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1 Maximum likelihood estimation of a probability

1.1 Estimating a probability

o Assume that we want to estimate a probability p of a certain event, e.g.

— the probability that a bank customer will default their loan
— the probability that a customer will buy a certain product
o We take a sample of n observations Y7,...,Y,, where
— Y, = 1 if the event happens,
— Y, = 0 if the event does not happen,
— The Y;, i =1,...,n, are independent random variables with P(Y; = 1) = p.
o Let X =) . Y; be the number of ones in our sample. The natural estimate for p is
P =

S

— Theoretical justification?



1.2

1.3

The likelihood function

Idea: choose P to be the value of p that makes our observations as likely as possible.

Suppose we have observed Y7 = y1,...,Y, = y,. The probability of observing this is

P(leyla---vyn:yn):P(Yi:yl) """ P(Yn:yn)
Note that
—
P(K :yl) — p) yl ’
(1 7p)a Yi = 0.

Therefore, if we let x = ZZ y; be the number of 1’s in our sample,
P(Yl =Y1,...,Yp = yn) — px . (1 _p)(n—x).

This probability depends on the value of p. We may think of it as a function

Lip)=PYi=y1,....Yn =yn) =p"- (1 —p)" ™",
— This is called the likelihood function.

The maximum likelihood estimate p is the value of p that maximizes the likelihood function.

Likelihood function - example

Example: Suppose we take a sample of n = 15 observations. We observe 5 ones and 10 zeros. The
likelihoodfunction becomes

L(p) =p°(1 —p)*°

We plot the graph of L(p):
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The probability of our observations seems to be largest when p is around 1/3.

The log-likelihood function

We seek the value of p that maximizes the likelihood function
L(p) =p*- (1 —p)" .

Recall that In(z) is a strictly increasing function.
The value of p that maximizes L(p) also maximizes In(L(p)).

This is the log-likelihood function

I(p) = In(L(p)) = zIn(p) + (n — x) In(1 — p).

It is often easier to maximize the log-likelihood function.

Maximum likelihood estimation

In order to maximize
l(p) = zIn(p) + (n — z) In(1 — p),

we differentiate

1.0




2.1

The maximum must be found in a point with I’(p) = 0. Thus, we solve

Multiply by p(1 — p) to get
z(l-p)—(n—z)p=0
r—ap—np+zp=0

xTr =

S

P

p:

SR

Note that this must indeed be a maximum point since

lim I(p) = lim I(p) = —oc0.

p—0 p—1

Our maximum likelihood estimate of pis p = £

n°

Maximum likelihood for logistic regression

The logistic regression model

Estimation of a probability was a simple use of maximum likelihood estimation, which could easily have
been treated by more direct methods.

Logistic regression is a more complex case, where we want to model a probability p(z) that depends
on a predictor variable x.

— E.g. the probability of a customer buying a certain product as a function of their monthly income.

In logistic regression, p(x) is modelled by a logistic function

- 1
14 e—(atB)’

p(z)



2.2
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Graph of p(x) when o = 0 and § = 1. X

— « determines how steep the graph is.
— [ shifts the graph along the z-axis.

How to estimate o and 57

Maximum likelihood estimation for logistic regression

A sample consists of (x1,41),.-., (Tn, Yn), where z; is the predictor and y; is the response, which is
either 0 or 1.

The probability of our observations is
PY1=uy,..., = Yn) Hp Hp ) (1—p i))l_yi

since

2 )Yi(1 — pa )Y = p(x;), yi =1,
Pl (1 = plan)) {_p(xi)’ =t

o Inserting what p(x;) is, we obtain a function of the unknown parameters « and 3:

L(a,ﬁ)=P(Y1zyl,.._,Yn:yn)zn<;)w<l_%>kyi

1 + e—(a+pzs) 1 + e—(a+Bz:)

e Again, it is easier to maximize the log-likelihood

o, B) = > (wiln(p(@) + (1 = o) (1 = p(a2)) ).

%

o However, this maximum can only be found using numerical methods.




2.3 Logistic regression - example

e We consider a dataset from the ISLR package on whether or not 10000 bank costumers will default
their loans.
— Response: default (1=yes, 0=no)
— Predictor: income
library(ISLR)
x<-Default$income/10000 # Annual income in 10000 dollars
y<-as.numeric(Default$default=="Yes") # Loan default, 1 means "Yes"

e We want to model the probability of default as a logistic function of income

_ 1
P = T

2.4 Logistic regression - example continued

« We make a function in R that computes the log-likelihood function as a function of the vector 6 = (a, 5)7.
— We first compute a vector px that contains all the probabilities p(z;).
— Then we compute the vector logpy which contains all the In(P(Y; = v;)) = v; In(p(x;)) + (1 —
yi) In(1 — p(z;)).
— Finally, we compute the log-likelihood with the formula

oy B) = > (wiMn(p(@:) + (1 = ) In(1 = p(2)) )

7

loglik <- function(theta) {
alpha=theta[1]

beta=theta[2]
px<-1/(1+exp(-alpha-beta*x))
logpy<-y*log(px) + (1-y)*log(l-px)
sum(logpy)

}

loglik(c(2,2))

## [1] -84250

o We maximize the log-likelihood using the optim() function in R.
— It needs an initial guess of 6. Here we use c(2,2).
— The option control=list(fnscale=-1) ensures that we maximize rather than minimize.

optim(c(2,2),loglik,control=list(fnscale=-1))

## $par

## [1] -3.099 -0.081
#it

## $value

## [1] -1458

##

## $counts

## function gradient
#i# 69 NA
#i#

## $convergence

## [1]1 O

##



## $message
## NULL

« We obtain the maximum likelihood estimates & = —3.099 and 3 = —0.081.

