Likelihood and maximum likelihood estimation

The ASTA team

Contents

1	Ma	ximum likelihood estimation of a probability	1
	1.1	Estimating a probability	1
	1.2	The likelihood function	
	1.3	Likelihood function - example	
	1.4	The log-likelihood function	:
	1.5	Maximum likelihood estimation	
2	Ma	ximum likelihood for logistic regression	4
	2.1	The logistic regression model	4
	2.2	Maximum likelihood estimation for logistic regression	
	2.3	Logistic regression - example	
	2.4	Logistic regression - example continued	
	2.5	Logistic regression - example continued	
3	Ma	ximum likelihood estimation with continuous variables	8
	3.1	The probability density function	8
	3.2	The likelihood function for n observations	(
	3.3	Log-likelihood function in the normal case	Ć
	3.4	Numerical solution - normal distribution	
	3.5	Numerical solution - normal distribution	
4	Pro	perties of maximum likelihood estimators	11

Maximum likelihood estimation of a probability 1

Estimating a probability 1.1

- Assume that we want to estimate a probability p of a certain event, e.g.
 - the probability that a bank customer will default their loan
 - the probability that a customer will buy a certain product
- We take a sample of n observations Y_1, \ldots, Y_n , where
- $Y_i=1$ if the event happens, $Y_i=0$ if the event does not happen, The $Y_i, i=1,\ldots,n$, are independent random variables with $P(Y_i=1)=p$. Let $X=\sum_i Y_i$ be the number of ones in our sample. The natural estimate for p is

$$\hat{P} = \frac{X}{n}.$$

- Theoretical justification?

1.2 The likelihood function

- Idea: choose \hat{P} to be the value of p that makes our observations as likely as possible.
- Suppose we have observed $Y_1 = y_1, \ldots, Y_n = y_n$. The probability of observing this is

$$P(Y_1 = y_1, \dots, Y_n = y_n) = P(Y_1 = y_1) \cdot \dots \cdot P(Y_n = y_n).$$

• Note that

$$P(Y_i = y_i) = \begin{cases} p, & y_i = 1, \\ (1 - p), & y_i = 0. \end{cases}$$

• Therefore, if we let $x = \sum_{i} y_i$ be the number of 1's in our sample,

$$P(Y_1 = y_1, \dots, Y_n = y_n) = p^x \cdot (1-p)^{(n-x)}.$$

• This probability depends on the value of p. We may think of it as a function

$$L(p) = P(Y_1 = y_1, \dots, Y_n = y_n) = p^x \cdot (1-p)^{(n-x)}.$$

- This is called the **likelihood function**.
- The maximum likelihood estimate \hat{p} is the value of p that maximizes the likelihood function.

1.3 Likelihood function - example

• Example: Suppose we take a sample of n = 15 observations. We observe 5 ones and 10 zeros. The likelihoodfunction becomes

$$L(p) = p^5 (1 - p)^{10}$$

• We plot the graph of L(p):

• The probability of our observations seems to be largest when p is around 1/3.

1.4 The log-likelihood function

 \bullet We seek the value of p that maximizes the likelihood function

$$L(p) = p^x \cdot (1-p)^{(n-x)}.$$

- Recall that ln(x) is a strictly increasing function.
- The value of p that maximizes L(p) also maximizes $\ln(L(p))$.
- This is the log-likelihood function

$$l(p) = \ln(L(p)) = x \ln(p) + (n - x) \ln(1 - p).$$

• It is often easier to maximize the log-likelihood function.

