ASTA

The ASTA team

Contents
1 Resampling techniques

2 Model complexity

2.1 A linear model for tree data L

2.2 A polynomial model

2.3 Another polynomial model L

2.4 Amnatural spline.
3 Measures of fit

3.1 RZ?and correlation

3.2 Mean squared €ITOT e e e e e e e

4 Out-of-sample error

LUt NN

T o O

4.1 Reproducibility and random number generation oL
4.2 Out-of-sample error L.
4.3 Training the models L L
4.4 Testing the models
4.5 SUMMATY . . . o v ot e e
Cross-validation

5.1 Testing predictive ability L
5.2 Cross-validation L
5.3 Example e
5.4 Repeated CV e
5.5 Cross-validationin R o
5.6 Result of cross-validation
5.7 Moreon RMSE e
5.8 Model comparison oL e e

Non-parametric bootstrap

6.1 Sampling variability oL oL
6.2 Bootstrap principle L oo
6.3 Bootstrap data example oL
6.4 Bootstrap data example - continued,
6.5 Bootstrap estimates for the standard error
6.6 The boot package Lo

Bootstrap by resampling residuals

Maximum likelihood estimation of a probability

8.1 Estimating a probability o000
8.2 The likelihood function L
8.3 Likelihood function - example oo

18
18
18
19
19
20
21

21

8.4 The log-likelihood function
8.5 Maximum likelihood estimation

9 Maximum likelihood for logistic regression
9.1 The logistic regression model
9.2 Maximum likelihood estimation for logistic regression.
9.3 Logistic regression - example
9.4 Logistic regression - example continued L L oo
9.5 Logistic regression - example continued oL oo

10 Maximum likelihood estimation with continuous variables
10.1 The probability density function L Lo
10.2 The likelihood function for n observations
10.3 Log-likelihood function in the normal case
10.4 Numerical solution - normal distribution
10.5 Numerical solution - normal distribution,

11 Properties of maximum likelihood estimators

1 Resampling techniques

Topics:

o Overfitting (the model fits too well to the observed data)

e Generalisation (how well a model performs on a new sample)
o Cross-validation (estimate out-of-sample prediction error)

o Bootstrap (estimate standard errors)

2 Model complexity

2.1 A linear model for tree data

trees <- read.delim("https://asta.math.aau.dk/datasets?file=trees.txt")
head(trees)

Girth Height Volume

1 8.3 70 10
2 8.6 65 10
3 8.8 63 10
4 10.5 72 16
5 10.7 81 19
6 10.8 83 20

e We consider the dataset trees containing the following observations on 31 trees:
— Response: Volume - timber volume
— Predictor: Girth - the tree diameter
o We consider a linear model.
Y=a+p -x+¢

m0 <- Im(Volume ~ Girth, data = trees)
plotModel (m0)

25
25
26
27
27
28

29
29
30
30
31
31

32

\olume

80-

60 -

20-

10 14 18
Girth

summary (m0)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:
Im(formula = Volume ~ Girth, data = trees)

Residuals:
Min 1Q Median 3Q Max
-8.065 -3.107 0.152 3.495 9.587

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) -36.943 3.365 -11.0 7.6e-12 **x
Girth 5.066 0.247 20.5 < 2e-16 *x*x

Signif. codes: O '***x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1

Residual standard error: 4.2 on 29 degrees of freedom
Multiple R-squared: 0.935, Adjusted R-squared: 0.933
F-statistic: 419 on 1 and 29 DF, p-value: <2e-16

e We obtain the prediction equation
J=-369+4+507 -z

e The model has R? = 0.935

22

2.2 A polynomial model

ml

e We can also try to fit a second degree polynomial to the data

Y =a+pfiz+ far’ +e

<- 1m(Volume ~ poly(Girth, 2), data = trees)

plotModel (ml)

