Resampling techniques

The ASTA team

Contents

1	Res	sampling techniques	1							
2	Mod 2.1 2.2 2.3 2.4	del complexity A linear model for tree data	2 4 5 5							
3	Measures of fit									
	3.1	R^2 and correlation	6							
	3.2	Mean squared error	7							
4	Out	t-of-sample error	7							
	4.1	Reproducibility and random number generation	7							
	4.2	Out-of-sample error	8							
	4.3	Training the models	8							
	4.4	Testing the models	11							
	4.5	Summary	12							
5	Cro	oss-validation	12							
	5.1	Testing predictive ability	12							
	5.2	Cross-validation	12							
	5.3	Example	13							
	5.4	Repeated CV	15							
	5.5	Cross-validation in R	16							
	5.6	Result of cross-validation	17							
	5.7	More on RMSE	17							
	5.8	Model comparison	18							
6	Non-parametric bootstrap 1									
	6.1	Sampling variability	18							
	6.2	Bootstrap principle	18							
	6.3	Bootstrap data example	19							
	6.4	Bootstrap data example - continued	19							
	6.5	Bootstrap estimates for the standard error	20							
	6.6	The boot package	21							
7	Boo	otstrap by resampling residuals	21							

1 Resampling techniques

Topics:

- Overfitting (the model fits too well to the observed data)
- Generalisation (how well a model performs on a new sample)
- Cross-validation (estimate out-of-sample prediction error)
- Bootstrap (estimate standard errors)

2 Model complexity

2.1 A linear model for tree data

```
trees <- read.delim("https://asta.math.aau.dk/datasets?file=trees.txt")
head(trees)</pre>
```

```
##
     Girth Height Volume
## 1
               70
       8.3
       8.6
               65
## 3
       8.8
               63
                       10
## 4
     10.5
               72
                       16
## 5 10.7
               81
                       19
## 6 10.8
               83
                       20
```

- We consider the dataset trees containing the following observations on 31 trees:
 - Response: Volume timber volume
 - Predictor: Girth the tree diameter
- We consider a linear model.

$$Y = \alpha + \beta \cdot x + \varepsilon$$

```
m0 <- lm(Volume ~ Girth, data = trees)
plotModel(m0)</pre>
```


summary(m0)

```
##
## Call:
## lm(formula = Volume ~ Girth, data = trees)
## Residuals:
##
     Min
             1Q Median
                            3Q
## -8.065 -3.107 0.152 3.495 9.587
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36.943
                             3.365
                                   -11.0 7.6e-12 ***
## Girth
                  5.066
                             0.247
                                      20.5 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.2 on 29 degrees of freedom
## Multiple R-squared: 0.935, Adjusted R-squared: 0.933
## F-statistic: 419 on 1 and 29 DF, p-value: <2e-16
  • We obtain the prediction equation
                                      \hat{y} = -36.9 + 5.07 \cdot x
```

• The model has $R^2 = 0.935$

2.2 A polynomial model

• We can also try to fit a second degree polynomial to the data

$$Y = \alpha + \beta_1 x + \beta_2 x^2 + \varepsilon$$

```
m1 <- lm(Volume ~ poly(Girth, 2), data = trees)
plotModel(m1)</pre>
```


summary(m1)

```
##
## lm(formula = Volume ~ poly(Girth, 2), data = trees)
##
## Residuals:
     Min
             1Q Median
                           3Q
                                 Max
## -5.489 -2.429 -0.372 2.076 7.645
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    30.171
                                0.599
                                        50.37 < 2e-16 ***
## poly(Girth, 2)1
                    87.073
                                3.335
                                        26.11 < 2e-16 ***
## poly(Girth, 2)2
                    14.592
                                3.335
                                         4.38 0.00015 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.3 on 28 degrees of freedom
## Multiple R-squared: 0.962, Adjusted R-squared: 0.959
```

F-statistic: 350 on 2 and 28 DF, p-value: <2e-16

• Prediction equation

$$\hat{y} = 30.2 + 87.1x + 14.6x^2$$

• $R^2 = 0.962$

2.3 Another polynomial model

• Or a polynomial of degree 7

$$Y = \alpha + \beta_1 x + \beta_2 x^2 + \dots + \beta_7 x^7 + \varepsilon$$

• Polynomials tend to behave wildly at the ends.

