap220=read.csv(url("https://asta.math.aau.dk/datasets?file=capacitor_lot_220_nF.txt"))[,1]
ln_Error=log(Cap220/220)
qqnorm(ln_Error,ylab="ln_Error")
qqline(ln_Error,lwd=2,col="red")
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• The qq-plot supports normality of ln_Error.

2.2 Testing normality
• One can also make a test of the null-hypothesis

H0 : the population has a normal distribution.

• There are several tests of normality.

• Two of these are considered in [WMMY] Section 10.11:

– Gearys test
– goodness of fit

2.3 Gearys test
• Consider a sample X1, . . . , Xn from a population.
• We may estimate of the standard deviation σ of the population:

S0 =
√

1
n

∑
i

(Xi − X̄)2

– S0 is always a good estimator of the population standard deviation σ - no matter the form of the
population distribution.

• Next consider
S1 =

√
π

2
∑

i

|Xi − X̄|/n

– This is a good estimator of σ, if the population is normal.
– Otherwise, it will over- or underestimate σ depending on the form of the population distribution.
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2.4 Gearys test
• If the population distribution is normal, we expect that

U = S1

S0

is close to 1.

• Under the null-hypothesis,

Z =
√

n(U − 1)
0.2661

is approximately standard normally distributed when n is large.

• That is, with a significance level of 5%, we reject the null-hypothesis if |zobs| > 1.96.

• We can do all the computations in R.
mln_E=mean(ln_Error)
s1=sqrt(mean((ln_Error-mln_E)ˆ2))
s0=sqrt(pi/2)*mean(abs(ln_Error-mln_E))
u=s1/s0
z_obs=sqrt(length(ln_Error))*(u-1)/0.2661
z_obs

## [1] -1.383383

• We do not reject the null-hypothesis.
• Hence there is no evidence of non-normality.

2.5 Goodness of fit - die example
• Goodness of fit is a general method for investigating whether a sample comes from a specific distribution.

• Before considering test for normality, we consider a simpler example (see [WMMY] Sec. 10.11).

• Suppose we roll a die. We have the null-hypothesis that the die is fair, i.e. the probabilities of the
outcomes (1, 2, 3, 4, 5, 6) are

(1/6, 1/6, 1/6, 1/6, 1/6, 1/6).

• Rolling the die 120 times, we expect the frequencies

(20, 20, 20, 20, 20, 20)

• Actually we observe the frequencies
(20, 22, 17, 18, 19, 24)

• The distance between observed and expected frequencies is measured by

X2 =
∑ (ObservedFrequencies - ExpectedFrequencies)2

ExpectedFrequencies
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2.6 Goodness of fit - die example
• If the null-hypothesis is true (the die is fair), then

– X2 has a chi-square distribution (Lecture 1.4, [WMMY] Chapter 6.7) with df=k-1=5 degrees of
freedom, where k = 6 is the number of possible outcomes.

– large values of X2 are critical for the null-hypothesis.
• For the example on the previous slide:

– x2
obs = 1.7

critical_value <- qdist("chisq", .95, df = 5)
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## [1] 11.0705

• At 5% significance level the critical value is 11.07, so there is no evidence against the null-hypothesis of
a fair die.

2.7 Goodness of fit - normal distribution
• We assume that ln_Error is a sample from a normal distribution.
• We estimate its mean and standard deviation by the sample mean and sample standard deviation
• We divide the population distribution into 10 bins with equal probabilities p=10%.

– The number of bins could be changed.
– The bins should be so large, that the expected frequencies in each is at least 5.

m <- mean(ln_Error)
s <- sd(ln_Error)
breaks <- qnorm((0:10)/10, m, s)
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Histogram and population curve
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• Area in each bin of the red population curve is 0.1

• As the sample size is 269 we obtain that the expected frequency is 269 ∗ 0.1 = 26.9 in each bin.

– This is clearly above 5

2.8 Goodness of fit - normal distribution
• Observed frequecies:

observed <- table(cut(ln_Error, breaks))
names(observed) <- paste("bin", 1:10, sep = "")
observed

## bin1 bin2 bin3 bin4 bin5 bin6 bin7 bin8 bin9 bin10
## 25 37 25 19 28 30 21 25 25 34

• We compute the X2 statistic:
chisq_obs <- sum((observed-26.9)ˆ2)/26.9
chisq_obs

## [1] 10.21933

• The degrees of freedom is the number of bins minus 3 (number of parameters + 1), i.e. df = 10-3 = 7.

2.9 Goodness of fit - normal distribution
• We had computed the value of X2

chisq_obs

## [1] 10.21933

• We find the critical value
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critical_value <- qdist("chisq", .95, df = 7)
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## [1] 14.06714

• Since X2 is smaller than the critical value, we do not reject the null-hypothesis

• We could also have used the p-value
p_value <- 1 - pchisq(chisq_obs, 7)
p_value

## [1] 0.1764812

• We do not reject normality at level 5%.

2.10 Other tests of normality
• There are many other tests of normality.

• We mention one of the most commonly used tests: Shapiro-Wilks.

• It is standard in R.

• We do not treat the details, but the test statistic is somewhat like a correlation for the qq-plot.

– If the “correlation is far from 1”, we reject normality.
shapiro.test(ln_Error)

##
## Shapiro-Wilk normality test
##
## data: ln_Error
## W = 0.99255, p-value = 0.1971

• With a p-value of 19.71%, we do not reject normality, if we test on level 5%.