80-

60 -
Q
€
=
o
>

40 -

20~

10 14 18
Girth

summary (m1)
##
Call:
1m(formula = Volume ~ poly(Girth, 2), data = trees)
##
Residuals:
Min 1Q Median 3Q Max
-5.489 -2.429 -0.372 2.076 7.645
##
Coefficients:
#it Estimate Std. Error t value Pr(>|t])
(Intercept) 30.171 0.599 50.37 < 2e-16 *x*x*
poly(Girth, 2)1 87.073 3.335 26.11 < 2e-16 *x*
poly(Girth, 2)2 14.592 3.335 4.38 0.00015 *x*x%
##H -
Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#i#
Residual standard error: 3.3 on 28 degrees of freedom

##

Multiple R-squared: 0.962, Adjusted R-squared: 0.959

22

F-statistic: 350 on 2 and 28 DF, p-value: <2e-16

e Prediction equation
§ = 30.2 4 87.1z + 14.62>

o R%Z=0.962

2.3 Another polynomial model
e Or a polynomial of degree 7
Y=a+pa+ B’ + -+ Pz’ +¢

ml_bad <- 1lm(Volume ~ poly(Girth, 7), data = trees)
plotModel(ml_bad)

150 -
100 -
[}
S
=
o
>
50 -
0-
10 14 18 22
Girth

e Polynomials tend to behave wildly at the ends.

2.4 A natural spline

e A natural spline is a piecewise third degree polynomial with smooth overlaps which is linear at the
ends. It can also be fitted to the data.

library(splines)
m2 <- 1Im(Volume ~ ns(Girth, 15), data = trees)
plotModel (m2)

75-

Volume
(6]
o

25-

10 14 18 22
Girth

e The model is very “wiggly” to get near the data points.

e How to compare this model with the others?

3 Measures of fit

3.1 R? and correlation

o We can compare the models using R?

summary (m0) $r . squared

[1] 0.94

summary (m1) $r.squared

[1]1 0.96

summary (m2) $r . squared

[1] 0.98
e R? is always higher for more complex models

« Note that R? is the squared correlation between the observed response values y; and the values predicted
by the prediction equation ¢;
R? = cor(y;, §i)°

or: mO$fitted

cor (trees$Volume,predict(m0, newdata = trees)) 2
[1] 0.94
cor(trees$Volume,predict(ml, newdata = trees)) 2

[1] 0.96

cor(trees$Volume,predict(m2, newdata = trees)) 2

[1]1 0.98

3.2 Mean squared error

o We can also compare the models using mean squared errors (MSE)
1 "
MSE =~ Z(y -)’
1
mean((trees$Volume - predict(mO, newdata = trees)) 2)

[1] 17

mean((trees$Volume - predict(ml, newdata = trees)) 2)

[1] 10

mean((trees$Volume - predict(m2, newdata = trees)) 2)

[1] 4.9
e The more complicated model has lowest MSE
e The model is fitted using least squares, i.e. minimising MSE.
e The model is trained to predict the datapoints well.

— Would it also predict well on new data points?

4 Out-of-sample error

4.1 Reproducibility and random number generation

e The code below generates three random numbers three times.

rnorm(3)

[1] -0.35 1.53 1.04

rnorm(3)

[1] 0.072 -1.505 0.885

rnorm(3)

[1] -0.62 -1.12 -1.17

e We get a new sample in each try

o If we want to be sure we always get the same, we can set a seed.
set.seed (1)
rnorm(3)
[1] -0.63 0.18 -0.84
set.seed(1)

rnorm(3)

[1] -0.63 0.18 -0.84

4.2 Out-of-sample error
e Our dataset contains n = 31 observations
e We now split the dataset in two:

— A training dataset consisting of 20 observations
— A test dataset consisting of 11 observations

set.seed (1)

train_idx <- sample(x = seq_len(nrow(trees)), size = 20, replace = FALSE)
trees_train <- trees[train_idx,]

nrow(trees_train)

[1] 20

trees_test <- trees[-train_idx,]
nrow(trees_test)

[1] 11

4.3 Training the models
o We use only the training data for fitting the models

mO_train <- 1lm(Volume ~ Girth, data = trees_train)
ml_train <- lm(Volume ~ poly(Girth, 2), data = trees_train)
m2_train <- Im(Volume ~ ns(Girth, 15), data = trees_train)

plotModel(mO_train) +
geom_point (aes(Girth, Volume), data = trees_test, color = "red")