2.4 A natural spline

• A natural spline is a piecewise third degree polynomial with smooth overlaps which is linear at the ends. It can also be fitted to the data.

```
library(splines)
m2 <- lm(Volume ~ ns(Girth, 15), data = trees)
plotModel(m2)</pre>
```


- The model is very "wiggly" to get near the data points.
- How to compare this model with the others?

3 Measures of fit

3.1 R^2 and correlation

• We can compare the models using \mathbb{R}^2

summary(m0)\$r.squared

[1] 0.94

summary(m1)\$r.squared

[1] 0.96

summary(m2)\$r.squared

[1] 0.98

- \mathbb{R}^2 is always higher for more complex models
- Note that R^2 is the squared correlation between the observed response values y_i and the values predicted by the prediction equation \hat{y}_i

$$R^2 = cor(y_i, \hat{y}_i)^2$$

```
# or: m0$fitted
cor(trees$Volume,predict(m0, newdata = trees))^2

## [1] 0.94

cor(trees$Volume,predict(m1, newdata = trees))^2

## [1] 0.96

cor(trees$Volume,predict(m2, newdata = trees))^2

## [1] 0.98
```

3.2 Mean squared error

• We can also compare the models using mean squared errors (MSE)

$$MSE = \frac{1}{n} \sum_{i} (y_i - \hat{y}_i)^2$$

```
mean((trees$Volume - predict(m0, newdata = trees))^2)
## [1] 17
mean((trees$Volume - predict(m1, newdata = trees))^2)
## [1] 10
mean((trees$Volume - predict(m2, newdata = trees))^2)
```

- ## [1] 4.9
 - The more complicated model has lowest MSE
 - The model is fitted using least squares, i.e. minimising MSE.
 - The model is trained to predict the datapoints well.
 - Would it also predict well on new data points?

4 Out-of-sample error

4.1 Reproducibility and random number generation

• The code below generates three random numbers three times.

```
rnorm(3)
## [1] 1.34 0.97 -0.15
rnorm(3)
## [1] 0.96 -1.39 0.59
rnorm(3)
## [1] -1.66 1.14 -0.82
```

• We get a new sample in each try

• If we want to be sure we always get the same, we can set a seed.

```
set.seed(1)
rnorm(3)

## [1] -0.63  0.18 -0.84

set.seed(1)
rnorm(3)

## [1] -0.63  0.18 -0.84
```

4.2 Out-of-sample error

- Our dataset contains n = 31 observations
- We now split the dataset in two:
 - A **training dataset** consisting of 20 observations
 - A **test dataset** consisting of 11 observations

```
set.seed(1)
train_idx <- sample(x = seq_len(nrow(trees)), size = 20, replace = FALSE)
trees_train <- trees[train_idx, ]
nrow(trees_train)

## [1] 20
trees_test <- trees[-train_idx, ]
nrow(trees_test)

## [1] 11</pre>
```

4.3 Training the models

• We use only the training data for fitting the models

```
m0_train <- lm(Volume ~ Girth, data = trees_train)
m1_train <- lm(Volume ~ poly(Girth, 2), data = trees_train)
m2_train <- lm(Volume ~ ns(Girth, 15), data = trees_train)</pre>
```

```
plotModel(m0_train) +
  geom_point(aes(Girth, Volume), data = trees_test, color = "red")
```


plotModel(m1_train) +
 geom_point(aes(Girth, Volume), data = trees_test, color = "red")

plotModel(m2_train) +
 geom_point(aes(Girth, Volume), data = trees_test, color = "red")

