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Overfitting (the model fits too well to the observed data)

o Generalisation (how well a model performs on a new sample)
o Cross-validation (estimate out-of-sample prediction error)

o Bootstrap (estimate standard errors)

2 Model complexity

2.1 A linear model for tree data

trees <- read.delim("https://asta.math.aau.dk/datasets?file=trees.txt")
head(trees)

##  Girth Height Volume

## 1 8.3 70 10
## 2 8.6 65 10
## 3 8.8 63 10
## 4 10.5 72 16
## 5 10.7 81 19
## 6 10.8 83 20

e We consider the dataset trees containing the following observations on 31 trees:
— Response: Volume - timber volume
— Predictor: Girth - the tree diameter
e We consider a linear model.
Y=a+0 - xz+¢

m0 <- 1Im(Volume ~ Girth, data = trees)
plotModel (m0)
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summary (m0)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:
Im(formula = Volume ~ Girth, data = trees)

Residuals:
Min 1Q Median 3Q Max
-8.065 -3.107 0.152 3.495 9.587

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) -36.943 3.365 -11.0 7.6e-12 **x
Girth 5.066 0.247 20.5 < 2e-16 *x*x

Signif. codes: O '***x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1

Residual standard error: 4.2 on 29 degrees of freedom
Multiple R-squared: 0.935, Adjusted R-squared: 0.933
F-statistic: 419 on 1 and 29 DF, p-value: <2e-16

e We obtain the prediction equation
J=-369+4+507 -z

e The model has R? = 0.935
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2.2 A polynomial model

ml

e We can also try to fit a second degree polynomial to the data

Y =a+pfiz+ far’ +e

<- 1m(Volume ~ poly(Girth, 2), data = trees)

plotModel (ml)
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summary (m1)
##
## Call:
## 1m(formula = Volume ~ poly(Girth, 2), data = trees)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.489 -2.429 -0.372 2.076 7.645
##
## Coefficients:
#it Estimate Std. Error t value Pr(>|t])
## (Intercept) 30.171 0.599  50.37 < 2e-16 *x*x*
## poly(Girth, 2)1  87.073 3.335 26.11 < 2e-16 *x*
## poly(Girth, 2)2  14.592 3.335 4.38 0.00015 *x*x%
##H -
## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#i#
## Residual standard error: 3.3 on 28 degrees of freedom

##

Multiple R-squared: 0.962, Adjusted R-squared: 0.959
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## F-statistic: 350 on 2 and 28 DF, p-value: <2e-16

e Prediction equation
§ = 30.2 4 87.1z + 14.62>

o R%Z=0.962

2.3 Another polynomial model
e Or a polynomial of degree 7
Y=a+pa+ B’ + -+ Pz’ +¢

ml_bad <- 1lm(Volume ~ poly(Girth, 7), data = trees)
plotModel(ml_bad)
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e Polynomials tend to behave wildly at the ends.

2.4 A natural spline

e A natural spline is a piecewise third degree polynomial with smooth overlaps which is linear at the
ends. It can also be fitted to the data.

library(splines)
m2 <- 1Im(Volume ~ ns(Girth, 15), data = trees)
plotModel (m2)
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e The model is very “wiggly” to get near the data points.

e How to compare this model with the others?

3 Measures of fit

3.1 R? and correlation

o We can compare the models using R?

summary (m0) $r . squared

## [1] 0.94

summary (m1) $r.squared

## [1]1 0.96

summary (m2) $r . squared

## [1] 0.98
e R? is always higher for more complex models

« Note that R? is the squared correlation between the observed response values y; and the values predicted
by the prediction equation ¢;
R? = cor(y;, §i)°



# or: mO$fitted

cor (trees$Volume,predict(m0, newdata = trees)) 2
## [1] 0.94
cor(trees$Volume,predict(ml, newdata = trees)) 2

## [1] 0.96

cor(trees$Volume,predict(m2, newdata = trees)) 2

## [1]1 0.98

3.2 Mean squared error

o We can also compare the models using mean squared errors (MSE)
1 "
MSE =~ Z(y - )’
1
mean((trees$Volume - predict(mO, newdata = trees)) 2)

## [1] 17

mean((trees$Volume - predict(ml, newdata = trees)) 2)

## [1] 10

mean((trees$Volume - predict(m2, newdata = trees)) 2)

## [1] 4.9
e The more complicated model has lowest MSE
e The model is fitted using least squares, i.e. minimising MSE.
e The model is trained to predict the datapoints well.

— Would it also predict well on new data points?