80 -

60 -

\olume
D
o

20~

8 12 16 20
Girth

plotModel (ml_train) +
geom_point (aes(Girth, Volume), data = trees_test, color = "red")

80-

60 -

\olume

20~

8 12 16 20
Girth

plotModel (m2_train) +
geom_point (aes(Girth, Volume), data = trees_test, color = "red")

10

80-

60 -

\olume

20-

Girth

4.4 Testing the models

e We now use the test dataset to test the models
— We predict the response in the test dataset
— We then compare the predictions to the observed response

cor(predict(mO_train, newdata = trees_test), trees_test$Volume) "2

[1] 0.98

cor(predict(ml_train, newdata = trees_test), trees_test$Volume) "2

[1] 0.97

cor(predict (m2_train, newdata = trees_test), trees_test$Volume) "2

[1] 0.016

o The linear model has the highest correlation between observations and predictions

mean((predict(mO_train, newdata = trees_test) - trees_test$Volume) "2)

[1] 40

mean((predict(ml_train, newdata = trees_test) - trees_test$Volume) "2)

[1] 17

mean((predict(m2_train, newdata = trees_test) - trees_test$Volume) "2)

11

[1] 2074

4.5

5.1

The quadratic polynomial has the smallest MSE

Summary

When we test on the same data as we train the model on, we get lower MSE and higher cor(y;, g;) for
the more complex model

When we test on new data, the more complicated model does not predict well

Overfitting: A complex model tends to fit too well to the training data, but does not fit well to new
data.

Cross-validation

Testing predictive ability
Ideally, we should test a models predictive ability on new data that was not used to fit the model
Typically, only one dataset is available

— A solution could be to split the dataset in test and training data
— Waste of data

Solution: repeat the splitting of data multiple times

Cross-validation

Cross-validation provides a clever way of repeating the training and test of a model
Divide data into k folds

In each iteration, fit the model on k — 1 folds, test on the last fold

E.g. k-fold cross validation for k = 10:

12

. Test data
. Training data

o Benefits:
— We use most of the data for fitting the model
— Each observation is used once for testing

5.3 Example
o Number of folds depends on size of dataset (often k =5 or k = 10)
o We have 31 observations
o 4-fold cross validation seems suitable

e Divide data into 4 fold

13

2,11,13,14,20,21,25

3,6,7,10,17,24,29,30

5,8,9,12,19,23,26,28

1,4,15,16,18,22,27,31

“Rotate” which folds are training data and which one is test data:

14

. Test data
. Training data
1 1 1 1 1 1 1 1

5.4 Repeated CV

e Cross-validation may be repeated several times

15

=

4,11,13,14,20,21,2b ¥,9,11,15,21,27,24 1,3,5,6,9,12,24 3,11,12,14,19,23,2 1,8,14,15,17,20,27

3)6,7,10,17,24,29,30 1,6,10,12,14,16,22,247,10,13,17,22,23,28|30 [1,2,4,8,9,16,29,30 2,3,10,12,13,23,25,28

[6)]

8,9,12,19,23,26,28 23,5,13,18,19,25,798,11,18,19,21,25,26{275,6,10,13,17,21,27,28 1{7,9,16,18,22,24,30

1,4,15,16,18,22,27,814,8,17,20,23,26,30,81 2,4,14,15,16,20,29,817,15,18,20,22,25,26,315,6,11,19,21,26,29,81

5.5 Cross-validation in R

e The caret package can be use for cross-validatin in R

library(caret)

https://cran.r-project.org/package=caret
https://topepo.github.io/caret/
e We first set up the cross-validation

train_control <- trainControl(method = "repeatedcv",
k-fold CV
number = 4,
repeated five times
repeats = 5)

e Then we carry out the cross-validation

set.seed(1)

m0_cv <- train(Volume ~ Girth, data = trees, trControl = train_control, method = "Im")
ml_cv <- train(Volume ~ poly(Girth, 2), data = trees, trControl = train_control, method = "lm")
m2_cv <- train(Volume ~ ns(Girth, 15), data = trees, trControl = train_control, method = "1lm")

