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1 Introduction to stochastic processes

1.1 Data examples

e A special type of data arises when we measure the same variable at different points in time with equal
steps between time points.

o This data type is called a (discrete time) stochastic process or a time series

o Omne example is the time series of monthly electricity production (GWh) in Australia from Jan. 1958 to
Dec. 1990 :

CBEdata <- read.table("https://asta.math.aau.dk/eng/static/datasets?file=cbe.dat", header = TRUE)
CBE <- ts(CBEdatal,3])
plot(CBE, ylab="GWh",main="Electricity production")
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e Another example is monthly measurements of the atmospheric CO2 concentration measured at Mauna
Loa 1959 - 1997:

dat<-ts(co2)
plot(co2)
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e Other examples:
— Hourly wind speed measurements
— Daily elspot prices



— An electrical signal measured each millisecond
e Aim: Model, analyse and make predictions for such datasets.

1.2 Stochastic processes
e We denote by X; the variable at time ¢t. We denote the time points by t = 1,2,3,...,n.

— We will always assume the data is observed at equidistant points in time (i.e. time steps between
consecutive observations are the same).

e Measurements that are close in time will typically be similar: observations are not statistically
independent!

e Measurements that are far apart in time will typically be less correlated.

2 Important stochastic processes

2.1 Example 1: White noise
e A stochastic process is called a white noise process if the X; are

— statistically independent
— identically distributed
— have mean 0 and variance o2

o I

-+

is called Gaussian white noise, if
— X; ~ norm(0,0?)

x = rnorm(1000,0,1)
ts.plot(x, main = "Simulated Gaussian white noise process")



Simulated Gaussian white noise process
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o White noise processes are the simplest stochastic processes.

e Real data does typically not have complete independence between measurements at different time
points, so white noise is generally not a good model for real data, but it is a building block for more
complicated stochastic processes.

3 Example 2: Random walk

e A random walk is defined by X; = X;_1 + Wy, where W; is white noise.

e Here are 5 simulations of a random walk:
x = matrix(0,1000,5)

for (i in 1:5) x[,i] = cumsum(rnorm(1000,0,1))
ts.plot(x,col=1:5)
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e The random walk may come back to zero after some time, but often it has a tendency to wander of in
some random direction.

4 Example 3: First order autoregressive process

o A first order autoregressive process, AR(1), is defined by X; = aX;_1 + W}, where W, is white
noise and o € R.
— Typically -1 <a <1
— For @ = 0 we get white noise
— For a =1 we get a random walk
o Simulation of 3 AR(1)-processes with different o values:

w = ts(rnorm(1000))

x1 = filter(w,0.5,method="recursive")
x2 = filter(w,0.9,method="recursive")
x3 = filter(w,0.99,method="recursive")
ts.plot(x1,x2,x3,co0l=1:3)
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e Next time we will consider autoregressive processes in much more detail and higher order, where they
become quite flexible models for data.

5 Mean, autocovariance and stationarity

5.1 Mean function

e The mean function of a stochastic process is given by

e = E(Xy)

e A process is called first order stationary if pu; = p.
« Examples:

— The white noise process: p; = 0 by definition.
— The random walk:

e = E(Xy) = E(Xy—1 + Wi) = E(Xy—1) + E(Wy) = E(X4—1) = py—1

So the random walk is first order stationary.
— Similarly,

e = E(Xt) = ]E(OZXt,1 + Wt) = CY]E(thl) + ]E(Wt) = Oé]E(thl) = Q1

The AR(1)-model is first order stationary if o = 0 or o = 1, otherwise not.
— The electricity production in Australia did not look first order stationary.

plot (CBE,main="Electricity production")
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The mean function shows the mean behavior of the process, but individual simulations may move far
away from this. For example, the random walk has a tendency to move far away from the mean. White
noise on the other hand will stay close to the mean.

