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0.1 Sources of variation
Capacitors come with a nominal value for the capacitance.

• When capacitance is measured, we do not get exactly the nominal value.

We shall study 2 sources of variation:

• measurement variation due to random errors on a measuring device
• component variation due to random errors in the production process

0.2 Data from Peter Koch
Peter has done 100 independent measurements of the capacitance of each 4 of the displayed capacitors and
one additional.

• Nominal values are 47, 47, 100, 150, 150 nF.

• All have a stated tolerance of 1%.
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load(url("https://asta.math.aau.dk/datasets?file=cap_1pct.RData"))
head(capDat, 4)

## capacity nomval sample
## 1 45.69 47 s_1_nF47
## 2 45.71 47 s_1_nF47
## 3 45.69 47 s_1_nF47
## 4 45.71 47 s_1_nF47

Here we see the first 4 measurements of the first capacitor with nominal value 47nF.

• Remark: The measured values are consistently below the nominal value minus the 1% tolerance:
47 − 0.47 = 46.53.

table(capDat$sample)

##
## s_1_nF47 s_2_nF47 s_3_nF100 s_4_nF150 s_5_nF150
## 100 100 100 100 100

0.3 Relative errors
• Instead of considering the raw errors

measuredValue - nominalValue,

we will consider the relative error

measuredValue - nominalValue
nominalValue .

• A tolerance of 0.01 means that the relative error should be within ±0.01.

0.4 Approximation of the relative error
• Instead of looking at the relative error, we may look at the following approximation:

lnError = ln
(measuredValue

nominalValue

)
≈ measuredValue − nominalValue

nominalValue

• This is illustrated below with a nominal value of n = 47 and measured values of 47 plus/minus 5%.
n <- 47
m <- seq(47-5*0.01*47, 47+5*0.01*47, length.out = 100)
plot(m, log(m/n), col = "red", type = "l")
lines(m, (m - n)/n, col = "blue", type = "l")
legend("topleft", legend = c("log(m/n)", "(m-n)/n"), lty = 1, col = c("red", "blue"))
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0.5 Transformation of errors
• The approximation can be justified theoretically.

• Recall the linear approximation of a function:

f(x) ≈ f(x0) + f ′(x0)(x − x0)

• If we take

x0 = 1 (1)
f(x) = ln x (2)

f ′(x) = 1/x, (3)

we get
ln(x) ≈ ln(x0) + 1

x0
· (x − x0) = x − 1.

• Suppose x = m/n. Then

ln
(m

n

)
≈ m

n
− 1 = m − n

n

0.6 Transformed data
• We construct an extra lnError variable in the capDat dataset.

capDat = within(capDat, lnError <- log(capacity/nomval))
head(capDat, 2)

## capacity nomval sample lnError
## 1 45.69 47 s_1_nF47 -0.02826815
## 2 45.71 47 s_1_nF47 -0.02783051
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tail(capDat, 2)

## capacity nomval sample lnError
## 499 145.7 150 s_5_nF150 -0.02908558
## 500 145.6 150 s_5_nF150 -0.02977216

• The resolution on Peters capacitance meter is with 1-2 decimal(s) in the 47/150 nF range, which means
that only a limited number of different values(3-18) are observed for each capacitor. This means that
box-plots and histograms are non-informative.

0.7 Model considerations
• Let us have a look at a summary of the data:

favstats(lnError~sample, data=capDat)

## sample min Q1 median Q3 max
## 1 s_1_nF47 -0.02958221 -0.02832287 -0.02804930 -0.02804930 -0.02783051
## 2 s_2_nF47 -0.02914399 -0.02783051 -0.02761176 -0.02761176 -0.02717441
## 3 s_3_nF100 -0.03521276 -0.03399638 -0.03386707 -0.03366020 -0.03334998
## 4 s_4_nF150 -0.02565975 -0.02446352 -0.02429269 -0.02429269 -0.02360987
## 5 s_5_nF150 -0.03045921 -0.02977216 -0.02908558 -0.02908558 -0.02908558
## mean sd n missing
## 1 -0.02832518 0.0005062160 100 0
## 2 -0.02786346 0.0005171088 100 0
## 3 -0.03398306 0.0005057586 100 0
## 4 -0.02453879 0.0005870180 100 0
## 5 -0.02947702 0.0005543930 100 0

• All measurements are more than 2.3% below the nominal value.