16

https://cran.r-project.org/package=caret
https://topepo.github.io/caret/

5.6 Result of cross-validation
mO_cv

Linear Regression

##

31 samples

1 predictor

##

No pre-processing

Resampling: Cross-Validated (4 fold, repeated 5 times)
Summary of sample sizes: 24, 23, 23, 23, 23, 23,

Resampling results:

##
RMSE Rsquared MAE
4.5 0.95 3.7
#

Tuning parameter 'intercept' was held constant at a value of TRUE

e RMSE is root mean squared error

5.7 More on RMSE
e Here is the resulting RMSE for all folds and all repetitions:

m0_cv$resample

RMSE Rsquared MAE Resample

1 4.7 0.91 4.2 Foldl.Repl
##H 2 4.2 0.91 3.6 Fold2.Repl
3 5.3 0.99 3.3 Fold3.Repl
4 4.7 0.96 4.2 Fold4.Repl
5 3.8 0.93 3.2 Foldl.Rep2
6 5.6 0.93 4.6 Fold2.Rep2
7 2.7 0.97 2.0 Fold3.Rep2
8 5.0 0.95 4.7 Fold4.Rep2
9 3.5 0.97 2.7 Foldl.Rep3
10 4.7 0.93 4.2 Fold2.Rep3
11 4.6 0.96 3.6 Fold3.Rep3
12 5.2 0.96 4.2 Fold4.Rep3
13 4.4 0.93 3.6 Foldl.Rep4
14 5.3 0.95 4.2 Fold2.Rep4
15 3.5 0.96 2.7 Fold3.Rep4
16 4.1 0.95 3.4 Fold4.Rep4
17 3.7 0.98 3.0 Foldl.Repb
18 4.4 0.92 3.7 Fold2.Repb
19 6.2 0.98 4.6 Fold3.Repb
20 4.8 0.92 4.2 Fold4.Repb

e The average of these RMSE is the total RMSE
mean (m0_cv$resample$RMSE)

[1] 4.5

e This can also be obtained directly via the code

17

m0_cv$results$RMSE

[1] 4.5

5.8 Model comparison

« We obtain the model RMSE for the three models
mO_cvresults$RMSE

[1] 4.5
ml_cv$results$RMSE

[1] 3.5
m2_cv$results$RMSE

[1] 86
e The quadratic model has the lowest RMSE and hence the best predictive power

6 Non-parametric bootstrap

6.1 Sampling variability

o When we estimate a parameter from a sample, there is some uncertainty due to the fact that the sample
is random

e A new sample would result in new estimates
e The standard error is the standard deviation of the estimate when we repeat the sampling many times
— Measures the uncertainty of the estimate

e However, we only have one sample available

6.2 Bootstrap principle

o Idea: Create new samples by resampling n observations from original data with replacement (the same
observation may be sampled several times)

e Mimic new samples
o Example: Data indices:

index<-c(1,2,3,4,5)

e Bootstrap sample indices:

set.seed(1)
boot_index<-sample(index, replace = TRUE)
boot_index

[1] 14125

e Observation 1 appears 2 times in Bootstrap sample

18

6.3 Bootstrap data example

e We want to fit a linear model on the tree data. Coefficients of the linear model can be extracted by

m0 <- Im(Volume ~ Girth, data = trees)

coef (m0)
(Intercept) Girth
-36.9 5.1

o« We want to estimate their standard errors using bootstrap.

e To prepare for the bootstrap, we define a function that takes as input a vector of indices of the bootstrap
observations and does linear regression and extracts coefficients:

model_coef <- function(index){
coef (Im(Volume ~ Girth, data = trees, subset = index))

}

model_coef (1:nrow(trees))

(Intercept) Girth

-36.9 5.1

set.seed(1)

model_coef (sample(1l:nrow(trees), replace = TRUE))
(Intercept) Girth

-29.8 4.5

model_coef (sample(l:nrow(trees), replace = TRUE))
(Intercept) Girth

-34.4 4.8

6.4 Bootstrap data example - continued
e We now create 1000 bootstrap samples and estimate the linear regression coefficients for each

o We view the first ten results

set.seed (1)
bootstrap_coefs <- replicate(1000, {
model_coef (sample(l:nrow(trees), replace = TRUE))
B
bootstrap_coefs[, 1:10]