1.5 Maximum likelihood estimation

• In order to maximize

$$l(p) = x \ln(p) + (n-x) \ln(1-p),$$

we differentiate

$$l'(p) = \frac{x}{p} - \frac{n-x}{1-p}.$$

• The maximum must be found in a point with l'(p) = 0. Thus, we solve

$$l'(p) = \frac{x}{p} - \frac{n-x}{1-p} = 0.$$

• Multiply by p(1-p) to get

$$x(1-p) - (n-x)p = 0$$
$$x - xp - np + xp = 0$$

$$x=np$$

$$p = \frac{x}{n}.$$

• Note that this must indeed be a maximum point since

$$\lim_{p \to 0} l(p) = \lim_{p \to 1} l(p) = -\infty.$$

• Our maximum likelihood estimate of p is $\hat{p} = \frac{x}{n}$.

2 Maximum likelihood for logistic regression

2.1 The logistic regression model

- Estimation of a probability was a simple use of maximum likelihood estimation, which could easily have been treated by more direct methods.
- Logistic regression is a more complex case, where we want to model a probability p(x) that depends on a predictor variable x.
 - E.g. the probability of a customer buying a certain product as a function of their monthly income.
- In logistic regression, p(x) is modelled by a logistic function

$$p(x) = \frac{1}{1 + e^{-(\alpha + \beta x)}}.$$

- Graph of p(x) when $\alpha = 0$ and $\beta = 1$.
 - $-\alpha$ determines how steep the graph is.
 - $-\beta$ shifts the graph along the x-axis.
- How to estimate α and β ?

2.2 Maximum likelihood estimation for logistic regression

- A sample consists of $(x_1, y_1), \ldots, (x_n, y_n)$, where x_i is the predictor and y_i is the response, which is either 0 or 1.
- The probability of our observations is

$$P(Y_1 = y_1, \dots, Y_n = y_n) = \prod_i p(Y_i = y_i) = \prod_i p(x_i)^{y_i} (1 - p(x_i))^{1 - y_i}$$

since

$$p(x_i)^{y_i}(1-p(x_i))^{1-y_i} = \begin{cases} p(x_i), & y_i = 1, \\ 1-p(x_i), & y_i = 0. \end{cases}$$

• Inserting what $p(x_i)$ is, we obtain a function of the unknown parameters α and β :

$$L(\alpha, \beta) = P(Y_1 = y_1, \dots, Y_n = y_n) = \prod_{i} \left(\frac{1}{1 + e^{-(\alpha + \beta x_i)}} \right)^{y_i} \left(1 - \frac{1}{1 + e^{-(\alpha + \beta x_i)}} \right)^{1 - y_i}$$

• Again, it is easier to maximize the log-likelihood

$$l(\alpha, \beta) = \sum_{i} (y_i \ln(p(x_i)) + (1 - y_i) \ln(1 - p(x_i))).$$

• However, this maximum can only be found using numerical methods.

2.3 Logistic regression - example

- We consider a dataset from the ISLR package on whether or not 10000 bank costumers will default their loans.
 - Response: default (1=yes, 0=no)
 - Predictor: income

```
library(ISLR)
x<-Default$income/10000 # Annual income in 10000 dollars
y<-as.numeric(Default$default=="Yes") # Loan default, 1 means "Yes"</pre>
```

• We want to model the probability of default as a logistic function of income

$$p(x) = \frac{1}{1 + e^{-(\alpha + \beta x)}}.$$

2.4 Logistic regression - example continued

- We make a function in R that computes the log-likelihood function as a function of the vector $\theta = (\alpha, \beta)^T$.
 - We first compute a vector px that contains all the probabilities $p(x_i)$.
 - Then we compute the vector logpy which contains all the $\ln(P(Y_i = y_i)) = y_i \ln(p(x_i)) + (1 y_i) \ln(1 p(x_i))$.
 - Finally, we compute the log-likelihood with the formula

$$l(\alpha, \beta) = \sum_{i} \left(y_i \ln(p(x_i)) + (1 - y_i) \ln(1 - p(x_i)) \right)$$

```
loglik <- function(theta) {
alpha=theta[1]
beta=theta[2]
px<-1/(1+exp(-alpha-beta*x))
logpy<-y*log(px) + (1-y)*log(1-px)
sum(logpy)
}
loglik(c(2,2))</pre>
```