• This must be due to a systematic error on the meter.

0.8 Sources of variation
• We now have three sources of error:

– Systematic errors of the measurement device
– Production errors in the individual capacitors
– Random measurement errors

• This leads us to consider the model

ln
(measuredValue

nominalValue

)
= systematicError + productionError + measurementError.

0.9 Statistical model
• We have the model:

ln
(measuredValue

nominalValue

)
= systematicError + productionError + measurementError

• We may write the model mathematically as

Yij = µ + Ai + εij

where

– Yij is the log error measurement (jth measurement from the ith capacitor)
– i = 1, . . . , k is the number of the capacitor
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– j = 1, . . . , n is the number of the observation for that capacitor
– k = 5 is the total number of capacitors
– n = 100 is the number of repetitions for each capacitor
– µ is the systematic error on the meter
– Ai is the random production error
– εij is the random measurement error

• We make the following assumptions:

– The production error Ai is normally distributed with mean 0 and variance σ2
α,

– The measurement error εij is normally distributed with mean 0 and variance σ2.

• This is called a random effects model, see [WMMY] Chapter 13.11.

0.10 Estimation of systematic error
• The systematic error is simply estimated by the sample mean

µ̂ = ȳ..

– The two dots indicate that we take the average over all observations from all capacitors.
muhat <- mean(capDat$lnError)
muhat

## [1] -0.0288375

• The meter systematically reports a value, which is estimated to be 2.88% too low.

0.11 Estimation of random error
• We now try to estimate the variance σ2

α of the production error and the variance of the random
measurement error σ2.

• We need two types of sum of squares:

• SSA (sum of squares between groups) measures how much the sample means for the individual capacitors
ȳi. deviate from the total sample mean ȳ..

SSA = n
∑

i

(ȳi. − ȳ..)2

• SSE (sum of squares within groups) measures how much the individual measurements deviate from the
sample mean of the capacitor they were measured on:

SSE =
∑

ij

(yij − ȳi.)2

• Intuitively, SSA is closely related to the variance of the production error σ2
α, while SSE is closely

related to the variance of the random measurement error σ2.

0.12 Fit
• The sum of squares may be found from:

fit <- lm(lnError ~ sample, data = capDat)
anova(fit)
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## Analysis of Variance Table
##
## Response: lnError
## Df Sum Sq Mean Sq F value Pr(>F)
## sample 4 0.0046576 0.00116440 4067.4 < 2.2e-16 ***
## Residuals 495 0.0001417 0.00000029
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• We can extract the sum of squares as follows
SS <- anova(fit)$`Sum Sq`
SSA <- SS[1]
SSE <- SS[2]
SSA

## [1] 0.004657588
SSE

## [1] 0.0001417076

0.13 Solution
• One may show (see [WMMY] Theorem 13.4):

E(SSA) = (k − 1)σ2 + n(k − 1)σ2
α

E(SSE) = k(n − 1)σ2

• Using the approximations
E(SSA) ≈ SSA, E(SSE) ≈ SSE

we obtain the estimates

σ̂2 = 1
(n − 1)k SSE = 1

99 · 5 · 0.0001417 = 2.86 · 10−7

σ̂2
α = 1

n(k − 1)SSA − σ̂2

n
= 1

100 · (5 − 1) · 0.0046576 − 2.86 · 10−7

100 = 1.16 · 10−5

0.14 Summing up
• The meter has an estimated systematic error of µ̂ = −2.88%.

• The estimated standard deviation of the meter is σ̂ =
√

2.86 · 10−7 = 0.0534%.

• The estimated standard deviation of the production error is σ̂α =
√

1.16 · 10−5 = 0.341%.

• Since 99.7% (practically all) of all observations fall within ±3 · σα from 0, we have that the production
error falls within

±3 · 0.341% = 1.02%
of the nominal value, which is in accordance with the tolerance of 1%.

• The total estimated variance of the log error is

σ̂2
α + σ̂2 = 1.16 · 10−5 + 2.86 · 10−7 = 1.19 · 10−5.

– The variance is clearly dominated by the production error.