(.11 [,21 [,31 [,4] (,51 [,61 [,71 [,8] [,9]1 [,10]
(Intercept) -29.8 -34.4 -34.3 -42.6 -36 -35.0 -36.5 -39.4 -34.0 -32.1
Girth 4.5 4.8 4.8 5.5 5 4.9 5.1 5.2 4.8 4.7

o Below we plot the regression lines for the original data (red) and for the first ten bootstrap samples
(black)

19

80-

\olume

Girth

6.5 Bootstrap estimates for the standard error

e We estimate the standard error by taking the standard deviation of the 1000 parameter estimates

apply(bootstrap_coefs, 1, sd) # applies the function sd to each Tow in the matriz bootstrap_coefs

(Intercept) Girth
3.98 0.32

o This can be compared to the standard errors found by lm() using theoretical formulas

summary (m0)

##

Call:

1m(formula = Volume ~ Girth, data = trees)

##

Residuals:

Min 1Q Median 3Q Max

-8.065 -3.107 0.152 3.495 9.587

##

Coefficients:

#it Estimate Std. Error t value Pr(>ltl)

(Intercept) -36.943 3.365 -11.0 7.6e-12 **x
Girth 5.066 0.247 20.5 < 2e-16 *x*x
——-

Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1

20

##

Residual standard error: 4.2 on 29 degrees of freedom
Multiple R-squared: 0.935, Adjusted R-squared: 0.933
F-statistic: 419 on 1 and 29 DF, p-value: <2e-16

6.6 The boot package
 Bootstrapping can be done automatically using the boot package in R: https://cran.r-project.org/pack
age=boot

library(boot)

e We now need a function of both the dataset and an index vector that returns the linear regression
coefficients.

model_coef_boot <- function(data, index){
coef (Im(Volume ~ Girth, data = data, subset = index))

}

e Then the bootstrap is carried out as follows

set.seed (1)
b <- boot(trees, model_coef_boot, R = 1000)

b

#i#t

ORDINARY NONPARAMETRIC BOOTSTRAP
#it

#i#

Call:

boot(data = trees, statistic = model_coef_boot, R = 1000)
#it

#it

Bootstrap Statistics :

#i# original Dbias std. error
tlx -36.9 0.372 4.05
2% 5.1 -0.038 0.33

coef (summary (m0))

#i#t Estimate Std. Error t value Pr(>|tl)
(Intercept) -36.9 3.37 -11 7.6e-12
Girth 5.1 0.25 20 8.6e-19

7 Bootstrap by resampling residuals

o Idea:

— First fit regression line
— Compute residuals &; = y; — ¥;
— Create new dataset by replacing y; by Ui + & new, Where &; e, is randomly sampled from the
residuals €;
e Can be used if residuals are not normally distributed

o First fit the model

21

https://cran.r-project.org/package=boot
https://cran.r-project.org/package=boot

m0 <- 1Im(Volume ~ Girth, data = trees)

e Contruct 1000 new samples with resampled residuals.

set.seed (1)

res_bootstrap_coefs <- replicate(1000, {
new_y <- mO$fitted.values + sample(mO$residuals, replace = TRUE)
coef (Im(new_y ~ trees$Girth))

b

e Compute the regression parameters for each sample and find standard deviation

res_bootstrap_coefs[, 1:10]

#i# (,11 [[,21 [,3] [,4]1 [,51 [,61] ([,71 [,8] [,9] [,10]
(Intercept) -38.4 -38.5 -34.0 -36 -35 -31.7 -38.6 -40.8 -30.5 -38.8
trees$Girth 5.2 5.1 4.8 5 5 4.6 5.2 5.3 4.6 5.2

apply(res_bootstrap_coefs, 1, sd)

(Intercept) trees$Girth
3.31 0.24

e Compare with ordinary bootstrap
apply(bootstrap_coefs, 1, sd)
(Intercept) Girth
3.98 0.32

o Compare with lm()

coef (summary (m0))

#t Estimate Std. Error t value Pr(>|tl|)
(Intercept) -36.9 3.37 -11 7.6e-12
Girth 5.1 0.25 20 8.6e-19

8 Maximum likelihood estimation of a probability

8.1 Estimating a probability

o Assume that we want to estimate a probability p of a certain event, e.g.