- ## [1] -84250
 - We maximize the log-likelihood using the optim() function in R.
 - It needs an initial guess of θ . Here we use c(2,2).
 - The option control=list(fnscale=-1) ensures that we maximize rather than minimize.

```
optim(c(2,2),loglik,control=list(fnscale=-1))
```

```
## $par
## [1] -3.099 -0.081
##
## $value
## [1] -1458
##
## $counts
## function gradient
## 69 NA
##
## $convergence
## [1] 0
##
```

\$message

NULL

• We obtain the maximum likelihood estimates $\hat{\alpha} = -3.099$ and $\hat{\beta} = -0.081$.

2.5 Logistic regression - example continued

• We can plot the estimated logistic function

$$\hat{p}(x) = \frac{1}{1 + e^{3.099 + 0.081x}}.$$

• The maximum likelihood estimates of α and β can be found directly using R:

```
model<-glm(y~x,family="binomial")
summary(model)</pre>
```

```
##
   glm(formula = y ~ x, family = "binomial")
##
##
  Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -3.0941
                            0.1463
                                   -21.16
                                             <2e-16 ***
## x
                -0.0835
                            0.0421
                                     -1.99
                                             0.047 *
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 2920.6 on 9999 degrees of freedom
## Residual deviance: 2916.7 on 9998 degrees of freedom
## AIC: 2921
```

3 Maximum likelihood estimation with continuous variables

3.1 The probability density function

• Suppose we have a sample Y_1, \dots, Y_n of independent variables with

$$Y_i \sim N(\mu, \sigma)$$

- We would like to estimate the unknown parameters μ and σ .
- For a continuous variable Y we have P(Y = y) = 0 for all y.
 - We cannot use the probability of observing a given outcome to define the likelihood function.
- Instead we consider the probability density function

$$f(y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^2\right]$$

• E.g. for $\mu = 0$ and $\sigma = 1$:

- The most likely values are the ones where f(y) is large.
- Thus we will use f(y) as a measure of how likely it is to observe Y = y.

3.2 The likelihood function for n observations

• Since Y_1, \ldots, Y_n are independent observations, the joint density function becomes a product of marginal densities:

$$f_{(Y_1,...,Y_n)}(y_1,...,y_n) = \prod_i f_{Y_i}(y_i).$$

• If we have observed a sample $Y_1 = y_1, \dots, Y_n = y_n$, our likelihood function is defined as

$$L(\mu, \sigma) = f_{(Y_1, \dots, Y_n)}(y_1, \dots, y_n) = \prod_i f_{Y_i}(y_i) = \prod_i \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(y_i - \mu)^2}{2\sigma^2}}.$$
 (1)

• The maximum likelihood estimate $(\hat{\mu}, \hat{\sigma})$ is the value of (μ, σ) that maximizes the likelihood function.

3.3 Log-likelihood function in the normal case

• We found the log-likelihood function

$$L(\mu, \sigma) = \prod_{i} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(y_i - \mu)^2}{2\sigma^2}}.$$
 (2)

• Again it is easier to maximize the log-likelihood function.

$$l(\mu, \sigma) = \ln(L(\mu, \sigma)) = \sum_{i} \ln\left(\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(y_i - \mu)^2}{2\sigma^2}}\right)$$
$$= \sum_{i} \left(-\ln(\sigma\sqrt{2\pi}) - \frac{(y_i - \mu)^2}{2\sigma^2}\right) = -n\ln(\sigma\sqrt{2\pi}) - \sum_{i} \frac{(y_i - \mu)^2}{2\sigma^2}$$

• We find the partial derivatives and set them equal to 0. First with respect to μ :

$$\frac{\partial}{\partial \mu}l(\mu,\sigma) = \sum_{i} \frac{2(y_i - \mu)}{2\sigma^2} = \frac{1}{\sigma^2} \sum_{i} (y_i - \mu) = \frac{1}{\sigma^2} \left(\sum_{i} y_i - n\mu \right) = 0$$

