Statistics and electronics - lecture 1
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0.1 Sources of variation
Capacitors come with a nominal value for the capacitance.

e When capacitance is measured, we do not get exactly the nominal value.
We shall study 2 sources of variation:

e measurement variation due to random errors on a measuring device
e component variation due to random errors in the production process
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0.2 Data from Peter Koch

Peter has done 100 independent measurements of the capacitance of each 4 of the displayed capacitors and
one additional.

e Nominal values are 47, 47, 100, 150, 150 nF.

e All have a stated tolerance of 1%.

load(url("https://asta.math.aau.dk/datasets?file=cap_1lpct.RData"))
head(capDat, 4)

##  capacity nomval sample

# 1 45.69 47 s_1_nF47
## 2 45.71 47 s_1_nF47
## 3 45.69 47 s_1_nF47
# 4 45.71 47 s_1_nF47

Here we see the first 4 measurements of the first capacitor with nominal value 47nF.

o Remark: The measured values are consistently below the nominal value minus the 1% tolerance:
47 — 0.47 = 46.53.

table(capDat$sample)

##

## s_1_nF47 s_2_nF47 s_3_nF100 s_4_nF150 s_5_nF150
## 100 100 100 100 100



0.3 Relative errors
e Instead of considering the raw errors
measuredValue - nominalValue,

we will consider the relative error

measuredValue - nominalValue

nominalValue

o A tolerance of 0.01 means that the relative error should be within 40.01.

0.4 Approximation of the relative error

o Instead of looking at the relative error, we may look at the following approximation:

measured Value measured Value — nominalValue
InError = In ( ) =

nominalValue nominalValue
o This is illustrated below with a nominal value of n = 47 and measured values of 47 plus/minus 5%.
n <- 47
m <- seq(47-5%0.01%47, 47+5%0.01*47, length.out = 100)
plot(m, log(m/n), col = "red", type = "1")
lines(m, (m - n)/n, col = "blue", type = "1")
legend("topleft", legend = c("log(m/n)", "(m-n)/n"), 1ty = 1, col = c("red", "blue"))
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0.5 Transformation of errors
e The approximation can be justified theoretically.

e Recall the linear approximation of a function:

f@) = f(@o) + f'(zo)(x — o)



o If we take

Tro — 1
flx)=Ilnz
f'(x) =1/,

we get

e Suppose x = m/n. Then

0.6 Transformed data

o We construct an extra lnError variable in the capDat dataset.

capDat = within(capDat, lnError <- log(capacity/nomval))
head(capDat, 2)

## capacity nomval sample 1nError
## 1 45.69 47 s_1_nF47 -0.02826815
## 2 45.71 47 s_1_nF47 -0.02783051

tail(capDat, 2)

#H# capacity nomval
## 499 145.7
## 500 145.6

sample InError
150 s_5_nF150 -0.02908558
150 s_5_nF150 -0.02977216

o The resolution on Peters capacitance meter is with 1-2 decimal(s) in the 47/150 nF range, which means
that only a limited number of different values(3-18) are observed for each capacitor. This means that

box-plots and histograms are non-informative.

0.7 Model considerations

e Let us have a look at a summary of the data:

favstats(lnError~sample, data=capDat)

## sample min Q1 median Q3
## 1 s_1_nF47 -0.02958221 -0.02832287 -0.02804930 -0.02804930
## 2 s_2_nF47 -0.02914399 -0.02783051 -0.02761176 -0.02761176
## 3 s_3_nF100 -0.03521276 -0.03399638 -0.03386707 -0.03366020
## 4 s_4_nF150 -0.02565975 -0.02446352 -0.02429269 -0.02429269
## 5 s_5_nF150 -0.03045921 -0.02977216 -0.02908558 -0.02908558
#it mean sd n missing
## 1 -0.02832518 0.0005062160 100 0
## 2 -0.02786346 0.0005171088 100 0
## 3 -0.03398306 0.0005057586 100 0
## 4 -0.02453879 0.0005870180 100 0
## 5 -0.02947702 0.0005543930 100 0

All measurements are more than 2.3% below the nominal value.

e This must be due to a systematic error on the meter.