Autocovariance/autocorrelation functions

The autocovariance function is given by

Y(tt + h) = Cov(Xe, Xeyn) = E(Xe — p) (Xen — petn))

h is called the lag.
Note that
y(t,t) = Var(X;) = o

is the variance at time ¢.
The autocorrelation function (ACF) is

COV(Xt, Xt+h)

OtOt+h

p(t, t + h) = COI‘(Xt, Xt+h) =

It holds that p(¢,t) = 1, and p(¢,t + h) is between -1 and 1 for any h.

The autocorrelation function measures how correlated X; and X, are related:
— If X; and Xy, are independent, then p(t,t + h) =0
— If p(t,t + h) is close to one, then X; and X4, tends to be either high or low at the same time.
— If p(t,t + h) is close to minus one, then when X; is high X;,, tends to be low and vice versa.

Stationarity

We call a stochastic process second order stationary if
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— the mean is constant, p; = p
— the variance 07 = Var(X;, X;) is constant.
— the autocorralation function only depends on the lag h:

p(t,t+h) = p(h)

If a process is second order stationary, then also the autocovariance is stationary (¢, t + h) = v(h),
i.e. it is a function of only the lag and is easier to work with and plot.

Intuitively, stationarity means that the process behaves in the same way no matter which time we look
at.

There are other kinds of stationarity, but in this course, stationarity will always mean second order
stationarity.

Stationarity and autocorrelation - example

Consider an AR(1) process X; = aX;_1 + W;. We consider stationarity and autocorrelation for this
process.

— We have already seen that we need u; = 0 to have first order stationarity.

Now consider the variance. Since X; = aX;_1 + W,
o2 = Var(X;) = Var(aX;_1 + W;) = Var(aX;_1) + Var(W;) = a?Var(X;_1) + Var(W;) = o?0?_, + o>
— (Here we used that Var(X +Y) = Var(X) + Var(Y) when X and Y are independent).

If the variance is constant, then o? = 02 ; and

Uf = a20t2 +0?

— We see that the variance can only be constant if —1 < o < 1. In this case 07 = 1322.

— For |a| > 1, the variance will increase over time. The process is cannot be stationary (including
random walk).

To find the autocorrelation, first observe

h—1
b .
Xiyn =aXpyh 1 +Wigp = =" Xy + Z o' Wipn—i
i=0

Then we find the autocovariance:

h—1 h—1
~v(t, t+h) = Cov(Xy, Xiyp) = Cov(Xy, ahXt+Z &' Wiinh_i) = Cov(Xy, a" X;)+Cov (X, Z & Wipn—i) = a"Cov(Xy, X
i=0 i=0

— (Here we used the computation rules Cov(X,Y 4+ Z) = Cov(X,Y) + Cov(X, Z) and Cov(X,aY) =
aCov(X,Y).)

If the variance is constant, we can calculate the autocorrelation:

COV(Xt, Xt+h) o CVhO'Q/(]. — 0[2) - ah
OtOtin  o2/(1—a?)

So: the AR(1)-model is stationary if —1 < a < 1 and 07 = 02/(1 — a?) - otherwise not.

The autocorrelation decays exponentially for a stationary AR(1)-model. This is illustrated for 3 different
« values:



h =0:20

acfl
acf2
acf3

= 0"h # AR(1) with alpha = 0 (or white noise)
= 0.5"h # AR(1) with alpha 0.5
0.9°h # Ar(1) with alpha = 0.9

plot(matrix(rep(h,3),3),cbind(acfl,acf2,acf3),col=rep(1:3,each=length(h)),

ACF
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pch=rep(1:3,each = length(h)),xlab="h",ylab="ACF")

Q
—

@
o

0.6

0.4

A

0.2

A

A
@1 0000666606066 06060060600600
I : : : :

0 5 10 15 20

Estimation

Estimation

The mean and autocovariance/autocorrelation functions are theoretical constructions defined for
stochastic processes, but what about data? Here we have to estimate them.

We will assume that the process is stationary.