2.5 Logistic regression - example continued

e We can plot the estimated logistic function
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e The maximum likelihood estimates of a and 8 can be found directly using R:

model<-glm(y~x,family="binomial")

summary (model)

##

## Call:

## glm(formula = y ~ x, family = "binomial")

#i#

## Coefficients:

## Estimate Std. Error z value Pr(>|zl)

## (Intercept) -3.0941 0.1463 -21.16 <2e-16 **x

## x -0.0835 0.0421  -1.99 0.047 =

## -—-

## Signif. codes: O '**x' 0.001 'x*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## (Dispersion parameter for binomial family taken to be 1)
##

## Null deviance: 2920.6 on 9999 degrees of freedom
## Residual deviance: 2916.7 on 9998 degrees of freedom

##

AIC: 2921




##
## Number of Fisher Scoring iterations: 6

3 Maximum likelihood estimation with continuous variables

3.1 The probability density function

e Suppose we have a sample Y7,...,Y,, of independent variables with

Yi ~ N(p,0)
o We would like to estimate the unknown parameters p and o.
 For a continuous variable Y we have P(Y = y) = 0 for all y.
— We cannot use the probability of observing a given outcome to define the likelihood function.

o Instead we consider the probability density function

e Eg forp=0and o =1:

L

0.4 ~ B
0.3 -
2 0.2 o B
0.1 B
0.0 -

I I I I I

-2 -1 0 1 2

y

o The most likely values are the ones where f(y) is large.

o Thus we will use f(y) as a measure of how likely it is to observe Y = y.




3.2

3.3

The likelihood function for n observations

Since Y1,...,Y, are independent observations, the joint density function becomes a product of marginal
densities:

for v W) = ny Yi)-

If we have observed a sample Y7 = y1,...,Y,, = y,, our likelihood function is defined as

1 _wimw?
L(va):f(Yl ..... )yla"'7yn HfY yl _HO' € 207 . (1)

The maximum likelihood estimate (fi, &) is the value of (u, o) that maximizes the likelihood function.

Log-likelihood function in the normal case

We found the log-likelihood function

1 _(yz:*u)r"
L(p, o) :Ha s=e (2)

Again it is easier to maximize the log-likelihood function.
1110 = n(L(10)) = Y (e 557
,0)=1n ,O0)) = n e 20
H s Z oV 2w
2 -
Z ( In(ov2 u) = —nln(ov27) — Z Wi =)

202

We find the partial derivatives and set them equal to 0. First with respect to u:

0 2(y; — 1 1
aul(ﬂva)z(y%gu)ag;(yiﬂ) 02(;%”:“) =

i
Vifirat np=3,y, s p==23y,=4
Then with respect to o:

We multiply by ¢ and insert u = y:

" g

K3

1 _
n= o2 : (yi — y)2
ot = - (i 5

n 7

In total we get the maximum likelihood estimates:



3.4 Numerical solution - normal distribution

e The maximum likelihood estimates can also be found numerically. We consider again the trees data.

trees <- read.delim("https://asta.math.aau.dk/datasets?file=trees.txt")
head(trees)

##  Girth Height Volume

## 1 8.3 70 10
## 2 8.6 65 10
## 3 8.8 63 10
## 4 10.5 72 16
## 5 10.7 81 19
## 6 10.8 83 20

o We will assume that the variable Height is normally distributed.

qqnorm(trees$Height)
qqline(trees$Height)

Normal Q—-Q Plot

Sample Quantiles

Theoretical Quantiles

3.5 Numerical solution - normal distribution

o We define the log-likelihood as a function of the parameter vector § = (i, 0)7.

10



— dnorm(y, mean = mu, sd = sigma) gives the normal density f(y) with mean p and standard
deviation o evaluated at y.

loglik_normal <- function(theta) {
mu <- thetal[1]
sigma <- thetal[2]
y<-trees$Height
fy<-dnorm(y , mean = mu, sd = sigma)
sum(log(£fy))
}
loglik_normal(c(1,5))

## [1] -3590
o We maximize again using optim():

optim(c(1l, 5), loglik_normal,control=list(fnscale=-1))

## $par

## [1] 76.0 6.3

##

## $value

## [1]1 -101

##

## $counts

## function gradient
## 103 NA
##

## $convergence

# [11 0

##

## $message

## NULL

e We can compare this to the theoretical formulas for the maximum likelihood estimates:

mean(trees$Height)

## [1] 76
sd(trees$Height)

## [1] 6.4

n <- length(trees$Height)
sd(trees$Height) *sqrt ((n-1) /n)

## [1] 6.3

4 Properties of maximum likelihood estimators

e Suppose 6 € R is a parameter that we estimate by 0 using maximum likelihood estimation. Then (under
suitable conditions) one may show the following mathematically.

11



o Consistency: For all € > 0, .
lim P(J0 — 0] >¢)=0

n—roo
¢ Central limit theorem: When n — oo,

Vn( —6) = N(0,02).

That is, for large n,

A

V(0 0) = N(0,07),

or equivalently,

12
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