max
-0.02783051
-0.02717441
-0.03334998
-0.02360987
-0.02908558



0.8 Sources of variation

e We now have three sources of error:
— Systematic errors of the measurement device
— Production errors in the individual capacitors
— Random measurement errors

e This leads us to consider the model

measured Value . .
(—) = systematicError + productionError + measurementError.
nominalValue

0.9 Statistical model
¢ We have the model:

measured Value . .
(—) = systematicError 4+ productionError + measurementError
nominalValue

e We may write the model mathematically as
Yij=p+ A +ei
where

— Y}, is the log error measurement (jth measurement from the ith capacitor)
— i=1,...,k is the number of the capacitor
— j=1,...,n is the number of the observation for that capacitor
— k =5 is the total number of capacitors
— n = 100 is the number of repetitions for each capacitor
—  is the systematic error on the meter
— A; is the random production error
— €;; is the random measurement error
e We make the following assumptions:
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— The production error A; is normally distributed with mean 0 and variance o
— The measurement error ;; is normally distributed with mean 0 and variance o2.

o This is called a random effects model, see [WMMY]| Chapter 13.11.

0.10 Estimation of systematic error
o The systematic error is simply estimated by the sample mean
f=1y.
— The two dots indicate that we take the average over all observations from all capacitors.

muhat <- mean(capDat$lnError)
muhat

## [1] -0.0288375

e The meter systematically reports a value, which is estimated to be 2.88% too low.

0.11 Estimation of random error

e We now try to estimate the variance o2 of the production error and the variance of the random

measurement error o2,

e We need two types of sum of squares:



o SSA (sum of squares between groups) measures how much the sample means for the individual capacitors
y;. deviate from the total sample mean y

SSA=n> (5. —9.)

o SSE (sum of squares within groups) measures how much the individual measurements deviate from the
sample mean of the capacitor they were measured on:

SSE = (yij — 5:.)°
ij

o Intuitively, SSA is closely related to the variance of the production error o2, while SSE is closely

related to the variance of the random measurement error o2.

0.12 Fit

e The sum of squares may be found from:

fit <- lm(lnError ~ sample, data = capDat)
anova(fit)

## Analysis of Variance Table

##

## Response: lnError

#it Df Sum Sq Mean Sq F value Pr(>F)

## sample 4 0.0046576 0.00116440 4067.4 < 2.2e-16 ***

## Residuals 495 0.0001417 0.00000029

## -

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

e We can extract the sum of squares as follows

SS <- anova(fit)$ Sum Sq°

SSA <- ss[1]
SSE <- Ss[2]
SSA

## [1] 0.004657588
SSE

## [1] 0.0001417076

0.13 Solution
o One may show (see [WMMY] Theorem 13.4):

E(SSA) = (k — 1)0% + n(k — 1)0?
E(SSE) = k(n —1)0?

e Using the approximations
E(SSA) =~ SSA, E(SSE)~ SSE

we obtain the estimates
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0.14 Summing up
o The meter has an estimated systematic error of ji = —2.88%.
e The estimated standard deviation of the meter is & = v/2.86 - 10~7 = 0.0534%.
e The estimated standard deviation of the production error is 64 = v/1.16 - 10~5 = 0.341%.

o Since 99.7% (practically all) of all observations fall within £3 - o, from 0, we have that the production
error falls within

+3-0.341% = 1.02%

of the nominal value, which is in accordance with the tolerance of 1%.
e The total estimated variance of the log error is
624+6*=116-10"°"+286-10""=1.19-10°.
— The variance is clearly dominated by the production error.
o Note that especially the estimate &, is quite uncertain, since we only have measurements from 5
capacitors.
0.15 Test of no random effect
e We have the possibility of testing the hypothesis
Hy:0,=0.
o The formulas for E(SSA) and E(SSE) were
E(SSA) = (k—1)o* +n(k—1)02
E(SSE) = k(n —1)0°.

e Under Hy, this is means that

1
—— FE(SSA)= ——F(SSE) = o
Foa PO = T PSSR =0
e Under Hy, the F statistic

SSA
k—1
Fobs = TSSE
k(n—1)

has an F-distribution with degrees of freedom dfy = k — 1 and dfs = k(n — 1).
— Large values are critical for the null-hypothesis.
o In the capacitor dataset F,ps = 4067.4, which is highly significant (p-value close to 0).
— Our capacitors do have some production errors.