The (constant) mean can be estimated the usual way:

n
2
t=1

The autocovariance function can be estimated as follows (remember it only depends on A, not on ¢ in
the case of stationarity):

&I

/:L:

S|

(xt — T)(Tt4n — 7)

The (constant) variance is estimated as 62 = 4(0).
An estimate of the autocorrelation function is obtained as




6.2 The correlogram

e A plot of the sample acf as a function of the lag is called a correlogram.
e To get an idea of how a correlogram looks, we make simulated data from different models and plot the
correlograms below.

White noise:

w = ts(rnorm(100))
par (mfrow=c(1,2))

plot (w)
acf (w)
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e The correlogram is always 1 at lag 1

e For white noise, the true autocorrelation drops to zero.

e The estimated autocorrelation is never exactly zero - hence we get the small bars.

o The blue lines is a 95% confidence band for a test that the true autocorrelation is zero.

o Remember that there is 5% chance of rejecting a true null hypothesis. Thus, 5% of the bars can be
expected to exeed the blue lines.

o AR(1) process with a = 0.9:

w = ts(rnorm(100))

x1 = filter(w,0.9,method="recursive")
par (mfrow=c(1,2))

plot(x1)

acf(x1)

10



Series x1
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e The true acf decays exponentially.

7 Non-stationary data

7.1 Check for stationarity

e We will primarily look at stationary processes the next time, but these will not always be good models
for data.

e First we need to check whether the assumption of stationarity is okay.

— One check is visual inspection of a plot of x; vs t to see whether there is any indication of
non-stationarity.

— Another visual check is a plot of the correlogram. If this tends very slowly to zero, this indicates
non-stationarity.

o Note: even though p(h) is only well-defined for stationary models, we can plug any data (stationary or
not) into the estimation formula. The estimate may help detecting deviations from stationarity.

7.2 Correlograms for non-stationary data

¢ Sine curve with added white noise:

w = ts(rnorm(100))
x1 = 5%sin(0.5%(1:100)) + w
par (mfrow=c(1,2))
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plot(x1)

acf(x1)
Series x1
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e The periodic mean of the process results in a periodic behavior of the correlogram.
e A periodic behavior in the correlogram suggests seasonal behavior in the process.

o Straight line with added white noise:

w = ts(rnorm(100))
x1 = 0.1%(1:100) + w
par (mfrow=c(1,2))
plot(x1)

acf (x1)

12



Series x1
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e The linear trend results in a slowly decaying, almost linear correlogram.

e Such a correlogram suggests a trend in the data.

o Data example: Electricity production.

par (mfrow=c(1,2))
plot (CBE)
acf (CBE)
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Series CBE
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There seems to be an increasing trend in the data.
There is a periodic behavior around the increasing trend.
It is reasonable to believe that the period is 12 months.

We have the model
Xt =m: + St + Zt
where
— my is the (deterministic) trend
— 8¢ is a (deterministic) seasonal term (s; = $y412)
— Z, is a random (hopefully) stationary part

Detrending data
The trend m; in the data can be estimated by a moving average.

In the case of monthly variation,

%xt—ﬁ+xt—5+"'+zt+"'+ﬂft+5+%.It+6
12

mt:

We remove the trend by considering x; — ;.

Next we find the seasonal term s; by averaging x; — m; over all measurements in the given month.
— E.g., the value of s; for January is given by averaging all values from January.

We are left with the random part 2; = x; — My — §;.

For the Australian electricity data:

14



CBE <- ts(CBE,frequency=12)

plot(decompose (CBE))
Decomposition of additive time series
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e The random term does not look stationary. The solution is to log-transform the data - see Ch. 1.5.5 in
the book.

1logCBE <- ts(log(CBEdatal,3]),frequency=12)
plot(decompose(logCBE) )
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Decomposition of additive time series
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random<-decompose (1ogCBE) $random [7 : 382]
acf (random, main="Random part of CBE data")

Random part of CBE data
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