• Note that especially the estimate σ̂α is quite uncertain, since we only have measurements from 5
capacitors.

7



0.15 Test of no random effect
• We have the possibility of testing the hypothesis

H0 : σα = 0.

• The formulas for E(SSA) and E(SSE) were

E(SSA) = (k − 1)σ2 + n(k − 1)σ2
α

E(SSE) = k(n − 1)σ2.

• Under H0, this is means that

1
k − 1E(SSA) = 1

k(n − 1)E(SSE) = σ2.

• Under H0, the F statistic

Fobs =
SSA
k−1
SSE

k(n−1)

has an F-distribution with degrees of freedom df1 = k − 1 and df2 = k(n − 1).
– Large values are critical for the null-hypothesis.

• In the capacitor dataset Fobs = 4067.4, which is highly significant (p-value close to 0).
– Our capacitors do have some production errors.

0.16 Coefficient of variation
• Let X be a random variable with mean µ and standard deviation σ.
• If we are interested in relative variation, it is common to look at the coefficient of variation

CV (X) = σ

µ

– Standard deviation relative to the mean
– Unit-free

• If X is normal, then 95% of our measurements are within

µ ± 2 · σ = µ ± 2 · µ · CV (X) = µ(1 ± 2 · CV (X)).

• If e.g. CV (X) = 0.05, it means that 95% of all observations are within 2 · 0.05 = 10% of the mean.

0.17 The lognormal distribution
• In the preceeding analysis, we assumed that the log-transformed errors had a normal distribution.

• Let X be a random variable and Y = ln(X).

• We say that X has a lognormal distribution if Y has a normal distribution with - say - mean µ and
standard deviation σ.

• Here are some plots of the density of the lognormal distribution:
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0.18 Coefficient of variation for lognormal distribution
• Suppose X has a log-normal distribution, so that Y = ln(X) has a normal distribution with mean µ

and standard deviation σ.

• Then the mean and variance are given by (Theorem 6.7 of [WMMY]):

E(X) = exp(µ + σ2/2)

V ar(X) = exp(2µ + σ2)(exp(σ2) − 1)

• The coefficient of variation is then

CV (X) =
√

V ar(X)
E(X) =

√
exp(2µ + σ2)(exp(σ2) − 1)

exp(µ + σ2/2) =
√

exp(σ2) − 1

• In Peter’s data we estimated the variance of the ln error to σ̂2
α = 1.16 · 10−5, which means that the

estimated CV of the capacity measurement is

ĈV (X) =
√

exp (1.16 · 10−5) − 1 = 0.341%.

0.19 Linear calibration
• In our previous analysis, we assumed, that the systematic error on the meter did not depend on nominal

value.
ln

(measuredValue
nominalValue

)
= meterError + randomError

• To check this assumption consider the linear model

ln(measuredValue) = α + β · ln(nominalValue) + ε.
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• Note that the previously considered model corresponds to β = 1.

0.20 Linear calibration fit
• We fit the linear model:

fit <- lm(log(capacity) ~ log(nomval), data = capDat)
summary(fit)

##
## Call:
## lm(formula = log(capacity) ~ log(nomval), data = capDat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0064121 -0.0010784 0.0007315 0.0013879 0.0050839
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0300145 0.0011907 -25.21 <2e-16 ***
## log(nomval) 1.0002636 0.0002648 3776.74 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.003101 on 498 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 1.426e+07 on 1 and 498 DF, p-value: < 2.2e-16

• The slope looks close to 1.

• We may test the null-hypothesis H0 : β = 1.

tobs = 1.0002636 − 1
0.0002648 = 0.995.

This yields a p-value of around 32%.

– It is a bit dubious to model a linear relationship with only 3 nominal values.
– Also note that we have correlated measurements, since several measurements are made on the

same capacitors.

0.21 Calibrated values
• If we stick to the linear calibration model, it is sensible to correct our measured errors according to the

calibration of the meter.

