Probability 1

The ASTA team

Contents

1 Introduction to probability

1.1 Events

- Consider an experiment.
- $\bullet~$ The ${\bf state}$ ${\bf space}~S$ is the set of all possible outcomes.
	- **– Example:** We roll a die. The possible outcomes are *S* = {1*,* 2*,* 3*,* 4*,* 5*,* 6}.
	- **Example:** We measure wind speed (in m/s). The state space is $[0, \infty)$.
- An **event** is a subset $A \subseteq S$ of the sample space.
- **Example:** Rolling a die and getting an even number is the event $A = \{2, 4, 6\}.$
- **Example:** Measuring a wind speed of at least $5m/s$ is the event $[5, \infty)$.

1.2 Combining events

- Consider two events *A* and *B*.
	- **–** The **union** *A* ∪ *B* is the event that either *A* or *B* occurs.
	- **–** The **intersection** *A* ∩ *B* of is the event that both *A* and *B* occurs.

• The **complement** A^c of A of is the event that A does not occur.

- **Example:** We roll a die and consider the events $A = \{2, 4, 6\}$ that we get an even number and $B = \{4, 5, 6\}$ that we get at least 4. Then
	- $A ∪ B = {2, 4, 5, 6}$
	- **–** *A* ∩ *B* = {4*,* 6}
	- $A^c = \{1, 3, 5\}$

1.3 Probability of event

- The **probability** of an event is the proportion of times the event *A* would occur when the experiment is repeated many times.
- The probability of the event A is denoted $P(A)$.
	- **– Example:** We throw a coin and consider the outcome *A* = {*Head*}. We expect to see the outcome {*Head*} half of the time, so $P(Head) = \frac{1}{2}$.
	- **Example:** We throw a die and consider the outcome $A = \{4\}$. Then $P(4) = \frac{1}{6}$.
- Properties:
	- 1. $P(S) = 1$
	- 2. $P(\emptyset) = 0$
	- 3. $0 \leq P(A) \leq 1$ for all events *A*

1.4 Probability of mutually exclusive events

- Consider two events *A* and *B*.
- If *A* and *B* are **mutually exclusive** (never occur at the same time, i.e. $A \cap B = \emptyset$), then

• **Example:** We roll a die and consider the events $A = \{1\}$ and $B = \{2\}$. Then

 $P(A \cup B) = P(A) + P(B) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}.$

1.5 Probability of union

• For general events *A* an *B*,

• **Example:** We roll a die and consider the events $A = \{1, 2\}$ and $B = \{2, 3\}$. Then $A \cap B = \{2\}$, so

$$
P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{1}{3} + \frac{1}{3} - \frac{1}{6} = \frac{1}{2}.
$$

1.6 Probability of complement

• Since *A* and A^c are mutually exclusive with $A \cup A^c = S$, we get

$$
1 = P(S) = P(A \cup A^c) = P(A) + P(A^c),
$$

so

$$
P(A^c) = 1 - P(A).
$$

1.7 Conditional probability

- Consider events *A* and *B*.
- The **conditional probability** of *A* given *B* is defined by

if
$$
P(B) > 0
$$
.

• **Example:** We toss a coin two times. The possible outcomes are $S = \{HH, HT, TH, TT\}$. Each outcome has probability $\frac{1}{4}$. What is the probability of at least one head if we know there was at least one tail?

– Let $A = \{at \text{ least one H}\}\$ and $B = \{at \text{ least one T}\}\$. Then

$$
P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{2/4}{3/4} = \frac{2}{3}.
$$

1.8 Independent events

• Two events *A* and *B* are said to be **independent** if

$$
P(A|B) = P(A).
$$

- **– Example:** Consider again a coin tossed two times with possible outcomes *HH, HT, TH, T T*.
	- ∗ Let *A* = {at least one H} and *B* = {at least one T}.
	- ∗ We found that $P(A|B) = \frac{2}{3}$ while $P(A) = \frac{3}{4}$, so *A* and *B* are not independent.