4.4 Testing the models

- We now use the test dataset to test the models
 - We predict the response in the test dataset
 - We then compare the predictions to the observed response

```
cor(predict(m0_train, newdata = trees_test), trees_test$Volume)^2

## [1] 0.98

cor(predict(m1_train, newdata = trees_test), trees_test$Volume)^2

## [1] 0.97

cor(predict(m2_train, newdata = trees_test), trees_test$Volume)^2

## [1] 0.016

• The linear model has the highest correlation between observations and predictions

mean((predict(m0_train, newdata = trees_test) - trees_test$Volume)^2)

## [1] 40

mean((predict(m1_train, newdata = trees_test) - trees_test$Volume)^2)

## [1] 17

mean((predict(m2_train, newdata = trees_test) - trees_test$Volume)^2)
```

[1] 2074

• The quadratic polynomial has the smallest MSE

4.5 Summary

- When we test on the same data as we train the model on, we get lower MSE and higher $cor(y_i, \hat{y}_i)$ for the more complex model
- When we test on new data, the more complicated model does not predict well
- Overfitting: A complex model tends to fit too well to the training data, but does not fit well to new data.

5 Cross-validation

5.1 Testing predictive ability

- Ideally, we should test a models predictive ability on new data that was not used to fit the model
- Typically, only one dataset is available
 - A solution could be to split the dataset in test and training data
 - Waste of data
- Solution: repeat the splitting of data multiple times

5.2 Cross-validation

- Cross-validation provides a clever way of repeating the training and test of a model
- Divide data into k folds
- In each iteration, fit the model on k-1 folds, test on the last fold
- E.g. k-fold cross validation for k = 10:

- Benefits:
 - We use most of the data for fitting the model
 - Each observation is used once for testing

5.3 Example

- Number of folds depends on size of dataset (often k = 5 or k = 10)
- We have 31 observations
- 4-fold cross validation seems suitable
- Divide data into 4 fold

• "Rotate" which folds are training data and which one is test data:

5.4 Repeated CV

• Cross-validation may be repeated several times

2	,11,13,14,20,21,2	25	7,9,11,15,21,27,28	}	1,3,5,6,9,12,24	3	,11,12,14,19,23,2	4 -	4,8,14,15,17,20,27
3	,6,7,10,17,24,29,	30 1,	6,10,12,14,16,22,2	247,1	0,13,17,22,23,28	30	1,2,4,8,9,16,29,30	2,	3,10,12,13,23,25,28
5	,8,9,12,19,23,26,	28 2	2,3,5,13,18,19,25,2	98,1	1,18,19,21,25,26	275,	6,10,13,17,21,27,	28 1	,7,9,16,18,22,24,30
1,	4,15,16,18,22,27	,31 4,	,3,17,20,23,26,30,3	31 2,	4,14,15,16,20,29,	B17,1	15,18,20,22,25,26	315,	6,11,19,21,26,29,31

5.5 Cross-validation in R

• The caret package can be use for cross-validatin in R

library(caret)

https://cran.r-project.org/package=caret

https://topepo.github.io/caret/

• We first set up the cross-validation

• Then we carry out the cross-validation

```
set.seed(1)
m0_cv <- train(Volume ~ Girth, data = trees, trControl = train_control, method = "lm")
m1_cv <- train(Volume ~ poly(Girth, 2), data = trees, trControl = train_control, method = "lm")
m2_cv <- train(Volume ~ ns(Girth, 15), data = trees, trControl = train_control, method = "lm")</pre>
```

5.6 Result of cross-validation

```
m0 cv
## Linear Regression
## 31 samples
   1 predictor
##
##
## No pre-processing
## Resampling: Cross-Validated (4 fold, repeated 5 times)
## Summary of sample sizes: 24, 23, 23, 23, 23, ...
  Resampling results:
##
##
     RMSE Rsquared MAE
##
     4.5
           0.95
                     3.7
##
## Tuning parameter 'intercept' was held constant at a value of TRUE
  • RMSE is root mean squared error
```