— the probability that a bank customer will default their loan
— the probability that a customer will buy a certain product
o We take a sample of n observations Y7,...,Y,, where
— Y; =1 if the event happens,
— Y; = 0 if the event does not happen,
— The Y;, i =1,...,n, are independent random variables with P(Y; = 1) = p.
o Let X =) . Y; be the number of ones in our sample. The natural estimate for p is

]5:

S|

— Theoretical justification?

22

8.2 The likelihood function

o Idea: choose P to be the value of p that makes our observations as likely as possible.

e Suppose we have observed Y; = y1,...,Y,, = y,. The probability of observing this is

e Note that
b, yi:L
PY; =y;) =
(1_p)1 y; = 0.

o Therefore, if we let x =), y; be the number of 1’s in our sample,
PYi=y1,....Y =yn) =p*- (1 —p) 9.
o This probability depends on the value of p. We may think of it as a function
Llp)=PM 1 =y1,...,.Y, =yn) =0 (1 ,p)(nfw)’

— This is called the likelihood function.

e The maximum likelihood estimate p is the value of p that maximizes the likelihood function.

8.3 Likelihood function - example

« Example: Suppose we take a sample of n = 15 observations. We observe 5 ones and 10 zeros. The
likelihoodfunction becomes

L(p)=p°(1—p)**

o We plot the graph of L(p):

23

L(p)

8.4

8.5

4e-05 6e-05

2e-05

0e+00
l

0.0 0.2 0.4 0.6 0.8

p

The probability of our observations seems to be largest when p is around 1/3.

The log-likelihood function

We seek the value of p that maximizes the likelihood function
L(p) =p*- (1 —p)" .

Recall that In(z) is a strictly increasing function.
The value of p that maximizes L(p) also maximizes In(L(p)).

This is the log-likelihood function

I(p) = In(L(p)) = zIn(p) + (n — x) In(1 — p).

It is often easier to maximize the log-likelihood function.

Maximum likelihood estimation

In order to maximize
l(p) = zIn(p) + (n — z) In(1 — p),

we differentiate

24

1.0

9.1

The maximum must be found in a point with I’(p) = 0. Thus, we solve

Multiply by p(1 — p) to get
z(l-p)—(n—z)p=0
r—ap—np+zp=0

xTr =

S

P

p:

SR

Note that this must indeed be a maximum point since

lim I(p) = lim I(p) = —oc0.

p—0 p—1

Our maximum likelihood estimate of pis p = £

n°

Maximum likelihood for logistic regression

The logistic regression model

Estimation of a probability was a simple use of maximum likelihood estimation, which could easily have
been treated by more direct methods.

Logistic regression is a more complex case, where we want to model a probability p(z) that depends
on a predictor variable x.

— E.g. the probability of a customer buying a certain product as a function of their monthly income.

In logistic regression, p(x) is modelled by a logistic function

- 1
14 e—(atB)’

p(z)

25

9.2

1.0

P(x)
04 06

0.2

Graph of p(x) when o = 0 and § = 1. X

— « determines how steep the graph is.
— [shifts the graph along the z-axis.

How to estimate o and 57

Maximum likelihood estimation for logistic regression

A sample consists of (x1,41),.-., (Tn, Yn), where z; is the predictor and y; is the response, which is
either 0 or 1.

The probability of our observations is
PY1=uy,..., = Yn) Hp Hp) (1—p i))l_yi

since

2)Yi(1 — pa)Y = p(x;), yi =1,
Pl (1 = plan)) {_p(xi)’ =t

o Inserting what p(x;) is, we obtain a function of the unknown parameters « and 3:

L(a,ﬁ)=P(Y1zyl,.._,Yn:yn)zn<;)w<l_%>kyi

1 + e—(a+pzs) 1 + e—(a+Bz:)

e Again, it is easier to maximize the log-likelihood

o, B) = > (wiln(p(@) + (1 = o) (1 = p(a2))).