1.9 Independent events - equivalent definition

• Two events *A* and *B* are **independent** if and only if

$$
P(A \cap B) = P(A)P(B).
$$

• Proof: *A* and *B* are independent if and only if

$$
P(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}.
$$

Multiplying by $P(B)$ we get $P(A)P(B) = P(A \cap B)$.

- **– Example:** Roll a die and let $A = \{2, 4, 6\}$ be the event that we get an even number and $B = \{1, 2\}$ the event that we get at most 2. Then,
	- * $P(A \cap B) = P(2) = \frac{1}{6}$
* $P(A)P(B) = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$.
	-
	- ∗ So *A* and *B* are independent.

2 Stochastic variables

2.1 Definition of stochastic variables

- A **stochastic variable** is a function that assigns a real number to every element of the state space.
	- **– Example:** Throw a coin three times. The possible outcomes are

 $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}.$

∗ The random variable *X* assigns to each outcome the number of heads, e.g.

$$
X(HHH) = 3, \quad X(HTT) = 1.
$$

- **– Example:** Consider the question whether a certain machine is defect. Define
	- \ast *X* = 0 if the machine is not defect,
	- \star *X* = 1 if the machine is defect.
- **– Example:** *X* is the temperature in the lecture room.

2.2 Discrete or continuous stochastic variables

- A stochastic variable *X* may be
- **Discrete:** *X* can take a finite or infinite list of values.
	- **– Examples:**
		- ∗ Number of heads in 3 coin tosses (can take values 0*,* 1*,* 2*,* 3)
		- ∗ Number of machines that break down over a year (can take values 0*,* 1*,* 2*,* 3*, . . .*)
- **Continuous:** *X* takes values on a continuous scale.
	- **– Examples:**
		- ∗ Temperature, speed, voltage,. . .

3 Discrete random variables

3.1 Discrete random variables

- Let *X* be a discrete stochastic variable which can take the values x_1, x_2, \ldots
- The distribution of *X* is given by the **probability function**, which is given by

$$
f(x_i) = P(X = x_i), \quad i = 1, 2, \dots
$$

– Example: We throw a coin three times and let *X* be the number of heads. The possible outcomes are

 $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}.$

The probability function is

3.2 The distribution function

• Let *X* be a discrete random variable with probability function *f*. The **distribution function** of *X* is given by

$$
F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i), \quad x \in \mathbb{R}.
$$

– Example: For the three coin tosses, we have

*
$$
F(0) = P(X \le 0) = \frac{1}{8}
$$

\n* $F(1) = P(X \le 1) = P(X = 0) + P(X = 1) = \frac{1}{2}$
\n* $F(2) = P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2) = \frac{7}{8}$
\n* $F(3) = P(X \le 3) = 1$

• For a discrete variable, the result is an increasing step function.

3.3 Mean of a discrete variable

• The **mean** or **expected value** of a discrete random variable *X* with values x_1, x_2, \ldots and probability function $f(x_i)$ is

$$
\mu = E(X) = \sum_{i} x_i P(X = x_i) = \sum_{i} x_i f(x_i).
$$

- Interpretation: A weighted average of the possible values of *X*, where each value is weighted by its probability. A sort of "center" value for the distribution.
	- **– Example:** Toss a coin 3 times. What are the expected number of heads?

$$
E(X) = 0 \cdot P(X = 0) + 1 \cdot P(X = 1) + 2 \cdot P(X = 2) + 3 \cdot P(X = 3) = 0 \cdot \frac{1}{8} + 1 \cdot \frac{3}{8} + 2 \cdot \frac{3}{8} + 3 \cdot \frac{1}{8} = 1.5.
$$

3.4 Variance of a discrete variable

• The **variance** is the mean squared distance between the values of the variable and the mean value. More precisely,

$$
\sigma^{2} = \sum_{i} (x_{i} - \mu)^{2} P(X = x_{i}) = \sum_{i} (x_{i} - \mu)^{2} f(x_{i}).
$$