5.7 More on RMSE

• Here is the resulting RMSE for all folds and all repetitions:

m0_cv\$resample

```
RMSE Rsquared MAE
##
                          Resample
## 1
       4.7
               0.91 4.2 Fold1.Rep1
## 2
       4.2
               0.91 3.6 Fold2.Rep1
## 3
       5.3
               0.99 3.3 Fold3.Rep1
## 4
       4.7
               0.96 4.2 Fold4.Rep1
## 5
       3.8
               0.93 3.2 Fold1.Rep2
## 6
       5.6
               0.93 4.6 Fold2.Rep2
## 7
       2.7
               0.97 2.0 Fold3.Rep2
## 8
      5.0
               0.95 4.7 Fold4.Rep2
## 9
               0.97 2.7 Fold1.Rep3
       3.5
## 10 4.7
               0.93 4.2 Fold2.Rep3
## 11 4.6
               0.96 3.6 Fold3.Rep3
## 12 5.2
               0.96 4.2 Fold4.Rep3
## 13 4.4
               0.93 3.6 Fold1.Rep4
## 14 5.3
               0.95 4.2 Fold2.Rep4
## 15 3.5
               0.96 2.7 Fold3.Rep4
## 16
      4.1
               0.95 3.4 Fold4.Rep4
## 17
      3.7
               0.98 3.0 Fold1.Rep5
## 18 4.4
               0.92 3.7 Fold2.Rep5
## 19
       6.2
               0.98 4.6 Fold3.Rep5
## 20
       4.8
               0.92 4.2 Fold4.Rep5
```

• The average of these RMSE is the total RMSE

```
mean(m0_cv$resample$RMSE)
```

```
## [1] 4.5
```

• This can also be obtained directly via the code

m0_cv\$results\$RMSE ## [1] 4.5

5.8 Model comparison

• We obtain the model **RMSE** for the three models

```
m0_cv$results$RMSE

## [1] 4.5

m1_cv$results$RMSE

## [1] 3.5

m2_cv$results$RMSE
```

[1] 86

• The quadratic model has the lowest RMSE and hence the best predictive power

6 Non-parametric bootstrap

6.1 Sampling variability

- When we estimate a parameter from a sample, there is some uncertainty due to the fact that the sample is random
- A new sample would result in new estimates
- The standard error is the standard deviation of the estimate when we repeat the sampling many times
 - Measures the uncertainty of the estimate
- However, we only have one sample available

6.2 Bootstrap principle

- Idea: Create new samples by resampling n observations from original data with replacement (the same observation may be sampled several times)
- Mimic new samples
- Example: Data indices:

```
index<-c(1,2,3,4,5)
```

• Bootstrap sample indices:

```
set.seed(1)
boot_index<-sample(index, replace = TRUE)
boot_index</pre>
```

```
## [1] 1 4 1 2 5
```

• Observation 1 appears 2 times in Bootstrap sample

6.3 Bootstrap data example

• We want to fit a linear model on the tree data. Coefficients of the linear model can be extracted by

- We want to estimate their standard errors using bootstrap.
- To prepare for the bootstrap, we define a function that takes as input a vector of indices of the bootstrap observations and does linear regression and extracts coefficients:

```
model coef <- function(index){</pre>
  coef(lm(Volume ~ Girth, data = trees, subset = index))
model_coef(1:nrow(trees))
## (Intercept)
                      Girth
##
         -36.9
                        5.1
set.seed(1)
model_coef(sample(1:nrow(trees), replace = TRUE))
## (Intercept)
                      Girth
         -29.8
##
                        4.5
model_coef(sample(1:nrow(trees), replace = TRUE))
   (Intercept)
                      Girth
##
##
         -34.4
                        4.8
```