• We have the model:
measuredValue = α + β ∗ nominalValue

• We compute the calibrated values

calibratedValue = (measuredValue − α)/β

• We estimate the coefficients α and β and calibrate the measurements.
ab = coef(fit)
ab

10



## (Intercept) log(nomval)
## -0.03001454 1.00026359
capDat$lnError_c = (capDat$lnError - ab[1])/ab[2]
head(capDat)

## capacity nomval sample lnError lnError_c
## 1 45.69 47 s_1_nF47 -0.02826815 0.001745930
## 2 45.71 47 s_1_nF47 -0.02783051 0.002183452
## 3 45.69 47 s_1_nF47 -0.02826815 0.001745930
## 4 45.71 47 s_1_nF47 -0.02783051 0.002183452
## 5 45.70 47 s_1_nF47 -0.02804930 0.001964715
## 6 45.69 47 s_1_nF47 -0.02826815 0.001745930

1 Lot variation

• Picture of a “lot” of capacitors.

• The word lot is used to identify several components produced in a single run.

– A run is a production series limited to a given time interval and fixed production parameters.

• We expect components from the same lot to be more similar.

• Peter Koch has tested 269 of the capacitors in the displayed lot (one measurement for each).
Cap220=read.csv(url("https://asta.math.aau.dk/datasets?file=capacitor_lot_220_nF.txt"))[,1]
summary(Cap220)
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## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 197.2 204.8 207.9 207.9 210.9 218.6

2 Testing for log normality

2.1 Log normality
• Last time we assumed log normality of the relative measurements:

ln
(measuredValue

nominalValue

)
∼ norm(µ, σ).

• The data we considered last time did not allow us check this assumtion.

• We have seen that normality can be checked with a qqplot (lecture 1.3, [WMMY] Sec. 8.8).
Cap220=read.csv(url("https://asta.math.aau.dk/datasets?file=capacitor_lot_220_nF.txt"))[,1]
ln_Error=log(Cap220/220)
qqnorm(ln_Error,ylab="ln_Error")
qqline(ln_Error,lwd=2,col="red")
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• The qq-plot supports normality of ln_Error.

2.2 Testing normality
• One can also make a test of the null-hypothesis

H0 : the population has a normal distribution.

• There are several tests of normality.

• Two of these are considered in [WMMY] Section 10.11:

– Gearys test
– goodness of fit
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2.3 Gearys test
• Consider a sample X1, . . . , Xn from a population.
• We may estimate of the standard deviation σ of the population:

S0 =
√

1
n

∑
i

(Xi − X̄)2

– S0 is always a good estimator of the population standard deviation σ - no matter the form of the
population distribution.

• Next consider
S1 =

√
π

2
∑

i

|Xi − X̄|/n

– This is a good estimator of σ, if the population is normal.
– Otherwise, it will over- or underestimate σ depending on the form of the population distribution.

2.4 Gearys test
• If the population distribution is normal, we expect that

U = S1

S0

is close to 1.

• Under the null-hypothesis,

Z =
√

n(U − 1)
0.2661

is approximately standard normally distributed when n is large.

• That is, with a significance level of 5%, we reject the null-hypothesis if |zobs| > 1.96.

• We can do all the computations in R.
mln_E=mean(ln_Error)
s1=sqrt(mean((ln_Error-mln_E)ˆ2))
s0=sqrt(pi/2)*mean(abs(ln_Error-mln_E))
u=s1/s0
z_obs=sqrt(length(ln_Error))*(u-1)/0.2661
z_obs

## [1] -1.383383

• We do not reject the null-hypothesis.
• Hence there is no evidence of non-normality.

2.5 Goodness of fit - die example
• Goodness of fit is a general method for investigating whether a sample comes from a specific distribution.

• Before considering test for normality, we consider a simpler example (see [WMMY] Sec. 10.11).

• Suppose we roll a die. We have the null-hypothesis that the die is fair, i.e. the probabilities of the
outcomes (1, 2, 3, 4, 5, 6) are

(1/6, 1/6, 1/6, 1/6, 1/6, 1/6).
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• Rolling the die 120 times, we expect the frequencies

(20, 20, 20, 20, 20, 20)

• Actually we observe the frequencies
(20, 22, 17, 18, 19, 24)

• The distance between observed and expected frequencies is measured by

X2 =
∑ (ObservedFrequencies - ExpectedFrequencies)2

ExpectedFrequencies

2.6 Goodness of fit - die example
• If the null-hypothesis is true (the die is fair), then

– X2 has a chi-square distribution (Lecture 1.4, [WMMY] Chapter 6.7) with df=k-1=5 degrees of
freedom, where k = 6 is the number of possible outcomes.