%

o However, this maximum can only be found using numerical methods.

26

9.3 Logistic regression - example

e We consider a dataset from the ISLR package on whether or not 10000 bank costumers will default
their loans.
— Response: default (1=yes, 0=no)
— Predictor: income
library(ISLR)
x<-Default$income/10000 # Annual income in 10000 dollars
y<-as.numeric(Default$default=="Yes") # Loan default, 1 means "Yes"

e We want to model the probability of default as a logistic function of income

_ 1
P = T

9.4 Logistic regression - example continued

« We make a function in R that computes the log-likelihood function as a function of the vector 6 = (a, 5)7.
— We first compute a vector px that contains all the probabilities p(z;).
— Then we compute the vector logpy which contains all the In(P(Y; = v;)) = v; In(p(x;)) + (1 —
yi) In(1 — p(z;)).
— Finally, we compute the log-likelihood with the formula

oy B) = > (wiMn(p(@:) + (1 =) In(1 = p(2)))

7

loglik <- function(theta) {
alpha=theta[1]

beta=theta[2]
px<-1/(1+exp(-alpha-beta*x))
logpy<-y*log(px) + (1-y)*log(l-px)
sum(logpy)

}

loglik(c(2,2))

[1] -84250

o We maximize the log-likelihood using the optim() function in R.
— It needs an initial guess of 6. Here we use c(2,2).
— The option control=list(fnscale=-1) ensures that we maximize rather than minimize.

optim(c(2,2),loglik,control=list(fnscale=-1))

$par

[1] -3.099 -0.081
#it

$value

[1] -1458

##

$counts

function gradient
#i# 69 NA
#i#

$convergence

[1]1 O

##

27

$message
NULL

« We obtain the maximum likelihood estimates & = —3.099 and 3 = —0.081.

9.5 Logistic regression - example continued

e We can plot the estimated logistic function

o 1
p(*) = Tz osoro o8t
o
<
S -
o
X o
N—”
™
o
o
N
S -
o I I | | |
0 2 4 6 10
X

e The maximum likelihood estimates of a and 8 can be found directly using R:

model<-glm(y~x,family="binomial")

summary (model)

##

Call:

glm(formula = y ~ x, family = "binomial")

#i#

Coefficients:

Estimate Std. Error z value Pr(>|zl)

(Intercept) -3.0941 0.1463 -21.16 <2e-16 **x

x -0.0835 0.0421 -1.99 0.047 =

-—-

Signif. codes: O '**x' 0.001 'x*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

(Dispersion parameter for binomial family taken to be 1)
##

Null deviance: 2920.6 on 9999 degrees of freedom
Residual deviance: 2916.7 on 9998 degrees of freedom

##

AIC: 2921

28

##
Number of Fisher Scoring iterations: 6

10 Maximum likelihood estimation with continuous variables

10.1 The probability density function

e Suppose we have a sample Y7,...,Y,, of independent variables with

Yi ~ N(p,0)
o We would like to estimate the unknown parameters p and o.
 For a continuous variable Y we have P(Y = y) = 0 for all y.
— We cannot use the probability of observing a given outcome to define the likelihood function.

o Instead we consider the probability density function

e Eg forp=0and o =1:

L

0.4 ~ B
0.3 -
2 0.2 o B
0.1 B
0.0 -

I I I I I

-2 -1 0 1 2

y

o The most likely values are the ones where f(y) is large.

o Thus we will use f(y) as a measure of how likely it is to observe Y = y.

29

10.2 The likelihood function for n observations

e Since Y7,...,Y, are independent observations, the joint density function becomes a product of marginal
densities:

for v W) = ny Yi)-

o If we have observed a sample Y1 = y1,...,Y, = y,, our likelihood function is defined as

1 _wimw?
L(va):f(Yl)yla"'7yn HfY yl _HO' € 207 . (1)

e The maximum likelihood estimate (fi, §) is the value of (i, o) that maximizes the likelihood function.

10.3 Log-likelihood function in the normal case

e We found the log-likelihood function

1 _(yz:*u)r"
L(p, o) :Ha s=e (2)

e Again it is easier to maximize the log-likelihood function.

