Maximum likelihood estimation and resampling techniques

Maximum likelihood estimation in linear regression

- 1. Write up the simple linear regression model with one explanatory variable.
- 2. Write up an expression for the log-likelihood for n independent observations from the simple linear regression model.
- 3. Show that the maximum likelihood estimators (MLE) for the intercept α and slope β are indeed the least squares estimators.

Consider a simple linear regression model for the trees dataset with Volume as response variable and Girth as explanatory variable.

- 4. Find the MLE estimates for α , β and σ numerically by maximizing the log-likelihood function.
- 5. Find the least squares estimates of α and β numerically. That is, define a function that computes the least squares as a function of α and β and use optim() to minimize the function. Compare with 4.
- 6. Compare 4. and 5. to the output of summary(lm(...)).

Overfitting and cross validation

We consider the Credit dataset from the ISLR package which contains data about credit card holders.

```
library(ISLR) # Remember that this package must be installed
head(Credit)
```

##		ID	Income	Limit	Rating	Cards	Age	Education	Gender	Student	Married	Ethnicity
##	1	1	14.891	3606	283	2	34	11	Male	No	Yes	Caucasian
##	2	2	106.025	6645	483	3	82	15	Female	Yes	Yes	Asian
##	3	3	104.593	7075	514	4	71	11	Male	No	No	Asian
##	4	4	148.924	9504	681	3	36	11	Female	No	No	Asian
##	5	5	55.882	4897	357	2	68	16	Male	No	Yes	Caucasian
##	6	6	80.180	8047	569	4	77	10	Male	No	No	Caucasian
##		Bal	ance									
##	1		333									
##	2		903									
##	3		580									
##	4		964									
##	5		331									
##	6		1151									

Our response variable will be **Balance** which is the constumers credit card debt. As predictor we use the variable **Rating** which is the costumer's credit rating.

- 1. Fit a linear regression model for the relationship between balance and Rating.
- 2. Use bootstrap to estimate the standard errors of the parameter estimates in the simple linear regression model. Compare to those obtained from summary().

- 3. Use resampling of residuals to estimate the standard errors of the parameter estimates in the simple linear regression model. Compare to those obtained from summary().
- 4. Use cross validation to decide between linear and polynomial regression.