4 Out-of-sample error

4.1 Reproducibility and random number generation

e The code below generates three random numbers three times.

rnorm(3)

## [1] 1.34 0.97 -0.15

rnorm(3)

## [1] 0.96 -1.39 0.59

rnorm(3)

## [1] -1.66 1.14 -0.82

e We get a new sample in each try



o If we want to be sure we always get the same, we can set a seed.
set.seed (1)
rnorm(3)
## [1] -0.63 0.18 -0.84
set.seed(1)

rnorm(3)

## [1] -0.63 0.18 -0.84

4.2 Out-of-sample error
e Our dataset contains n = 31 observations
e We now split the dataset in two:

— A training dataset consisting of 20 observations
— A test dataset consisting of 11 observations

set.seed (1)

train_idx <- sample(x = seq_len(nrow(trees)), size = 20, replace = FALSE)
trees_train <- trees[train_idx, ]

nrow(trees_train)

## [1] 20

trees_test <- trees[-train_idx, ]
nrow(trees_test)

## [1] 11

4.3 Training the models
o We use only the training data for fitting the models

mO_train <- 1lm(Volume ~ Girth, data = trees_train)
ml_train <- lm(Volume ~ poly(Girth, 2), data = trees_train)
m2_train <- Im(Volume ~ ns(Girth, 15), data = trees_train)

plotModel(mO_train) +
geom_point (aes(Girth, Volume), data = trees_test, color = "red")
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plotModel (ml_train) +
geom_point (aes(Girth, Volume), data = trees_test, color = "red")
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plotModel (m2_train) +
geom_point (aes(Girth, Volume), data = trees_test, color = "red")
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4.4 Testing the models

e We now use the test dataset to test the models
— We predict the response in the test dataset
— We then compare the predictions to the observed response

cor(predict(mO_train, newdata = trees_test), trees_test$Volume) "2

## [1] 0.98

cor(predict(ml_train, newdata = trees_test), trees_test$Volume) "2

## [1] 0.97

cor(predict (m2_train, newdata = trees_test), trees_test$Volume) "2

## [1] 0.016

o The linear model has the highest correlation between observations and predictions

mean((predict(mO_train, newdata = trees_test) - trees_test$Volume) "2)

## [1] 40

mean((predict(ml_train, newdata = trees_test) - trees_test$Volume) "2)

## [1] 17

mean((predict(m2_train, newdata = trees_test) - trees_test$Volume) "2)
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## [1] 2074

4.5

5.1

The quadratic polynomial has the smallest MSE

Summary

When we test on the same data as we train the model on, we get lower MSE and higher cor(y;, g;) for
the more complex model

When we test on new data, the more complicated model does not predict well

Overfitting: A complex model tends to fit too well to the training data, but does not fit well to new
data.

Cross-validation

Testing predictive ability
Ideally, we should test a models predictive ability on new data that was not used to fit the model
Typically, only one dataset is available

— A solution could be to split the dataset in test and training data
— Waste of data

Solution: repeat the splitting of data multiple times

Cross-validation

Cross-validation provides a clever way of repeating the training and test of a model
Divide data into k folds

In each iteration, fit the model on k — 1 folds, test on the last fold

E.g. k-fold cross validation for k = 10:
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. Test data
. Training data

o Benefits:
— We use most of the data for fitting the model
— Each observation is used once for testing

5.3 Example
o Number of folds depends on size of dataset (often k =5 or k = 10)
o We have 31 observations
o 4-fold cross validation seems suitable

e Divide data into 4 fold

13



2,11,13,14,20,21,25

3,6,7,10,17,24,29,30

5,8,9,12,19,23,26,28

1,4,15,16,18,22,27,31

“Rotate” which folds are training data and which one is test data:

14




. Test data
. Training data
1 1 1 1 1 1 1 1

5.4 Repeated CV

e Cross-validation may be repeated several times

15



=

4,11,13,14,20,21,2b ¥,9,11,15,21,27,24 1,3,5,6,9,12,24 3,11,12,14,19,23,2 1,8,14,15,17,20,27

3)6,7,10,17,24,29,30 1,6,10,12,14,16,22,247,10,13,17,22,23,28|30 [1,2,4,8,9,16,29,30 2,3,10,12,13,23,25,28

[6)]

8,9,12,19,23,26,28 23,5,13,18,19,25,798,11,18,19,21,25,26{275,6,10,13,17,21,27,28 1{7,9,16,18,22,24,30

1,4,15,16,18,22,27,814,8,17,20,23,26,30,81 2,4,14,15,16,20,29,817,15,18,20,22,25,26,315,6,11,19,21,26,29,81