– large values of X2 are critical for the null-hypothesis.
• For the example on the previous slide:

– x2
obs = 1.7

critical_value <- qdist("chisq", .95, df = 5)
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critical_value

## [1] 11.0705

• At 5% significance level the critical value is 11.07, so there is no evidence against the null-hypothesis of
a fair die.

2.7 Goodness of fit - normal distribution
• We assume that ln_Error is a sample from a normal distribution.
• We estimate its mean and standard deviation by the sample mean and sample standard deviation
• We divide the population distribution into 10 bins with equal probabilities p=10%.

– The number of bins could be changed.
– The bins should be so large, that the expected frequencies in each is at least 5.

m <- mean(ln_Error)
s <- sd(ln_Error)
breaks <- qnorm((0:10)/10, m, s)
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Histogram and population curve
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• Area in each bin of the red population curve is 0.1

• As the sample size is 269 we obtain that the expected frequency is 269 ∗ 0.1 = 26.9 in each bin.

– This is clearly above 5

2.8 Goodness of fit - normal distribution
• Observed frequecies:

observed <- table(cut(ln_Error, breaks))
names(observed) <- paste("bin", 1:10, sep = "")
observed

## bin1 bin2 bin3 bin4 bin5 bin6 bin7 bin8 bin9 bin10
## 25 37 25 19 28 30 21 25 25 34

• We compute the X2 statistic:
chisq_obs <- sum((observed-26.9)ˆ2)/26.9
chisq_obs

## [1] 10.21933

• The degrees of freedom is the number of bins minus 3 (number of parameters + 1), i.e. df = 10-3 = 7.

2.9 Goodness of fit - normal distribution
• We had computed the value of X2

chisq_obs

## [1] 10.21933

• We find the critical value
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critical_value <- qdist("chisq", .95, df = 7)
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## [1] 14.06714

• Since X2 is smaller than the critical value, we do not reject the null-hypothesis

• We could also have used the p-value
p_value <- 1 - pchisq(chisq_obs, 7)
p_value

## [1] 0.1764812

• We do not reject normality at level 5%.

2.10 Other tests of normality
• There are many other tests of normality.

• We mention one of the most commonly used tests: Shapiro-Wilks.

• It is standard in R.

• We do not treat the details, but the test statistic is somewhat like a correlation for the qq-plot.

– If the “correlation is far from 1”, we reject normality.
shapiro.test(ln_Error)

##
## Shapiro-Wilk normality test
##
## data: ln_Error
## W = 0.99255, p-value = 0.1971

• With a p-value of 19.71%, we do not reject normality, if we test on level 5%.

3 Sources of variation
• In lecture 4.1 we discussed 3 sources of variation:

– systematic measurement error
– random measurement variation
– production variation

• Generally it is relevant to decompose the production variation in 2 components:
– variation within lot, i.e. the variation around the lot mean
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– variation between lots, i.e. the variation of the lot means.

3.1 The general model
• The completely general model would be:

measuredValue = systematicError + lotError

+componentError + measurementError

• In mathematical notation
Yk,i,j = µ + Lk + Ck,i + εk,i,j

where

– k is the number of the lot
– i is the number of the component in lot k
– j is the number of the measurement on component (k, i).

• The errors are assumed random and normal

– Lot errors Lk ∼ norm(0, σl)
– Errors on individual component within lot Ck,i ∼ norm(0, σc)
– Measurement errors εk,i,j ∼ norm(0, σm)

3.2 Model for our data
• As we have one lot only, we cannot identify the variation between lots.

– We will consider the lot mean as fixed number µl

• We only have one measurement on each component

• The model for our data reduces to (since k = 1 and j = 1 we omit them from notation)

Yi = µ + µl + Ci + εi

where

– i = 1, . . . , 269 is observation number
– µ is systematic measurement error
– µl is systematic lot error
– Ci ∼ norm(0, σc) is variation within lot
– εi ∼ norm(0, σm) is measurement error