Wp,0) =In(L(p,0)) = ;hl (J 1271_67%)
Z(In(ov2r) — u):*nln(U\/%)—ZM

202

e We find the partial derivatives and set them equal to 0. First with respect to pu:

0 2(y; — 1 1
aul(ﬂva)z(y%gu)ag;(yiﬂ) 02(;%”:“) =

i
Vi far at np =)", yi, 85M=%Ziyi=§

Then with respect to o:

We multiply by ¢ and insert u = y:

" g

K3

1 _
n= o2 : (yi — y)2
ot = - (i 5

n 7

e In total we get the maximum likelihood estimates:

30

10.4 Numerical solution - normal distribution

e The maximum likelihood estimates can also be found numerically. We consider again the trees data.

trees <- read.delim("https://asta.math.aau.dk/datasets?file=trees.txt")
head(trees)

Girth Height Volume

1 8.3 70 10
2 8.6 65 10
3 8.8 63 10
4 10.5 72 16
5 10.7 81 19
6 10.8 83 20

o We will assume that the variable Height is normally distributed.

qqnorm(trees$Height)
qqline(trees$Height)

Normal Q—-Q Plot

Sample Quantiles

Theoretical Quantiles

10.5 Numerical solution - normal distribution

o We define the log-likelihood as a function of the parameter vector § = (i, 0)7.

31

— dnorm(y, mean = mu, sd = sigma) gives the normal density f(y) with mean p and standard
deviation o evaluated at y.

loglik_normal <- function(theta) {
mu <- thetal[1]
sigma <- thetal[2]
y<-trees$Height
fy<-dnorm(y , mean = mu, sd = sigma)
sum(log(£fy))
}
loglik_normal(c(1,5))

[1] -3590
o We maximize again using optim():

optim(c(1l, 5), loglik_normal,control=list(fnscale=-1))

$par

[1] 76.0 6.3

##

$value

[1]1 -101

##

$counts

function gradient
103 NA
##

$convergence

[11 0

##

$message

NULL

e We can compare this to the theoretical formulas for the maximum likelihood estimates:

mean(trees$Height)

[1] 76
sd(trees$Height)

[1] 6.4

n <- length(trees$Height)
sd(trees$Height) *sqrt ((n-1) /n)

[1] 6.3

11 Properties of maximum likelihood estimators

e Suppose 6 € R is a parameter that we estimate by 0 using maximum likelihood estimation. Then (under
suitable conditions) one may show the following mathematically.

32

o Consistency: For all € > 0, .
lim P(J0 — 0] >¢)=0

n—roo
¢ Central limit theorem: When n — oo,

Vn(—6) = N(0,02).

That is, for large n,

A

V(0 0) = N(0,07),

or equivalently,

33

	Resampling techniques
	Model complexity
	A linear model for tree data
	A polynomial model
	Another polynomial model
	A natural spline

	Measures of fit
	R^2 and correlation
	Mean squared error

	Out-of-sample error
	Reproducibility and random number generation
	Out-of-sample error
	Training the models
	Testing the models
	Summary

	Cross-validation
	Testing predictive ability
	Cross-validation
	Example
	Repeated CV
	Cross-validation in R
	Result of cross-validation
	More on RMSE
	Model comparison

	Non-parametric bootstrap
	Sampling variability
	Bootstrap principle
	Bootstrap data example
	Bootstrap data example - continued
	Bootstrap estimates for the standard error
	The boot package

	Bootstrap by resampling residuals
	Maximum likelihood estimation of a probability
	Estimating a probability
	The likelihood function
	Likelihood function - example
	The log-likelihood function
	Maximum likelihood estimation

	Maximum likelihood for logistic regression
	The logistic regression model
	Maximum likelihood estimation for logistic regression
	Logistic regression - example
	Logistic regression - example continued
	Logistic regression - example continued

	Maximum likelihood estimation with continuous variables
	The probability density function
	The likelihood function for n observations
	Log-likelihood function in the normal case
	Numerical solution - normal distribution
	Numerical solution - normal distribution

	Properties of maximum likelihood estimators