0.16 Coeflicient of variation

e Let X be a random variable with mean p and standard deviation o.

o If we are interested in relative variation, it is common to look at the coefficient of variation
o
CV(X)=—-
I

— Standard deviation relative to the mean
— Unit-free
e If X is normal, then 95% of our measurements are within

pt2-c=p+t2-p-CV(X)=pu(l+2-CV(X)).
o Ife.g. CV(X) =0.05, it means that 95% of all observations are within 2 - 0.05 = 10% of the mean.



0.17 The lognormal distribution

In the preceeding analysis, we assumed that the log-transformed errors had a normal distribution.

Let X be a random variable and Y = In(X).

e We say that X has a lognormal distribution if Y has a normal distribution with - say - mean p and

density

standard deviation o.

Here are some plots of the density of the lognormal distribution:
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- = (Hac) = (1! 1)
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0.18 Coefficient of variation for lognormal distribution

Suppose X has a log-normal distribution, so that ¥ = In(X) has a normal distribution with mean p
and standard deviation o.

Then the mean and variance are given by (Theorem 6.7 of [WMMY]):
B(X) = exp(u + 07/2)
Var(X) = exp(2u + 0?)(exp(c?) — 1)
The coefficient of variation is then

_ VVar(X) _ /exp(2u + 0)(exp(0?) — 1)
E(X) exp(p +0°/2)

CV(X) = +/exp(c?) —1

In Peter’s data we estimated the variance of the In error to 62 = 1.16 - 107>, which means that the
estimated CV of the capacity measurement is

CV(X) = \/exp (1.16 - 1075) — 1 = 0.341%.



0.19 Linear calibration

e In our previous analysis, we assumed, that the systematic error on the meter did not depend on nominal

value.

measured Value
(—) = meterError 4+ randomError
nominalValue

e To check this assumption consider the linear model

In(measuredValue) = a + § - In(nominalValue) + €.

o Note that the previously considered model corresponds to § = 1.

0.20 Linear calibration fit

o We fit the linear model:

fit <- 1m(log(capacity) ~ log(nomval), data = capDat)
summary (fit)

##

## Call:

## lm(formula = log(capacity) ~ log(nomval), data = capDat)
##

## Residuals:

## Min 1Q Median 3Q Max
## -0.0064121 -0.0010784 0.0007315 0.0013879 0.0050839
##

## Coefficients:

#i# Estimate Std. Error t value Pr(>[tl)

## (Intercept) -0.0300145 0.0011907 -25.21 <2e-16 *x*xx
## log(nomval) 1.0002636 0.0002648 3776.74  <2e-16 **x*

# ——-

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1
##

## Residual standard error: 0.003101 on 498 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1

## F-statistic: 1.426e+07 on 1 and 498 DF, p-value: < 2.2e-16
e The slope looks close to 1.
e We may test the null-hypothesis Hy : 5 = 1.

1.0002636 — 1
bops = ———20 7 ().995.
obs 0.0002648 0-995

This yields a p-value of around 32%.

— It is a bit dubious to model a linear relationship with only 3 nominal values.
— Also note that we have correlated measurements, since several measurements are made on the
same capacitors.

0.21 Calibrated values

o If we stick to the linear calibration model, it is sensible to correct our measured errors according to the
calibration of the meter.

e We have the model:
measuredValue = a + 8 * nominalValue



e We compute the calibrated values

calibrated Value = (measuredValue — a)/

e We estimate the coefficients o and 8 and calibrate the measurements.

ab = coef(fit)
ab

## (Intercept) log(nomval)
## -0.03001454 1.00026359

capDat$lnError_c = (capDat$lnError - ab[1])/abl[2]
head (capDat)

##  capacity nomval sample InError 1nError_c
## 1 45.69 47 s_1_nF47 -0.02826815 0.001745930
## 2 45.71 47 s_1_nF47 -0.02783051 0.002183452
## 3 45.69 47 s_1_nF47 -0.02826815 0.001745930
## 4 45.71 47 s_1_nF47 -0.02783051 0.002183452
## 5 45.70 47 s_1_nF47 -0.02804930 0.001964715
## 6 45.69 47 s_1_nF47 -0.02826815 0.001745930
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