3.3 Linear calibration
• In lecture 4.1 we developed a linear calibration to eliminate the systematic measurement error.

• To remove the systematic measurement error, we apply this calibration to our new dataset.
load("ab.RData")
ln_Error_corrected <- (ln_Error-ab[1])/ab[2]
hist(ln_Error_corrected, breaks = "FD", col = "wheat")
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Histogram of ln_Error_corrected
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3.4 Model for calibrated data
• After calibration, we will assume that the systematic measurement is zero, leaving us with the model

for the calibrated values:
Yi = µl + Ci + εi

where
– i = 1, . . . , 269 is observation number
– µl is systematic lot error
– Ci ∼ norm(0, σc) is variation within lot
– εi ∼ norm(0, σm) is measurement error

• We are this left with a normally distributed sample with
– mean µl

– variance σ2
c + σ2

m

3.5 Estimate of parameters
• Estimate of µc

myl <- mean(ln_Error_corrected)
myl

## [1] -0.02686793

• That is, the systematic lot error is around -2.7%.

• Estimate of σ2
m + σ2

c

var(ln_Error_corrected)

## [1] 0.0003892828

• That is s2
m + s2

c = 3.9 · 10−4.
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• In lecture 4.1 we estimated s2
m = 0.29 · 10−6 and hence s2

c = 3.9 · 10−4

sc =
√

3.9 · 10−4 = 0.02

• 3 sigma limits for the corrected lot values:

−2.7% ± 3 · 2.0% = [−8.7; 3.3]%

clearly respecting the 10% tolerance.

4 Mixture of lots
• Peter has also tested 311 capacitors with nominal value 470 nF

cap470 <- read.table(url("https://asta.math.aau.dk/datasets?file=capacitor_lot_470_nF2.txt"))[, 1]
hist(cap470, breaks = 15, col = "greenyellow")

Histogram of cap470
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• Consulting Peter, it turned out, that his box of capacitors contained components from 2 different lots.

4.1 Transforming
• We ln-transform and calibrate:

ln_Error <- log(cap470/470)
ln_Error_corrected <- (ln_Error-ab[1])/ab[2]
hist(ln_Error_corrected, breaks = 15, col = "gold")
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Histogram of ln_Error_corrected
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range(ln_Error_corrected)

## [1] -0.08888934 0.08323081

4.2 Mixture model
• We assume that the ln_Error

– is normal with mean µ1 if the component is from lot 1
– is normal with mean µ2 if the component is from lot 2
– both distributions have variance σ2 = σ2

m + σ2
l

– the probability of coming from lot 1 is p

• So we have 4 unknown parameters: (µ1, µ2, σ, p).

• To estimate these, we entrust to the R-package mclust.

4.3 Fitting a mixture
• We fit the model

library(mclust)
fit <- Mclust(ln_Error_corrected, 2 , "E")# 2 clusters; "E"qual variances
pr <- fit$parameters$pro[1]
pr

## [1] 0.728314

• The chance of coming from lot 1 is around 73%.
means <- fit$parameters$mean
means
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## 1 2
## -0.05174452 0.05406515

• The mean in lot 1 is around -5.2%
• The mean in lot 2 is around 5.4%

sigma <- sqrt(fit$parameters$variance$sigmasq)
sigma

## [1] 0.01692654

• σ is around 1.7%

4.4 Comparing model and data
• We compare the histogram with the fitted normal curves.

hist(ln_Error_corrected,breaks=15,col="lightcyan",probability = TRUE,ylim=c(0,18),main="Histogram and population curve")
curve(pr*dnorm(x,means[1],sigma)+(1-pr)*dnorm(x,means[2],sigma),-.1,.1,add=TRUE,lwd=2)

Histogram and population curve
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4.5 Concluding remarks
• Estimate of σ was 1.7%. In relation to the 220 nF lot we estimated 2.0%, which is comparable.

– 3 sigma limits for the correct lot 1 values:

−5.2% ± 3 ∗ 1.7% = [−10.3; −0.1]%

– 3 sigma limits for the correct lot 2 values:

5.4% ± 3 ∗ 1.7% = [0.3; 10.5]%

• The lots do not completely respect the tolerance of 10%. However, in the sample the minimum is -8.9%
and the maximum 8.3%.
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• The difference in lot means is 5.4% − (−5, 2)% = 10.6.

• This indicates that the variation between lots is much greater than the variation within lots.

• This is also clearly illustrated by the histogram/density plots.
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