5.5 Cross-validation in R

e The caret package can be use for cross-validatin in R

library(caret)

https://cran.r-project.org/package=caret
https://topepo.github.io/caret/
e We first set up the cross-validation

train_control <- trainControl(method = "repeatedcv",
# k-fold CV
number = 4,
# repeated five times
repeats = 5)

e Then we carry out the cross-validation

set.seed(1)

m0_cv <- train(Volume ~ Girth, data = trees, trControl = train_control, method = "Im")
ml_cv <- train(Volume ~ poly(Girth, 2), data = trees, trControl = train_control, method = "lm")
m2_cv <- train(Volume ~ ns(Girth, 15), data = trees, trControl = train_control, method = "1lm")
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5.6 Result of cross-validation
mO_cv

## Linear Regression

##

## 31 samples

## 1 predictor

##

## No pre-processing

## Resampling: Cross-Validated (4 fold, repeated 5 times)
## Summary of sample sizes: 24, 23, 23, 23, 23, 23,

## Resampling results:

##
## RMSE Rsquared MAE
## 4.5 0.95 3.7
#

## Tuning parameter 'intercept' was held constant at a value of TRUE

e RMSE is root mean squared error

5.7 More on RMSE
e Here is the resulting RMSE for all folds and all repetitions:

m0_cv$resample

## RMSE Rsquared MAE  Resample

## 1 4.7 0.91 4.2 Foldl.Repl
##H 2 4.2 0.91 3.6 Fold2.Repl
## 3 5.3 0.99 3.3 Fold3.Repl
## 4 4.7 0.96 4.2 Fold4.Repl
## 5 3.8 0.93 3.2 Foldl.Rep2
## 6 5.6 0.93 4.6 Fold2.Rep2
## 7 2.7 0.97 2.0 Fold3.Rep2
## 8 5.0 0.95 4.7 Fold4.Rep2
## 9 3.5 0.97 2.7 Foldl.Rep3
## 10 4.7 0.93 4.2 Fold2.Rep3
## 11 4.6 0.96 3.6 Fold3.Rep3
## 12 5.2 0.96 4.2 Fold4.Rep3
## 13 4.4 0.93 3.6 Foldl.Rep4
## 14 5.3 0.95 4.2 Fold2.Rep4
## 15 3.5 0.96 2.7 Fold3.Rep4
## 16 4.1 0.95 3.4 Fold4.Rep4
## 17 3.7 0.98 3.0 Foldl.Repb
## 18 4.4 0.92 3.7 Fold2.Repb
## 19 6.2 0.98 4.6 Fold3.Repb
## 20 4.8 0.92 4.2 Fold4.Repb

e The average of these RMSE is the total RMSE
mean (m0_cv$resample$RMSE)

## [1] 4.5

e This can also be obtained directly via the code
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m0_cv$results$RMSE

## [1] 4.5

5.8 Model comparison

« We obtain the model RMSE for the three models
mO_cvresults$RMSE

## [1] 4.5
ml_cv$results$RMSE

## [1] 3.5
m2_cv$results$RMSE

## [1] 86
e The quadratic model has the lowest RMSE and hence the best predictive power

6 Non-parametric bootstrap

6.1 Sampling variability

o When we estimate a parameter from a sample, there is some uncertainty due to the fact that the sample
is random

e A new sample would result in new estimates
e The standard error is the standard deviation of the estimate when we repeat the sampling many times
— Measures the uncertainty of the estimate

e However, we only have one sample available

6.2 Bootstrap principle

o Idea: Create new samples by resampling n observations from original data with replacement (the same
observation may be sampled several times)

e Mimic new samples
o Example: Data indices:

index<-c(1,2,3,4,5)

e Bootstrap sample indices:

set.seed(1)
boot_index<-sample(index, replace = TRUE)
boot_index

## [1] 14125

e Observation 1 appears 2 times in Bootstrap sample
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6.3 Bootstrap data example

e We want to fit a linear model on the tree data. Coefficients of the linear model can be extracted by

m0 <- Im(Volume ~ Girth, data = trees)

coef (m0)
## (Intercept) Girth
## -36.9 5.1

o« We want to estimate their standard errors using bootstrap.

e To prepare for the bootstrap, we define a function that takes as input a vector of indices of the bootstrap
observations and does linear regression and extracts coefficients:

model_coef <- function(index){
coef (Im(Volume ~ Girth, data = trees, subset = index))

}

model_coef (1:nrow(trees))