- Vi får at $n\mu = \sum_i y_i$, så $\mu = \frac{1}{n} \sum_i y_i = \bar{y}$.
- Then with respect to σ :

$$\frac{\partial}{\partial \sigma}l(\mu,\sigma) = -\frac{n}{\sigma} + \sum_{i} \frac{(y_i - \mu)^2}{\sigma^3} = 0$$

• We multiply by σ and insert $\mu = \bar{y}$:

$$-n + \sum_{i} \frac{(y_i - \bar{y})^2}{\sigma^2} = 0$$
$$n = \frac{1}{\sigma^2} \sum_{i} (y_i - \bar{y})^2$$
$$\sigma^2 = \frac{1}{n} \sum_{i} (y_i - \bar{y})^2$$

• In total we get the maximum likelihood estimates:

$$\hat{\mu} = \frac{1}{n} \sum_{i} y_i = \bar{y}$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i} (y_i - \bar{y})^2$$

3.4 Numerical solution - normal distribution

• The maximum likelihood estimates can also be found numerically. We consider again the trees data.

```
trees <- read.delim("https://asta.math.aau.dk/datasets?file=trees.txt")
head(trees)</pre>
```

```
##
     Girth Height Volume
                70
## 1
       8.3
## 2
       8.6
                65
                        10
       8.8
                 63
                        10
                72
      10.5
                        16
## 5
      10.7
                 81
                        19
## 6
      10.8
```

• We will assume that the variable Height is normally distributed.

```
qqnorm(trees$Height)
qqline(trees$Height)
```

Normal Q-Q Plot

3.5 Numerical solution - normal distribution

• We define the log-likelihood as a function of the parameter vector $\theta = (\mu, \sigma)^T$.

- dnorm(y, mean = mu, sd = sigma) gives the normal density f(y) with mean μ and standard deviation σ evaluated at y.

```
loglik_normal <- function(theta) {
  mu <- theta[1]
  sigma <- theta[2]
  y<-trees$Height
  fy<-dnorm(y , mean = mu, sd = sigma)
  sum(log(fy))
}
loglik_normal(c(1,5))</pre>
```

[1] -3590

• We maximize again using optim():

```
optim(c(1, 5), loglik_normal,control=list(fnscale=-1))
```

```
## $par
## [1] 76.0 6.3
##
## $value
## [1] -101
##
## $counts
## function gradient
## 103 NA
##
## $convergence
## [1] 0
##
## $message
## NULL
```

• We can compare this to the theoretical formulas for the maximum likelihood estimates:

$$\hat{\mu} = \bar{y},$$

$$\hat{\sigma} = \sqrt{\frac{1}{n} \sum_{i} (y_i - \bar{y})^2} = \sqrt{\frac{n-1}{n}} s.$$

```
mean(trees$Height)

## [1] 76

sd(trees$Height)

## [1] 6.4

n <- length(trees$Height)
sd(trees$Height)*sqrt((n-1)/n)

## [1] 6.3</pre>
```

4 Properties of maximum likelihood estimators

• Suppose $\theta \in \mathbb{R}$ is a parameter that we estimate by $\hat{\theta}$ using maximum likelihood estimation. Then (under suitable conditions) one may show the following mathematically.

• Consistency: For all $\varepsilon > 0$,

$$\lim_{n \to \infty} P(|\theta - \hat{\theta}| > \varepsilon) = 0$$

• Central limit theorem: When $n \to \infty$,

$$\sqrt{n}(\hat{\theta} - \theta) \to N(0, \sigma_{\theta}^2).$$

That is, for large n,

$$\sqrt{n}(\hat{\theta} - \theta) \approx N(0, \sigma_{\theta}^2),$$

or equivalently,

$$\hat{\theta} \approx N\left(\theta, \frac{\sigma_{\theta}^2}{n}\right).$$