6.4 Bootstrap data example - continued

- We now create 1000 bootstrap samples and estimate the linear regression coefficients for each
- We view the first ten results

```
set.seed(1)
bootstrap_coefs <- replicate(1000, {</pre>
  model_coef(sample(1:nrow(trees), replace = TRUE))
})
bootstrap_coefs[, 1:10]
                              [,3]
                                    [,4] [,5]
                                                [,6]
                                                       [,7]
                                                                    [,9] [,10]
                 [,1]
                       [,2]
                                                             [,8]
## (Intercept) -29.8 -34.4 -34.3 -42.6
                                          -36 -35.0 -36.5 -39.4 -34.0 -32.1
                  4.5
## Girth
                        4.8
                               4.8
                                     5.5
                                             5
                                                 4.9
                                                        5.1
                                                              5.2
                                                                     4.8
```

• Below we plot the regression lines for the original data (red) and for the first ten bootstrap samples (black)

6.5 Bootstrap estimates for the standard error

0.32

• We estimate the standard error by taking the standard deviation of the 1000 parameter estimates

```
apply(bootstrap_coefs, 1, sd) # applies the function sd to each row in the matrix bootstrap_coefs
## (Intercept) Girth
```

• This can be compared to the standard errors found by lm() using theoretical formulas

```
summary(m0)
```

##

```
##
## Call:
## lm(formula = Volume ~ Girth, data = trees)
##
## Residuals:
             1Q Median
                           3Q
                                 Max
## -8.065 -3.107 0.152 3.495 9.587
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36.943
                            3.365
                                    -11.0 7.6e-12 ***
## Girth
                 5.066
                            0.247
                                     20.5 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 4.2 on 29 degrees of freedom
## Multiple R-squared: 0.935, Adjusted R-squared: 0.933
## F-statistic: 419 on 1 and 29 DF, p-value: <2e-16</pre>
```

6.6 The boot package

• Bootstrapping can be done automatically using the boot package in R: https://cran.r-project.org/package=boot

```
library(boot)
```

• We now need a function of both the dataset and an index vector that returns the linear regression coefficients.

```
model_coef_boot <- function(data, index){
  coef(lm(Volume ~ Girth, data = data, subset = index))
}</pre>
```

• Then the bootstrap is carried out as follows

```
set.seed(1)
b <- boot(trees, model_coef_boot, R = 1000)</pre>
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = trees, statistic = model_coef_boot, R = 1000)
##
## Bootstrap Statistics :
       original bias
                          std. error
## t1*
          -36.9
                  0.372
                                4.05
            5.1 -0.038
                                0.33
## t2*
coef(summary(m0))
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                  -36.9
                               3.37
                                        -11 7.6e-12
## Girth
                    5.1
                               0.25
                                         20 8.6e-19
```

7 Bootstrap by resampling residuals

- Idea:
 - First fit regression line
 - Compute residuals $\hat{\varepsilon}_i = y_i \hat{y}_i$
 - Create new dataset by replacing y_i by $\hat{y}_i + \hat{\varepsilon}_{i,new}$, where $\hat{\varepsilon}_{i,new}$ is randomly sampled from the residuals $\hat{\varepsilon}_j$
- Can be used if residuals are not normally distributed
- First fit the model

```
m0 <- lm(Volume ~ Girth, data = trees)
   • Contruct 1000 new samples with resampled residuals.
set.seed(1)
res_bootstrap_coefs <- replicate(1000, {</pre>
  new_y <- m0$fitted.values + sample(m0$residuals, replace = TRUE)</pre>
  coef(lm(new_y ~ trees$Girth))
})
   • Compute the regression parameters for each sample and find standard deviation
res_bootstrap_coefs[, 1:10]
##
                 [,1] [,2]
                            [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## (Intercept) -38.4 -38.5 -34.0 -36 -35 -31.7 -38.6 -40.8 -30.5 -38.8
## trees$Girth
                 5.2
                      5.1
                              4.8
                                     5
                                           5
                                               4.6
                                                     5.2
                                                           5.3
apply(res_bootstrap_coefs, 1, sd)
## (Intercept) trees$Girth
##
          3.31
                       0.24
   • Compare with ordinary bootstrap
apply(bootstrap_coefs, 1, sd)
## (Intercept)
                      Girth
##
          3.98
                       0.32
  • Compare with lm()
coef(summary(m0))
```