3 Sources of variation
• In lecture 4.1 we discussed 3 sources of variation:

– systematic measurement error
– random measurement variation
– production variation

• Generally it is relevant to decompose the production variation in 2 components:
– variation within lot, i.e. the variation around the lot mean
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– variation between lots, i.e. the variation of the lot means.

3.1 The general model
• The completely general model would be:

measuredValue = systematicError + lotError

+componentError + measurementError

• In mathematical notation
Yk,i,j = µ + Lk + Ck,i + εk,i,j

where

– k is the number of the lot
– i is the number of the component in lot k
– j is the number of the measurement on component (k, i).

• The errors are assumed random and normal

– Lot errors Lk ∼ norm(0, σl)
– Errors on individual component within lot Ck,i ∼ norm(0, σc)
– Measurement errors εk,i,j ∼ norm(0, σm)

3.2 Model for our data
• As we have one lot only, we cannot identify the variation between lots.

– We will consider the lot mean as fixed number µl

• We only have one measurement on each component

• The model for our data reduces to (since k = 1 and j = 1 we omit them from notation)

Yi = µ + µl + Ci + εi

where

– i = 1, . . . , 269 is observation number
– µ is systematic measurement error
– µl is systematic lot error
– Ci ∼ norm(0, σc) is variation within lot
– εi ∼ norm(0, σm) is measurement error

3.3 Linear calibration
• In lecture 4.1 we developed a linear calibration to eliminate the systematic measurement error.

• To remove the systematic measurement error, we apply this calibration to our new dataset.
load("ab.RData")
ln_Error_corrected <- (ln_Error-ab[1])/ab[2]
hist(ln_Error_corrected, breaks = "FD", col = "wheat")
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Histogram of ln_Error_corrected
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3.4 Model for calibrated data
• After calibration, we will assume that the systematic measurement is zero, leaving us with the model

for the calibrated values:
Yi = µl + Ci + εi

where
– i = 1, . . . , 269 is observation number
– µl is systematic lot error
– Ci ∼ norm(0, σc) is variation within lot
– εi ∼ norm(0, σm) is measurement error

• We are this left with a normally distributed sample with
– mean µl

– variance σ2
c + σ2

m

3.5 Estimate of parameters
• Estimate of µc

myl <- mean(ln_Error_corrected)
myl

## [1] -0.02686793

• That is, the systematic lot error is around -2.7%.

• Estimate of σ2
m + σ2

c

var(ln_Error_corrected)

## [1] 0.0003892828

• That is s2
m + s2

c = 3.9 · 10−4.
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• In lecture 4.1 we estimated s2
m = 0.29 · 10−6 and hence s2

c = 3.9 · 10−4

sc =
√

3.9 · 10−4 = 0.02

• 3 sigma limits for the corrected lot values:

−2.7% ± 3 · 2.0% = [−8.7; 3.3]%

clearly respecting the 10% tolerance.

4 Mixture of lots
• Peter has also tested 311 capacitors with nominal value 470 nF

cap470 <- read.table(url("https://asta.math.aau.dk/datasets?file=capacitor_lot_470_nF2.txt"))[, 1]
hist(cap470, breaks = 15, col = "greenyellow")
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• Consulting Peter, it turned out, that his box of capacitors contained components from 2 different lots.

4.1 Transforming
• We ln-transform and calibrate:

ln_Error <- log(cap470/470)
ln_Error_corrected <- (ln_Error-ab[1])/ab[2]
hist(ln_Error_corrected, breaks = 15, col = "gold")
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Histogram of ln_Error_corrected
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range(ln_Error_corrected)

## [1] -0.08888934 0.08323081

4.2 Mixture model
• We assume that the ln_Error

– is normal with mean µ1 if the component is from lot 1
– is normal with mean µ2 if the component is from lot 2
– both distributions have variance σ2 = σ2

m + σ2
l

– the probability of coming from lot 1 is p

• So we have 4 unknown parameters: (µ1, µ2, σ, p).

• To estimate these, we entrust to the R-package mclust.

4.3 Fitting a mixture
• We fit the model

library(mclust)
fit <- Mclust(ln_Error_corrected, 2 , "E")# 2 clusters; "E"qual variances
pr <- fit$parameters$pro[1]
pr

## [1] 0.728314

• The chance of coming from lot 1 is around 73%.
means <- fit$parameters$mean
means
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## 1 2
## -0.05174452 0.05406515

• The mean in lot 1 is around -5.2%
• The mean in lot 2 is around 5.4%

sigma <- sqrt(fit$parameters$variance$sigmasq)
sigma

## [1] 0.01692654

• σ is around 1.7%

4.4 Comparing model and data
• We compare the histogram with the fitted normal curves.

hist(ln_Error_corrected,breaks=15,col="lightcyan",probability = TRUE,ylim=c(0,18),main="Histogram and population curve")
curve(pr*dnorm(x,means[1],sigma)+(1-pr)*dnorm(x,means[2],sigma),-.1,.1,add=TRUE,lwd=2)

Histogram and population curve
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4.5 Concluding remarks
• Estimate of σ was 1.7%. In relation to the 220 nF lot we estimated 2.0%, which is comparable.

– 3 sigma limits for the correct lot 1 values:

−5.2% ± 3 ∗ 1.7% = [−10.3; −0.1]%

– 3 sigma limits for the correct lot 2 values:

5.4% ± 3 ∗ 1.7% = [0.3; 10.5]%

• The lots do not completely respect the tolerance of 10%. However, in the sample the minimum is -8.9%
and the maximum 8.3%.
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• The difference in lot means is 5.4% − (−5, 2)% = 10.6.

• This indicates that the variation between lots is much greater than the variation within lots.

• This is also clearly illustrated by the histogram/density plots.
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