- A high variance indicates that the values of *X* have a high probability of being far from the mean values.
- The **standard deviation** is the square root of the variance

$$
\sigma = \sqrt{\sigma^2}.
$$

- The advantage of the standard deviation over the variance is that it is measured in the same units as *X*.
	- **– Example** Let *X* be the number of heads in 3 coin tosses. What is the variance and standard deviation?
		- ∗ Solution: The mean was found to be 1*.*5. Thus,

$$
\sigma^2 = (0-1.5)^2 \cdot f(0) + (1-1.5)^2 \cdot f(1) + (2-1.5)^2 \cdot f(2) + (3-1.5)^2 \cdot f(3) = (0-1.5)^2 \cdot \frac{1}{8} + (1-1.5)^2 \cdot \frac{3}{8} + (2-1.5)^2 \cdot \frac{3}{8} + (3-1.5)^2 \cdot f(3)
$$

The standard deviation is $\sigma = \sqrt{0.75} \approx 0.866$.

4 Continuous random variables

4.1 Distribution of continuous random variables

- The distribution of a continuous random variable *X* is given by a **probability density function** *f*, which is a function satisfying
	- 1. $f(x)$ is defined for all x in R,
	- 2. $f(x) \geq 0$ for all x in R,
	- 3. $\int_{-\infty}^{\infty} f(x)dx = 1$.
- The probability that *X* lies between the values *a* and *b* is given by

- Notes:
	- x **–** Condition 3. ensures that *P*(−∞ *< X <* ∞) = 1.
	- The probability of *X* assuming a specific value *a* is zero, i.e. $P(X = a) = 0$.

4.2 Example: The uniform distribution

• The **uniform distribution** on the interval (*A, B*) has density

$$
f(x) = \begin{cases} \frac{1}{B-A} & A \le x \le B \\ 0 & \text{otherwise} \end{cases}
$$

4.4 Distribution function of continuous variable

• Let *X* be a continuous random variable with probability density *f*. The **distribution function** of *X* is given by

$$
F(x) = P(X \le x) = \int_{-\infty}^{x} f(y) dy, \quad x \in \mathbb{R}.
$$

– Example: For the uniform distribution on [0*,* 1], the density was

$$
f(x) = \begin{cases} 1, & 0 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}
$$

Hence,

4.5 Mean and variance of a continuous variable

• The **mean** or **expected value** of a continuous random variable *X* is

$$
\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx.
$$

• The **variance** is given by

$$
\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx.
$$

– In calculations, it is often more convenient to use the formula

$$
\sigma^{2} = E(X^{2}) - E(X)^{2} = \int_{-\infty}^{\infty} x^{2} f(x) dx - \mu^{2}.
$$

4.5.1 Example: Mean and variance in the uniform distribution

• Consider again the uniform distribution on the interval (0*,* 1) with density

$$
f(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}
$$

Find the mean and variance.

• **Solution:** The mean is

$$
\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{1} x \cdot 1 dx = \left[\frac{1}{2}x^{2}\right]_{0}^{1} = \frac{1}{2},
$$

and the variance is computed using the formula

$$
\sigma^2 = E(X^2) - E(X)^2 = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2 = \int_0^1 x^2 dx - \mu^2 = \left[\frac{1}{3}x^3\right]_0^1 - \left(\frac{1}{2}\right)^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}.
$$

4.6 Rules for computing mean and variance

- Let X be a random variable and a, b be constants. Then,
	- 1. $E(aX + b) = aE(X) + b$.
	- 2. $Var(aX + b) = a^2Var(X)$.
	- **Example:** If *X* has mean μ and variance σ^2 , then

*
$$
E\left(\frac{X-\mu}{\sigma}\right) = \frac{1}{\sigma}E(X-\mu) = \frac{1}{\sigma}(E(X)-\mu) = 0,
$$

\n* $Var\left(\frac{X-\mu}{\sigma}\right) = \frac{1}{\sigma^2}Var(X-\mu) = \frac{1}{\sigma^2}Var(X) = \frac{1}{\sigma^2}\sigma^2 = 1.$
\n* So $\frac{X-\mu}{\sigma}$ is a standardization of X that has mean 0 and variance 1.