## (Intercept) Girth

## -36.9 5.1

set.seed(1)

model_coef (sample(1l:nrow(trees), replace = TRUE))
## (Intercept) Girth

## -29.8 4.5

model_coef (sample(l:nrow(trees), replace = TRUE))
## (Intercept) Girth

## -34.4 4.8

6.4 Bootstrap data example - continued
e We now create 1000 bootstrap samples and estimate the linear regression coefficients for each

o We view the first ten results

set.seed (1)
bootstrap_coefs <- replicate(1000, {
model_coef (sample(l:nrow(trees), replace = TRUE))
B
bootstrap_coefs[, 1:10]

## (.11 [,21 [,31 [,4] (,51 [,61 [,71 [,8] [,9]1 [,10]
## (Intercept) -29.8 -34.4 -34.3 -42.6 -36 -35.0 -36.5 -39.4 -34.0 -32.1
## Girth 4.5 4.8 4.8 5.5 5 4.9 5.1 5.2 4.8 4.7

o Below we plot the regression lines for the original data (red) and for the first ten bootstrap samples
(black)
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6.5 Bootstrap estimates for the standard error

e We estimate the standard error by taking the standard deviation of the 1000 parameter estimates

apply(bootstrap_coefs, 1, sd) # applies the function sd to each Tow in the matriz bootstrap_coefs

## (Intercept) Girth
## 3.98 0.32

o This can be compared to the standard errors found by lm() using theoretical formulas

summary (m0)

##

## Call:

## 1m(formula = Volume ~ Girth, data = trees)

##

## Residuals:

## Min 1Q Median 3Q Max

## -8.065 -3.107 0.152 3.495 9.587

##

## Coefficients:

#it Estimate Std. Error t value Pr(>ltl)

## (Intercept) -36.943 3.365 -11.0 7.6e-12 **x
## Girth 5.066 0.247 20.5 < 2e-16 *x*x
## ——-

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1
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##

## Residual standard error: 4.2 on 29 degrees of freedom
## Multiple R-squared: 0.935, Adjusted R-squared: 0.933
## F-statistic: 419 on 1 and 29 DF, p-value: <2e-16

6.6 The boot package
 Bootstrapping can be done automatically using the boot package in R: https://cran.r-project.org/pack
age=boot

library(boot)

e We now need a function of both the dataset and an index vector that returns the linear regression
coefficients.

model_coef_boot <- function(data, index){
coef (Im(Volume ~ Girth, data = data, subset = index))

}

e Then the bootstrap is carried out as follows

set.seed (1)
b <- boot(trees, model_coef_boot, R = 1000)

b

#i#t

## ORDINARY NONPARAMETRIC BOOTSTRAP
#it

#i#

## Call:

## boot(data = trees, statistic = model_coef_boot, R = 1000)
#it

#it

## Bootstrap Statistics :

#i# original Dbias std. error
## tlx -36.9 0.372 4.05
## 2% 5.1 -0.038 0.33

coef (summary (m0))

#i#t Estimate Std. Error t value Pr(>|tl)
## (Intercept) -36.9 3.37 -11 7.6e-12
## Girth 5.1 0.25 20 8.6e-19

7 Bootstrap by resampling residuals

o Idea:

— First fit regression line
— Compute residuals &; = y; — ¥;
— Create new dataset by replacing y; by Ui + & new, Where &; e, is randomly sampled from the
residuals €;
e Can be used if residuals are not normally distributed

o First fit the model
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m0 <- 1Im(Volume ~ Girth, data = trees)

e Contruct 1000 new samples with resampled residuals.

set.seed (1)

res_bootstrap_coefs <- replicate(1000, {
new_y <- mO$fitted.values + sample(mO$residuals, replace = TRUE)
coef (Im(new_y ~ trees$Girth))

b

e Compute the regression parameters for each sample and find standard deviation

res_bootstrap_coefs[, 1:10]

#i# (,11 [[,21 [,3] [,4]1 [,51 [,61] ([,71 [,8] [,9] [,10]
## (Intercept) -38.4 -38.5 -34.0 -36 -35 -31.7 -38.6 -40.8 -30.5 -38.8
## trees$Girth 5.2 5.1 4.8 5 5 4.6 5.2 5.3 4.6 5.2

apply(res_bootstrap_coefs, 1, sd)
## (Intercept) trees$Girth
## 3.31 0.24

e Compare with ordinary bootstrap
apply(bootstrap_coefs, 1, sd)
## (Intercept) Girth
## 3.98 0.32

o Compare with lm()

coef (summary (m0) )

#t Estimate Std. Error t value Pr(>|tl|)
## (Intercept) -36.9 3.37 -11 7.6e-12
## Girth 5.1 0.25 20 8.6e-19
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