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1 Statistical inference: Hypothesis and test
1.1 Concept of hypothesis

• A hypothesis is a statement about a given population. Usually it is stated as a population parameter
having a given value or being in a certain interval.

• Examples:
– Quality control of products: The hypothesis is that the products e.g. have a certain weight, a

given power consumption or a minimal durability.
– Scientific hypothesis: There is no dependence between a company’s age and level of return.

1.2 Significance test
• A significance test is used to investigate, whether data is contradicting the hypothesis or not.
• If the hypothesis says that a parameter has a certain value, then the test should tell whether the sample

estimate is “far” away from this value.
• For example:

– Waiting times in a queue. We sample n customers and count how many that have been waiting
more than 5 minutes. The company policy is that at most 10% of the customers should wait more
than 5 minutes. In a sample of size n = 32 we observe 4 with waiting time above 5 minutes, i.e. the
estimated proportion is π̂ = 4

32 = 12.5%. Is this “much more” than (i.e. significantly different
from) 10%?

– The blood alcohol level of a student is measured 4 times with the values 0.504, 0.500, 0.512, 0.524,
i.e. the estimated mean value is ȳ = 0.51. Is this “much different” than a limit of 0.5?

1.3 Null and alternative hypothesis
• The null hypothesis - denoted H0 - usually specifies that a population parameter has some given

value. E.g. if µ is the mean blood alcohol level we can state the null hypothesis
– H0 : µ = 0.5.

• The alternative hypothesis - denoted Ha - usually specifies that the population parameter is contained
in a given set of values different than the null hypothesis. E.g. if µ again is the population mean of a
blood alcohol level measurement, then

– the null hypothesis is H0 : µ = 0.5
– the alternative hypothesis is Ha : µ ̸= 0.5.
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1.4 Test statistic
• We consider a population parameter µ and write the null hypothesis

H0 : µ = µ0,

where µ0 is a known number, e.g. µ0 = 0.5.
• Based on a sample we have an estimate µ̂.
• A test statistic T will typically depend on µ̂ and µ0 (we may write this as T (µ̂, µ0)) and measures

“how far from µ0 is µ̂?”
• Often we use T (µ̂, µ0) = “the number of standard deviations from µ̂ to µ0”.
• For example it would be very unlikely to be more than 3 standard deviations from µ0, i.e. in that case

µ0 is probably not the correct value of the population parameter.

1.5 P -value
• We consider

– H0: a null hypothesis.
– Ha: an alternative hypothesis.
– T : a test statistic, where the value calculated based on the current sample is denoted tobs.

• To investigate the plausibility of H0, we measure the evidence against H0 by the so-called p-value:
– The p-value is the probability of observing a more extreme value of T (if we were to repeat the

experiment) than tobs under the assumption that H0 is true.
– “Extremity” is measured relative to the alternative hypothesis; a value is considered extreme if it

is “far from” H0 and “closer to” Ha.
– If the p-value is small then there is a small probability of observing tobs if H0 is true, and thus H0

is not very probable for our sample and we put more support in Ha, so:

The smaller the p-value, the less we trust H0.

• What is a small p-value? If it is below 5% we say it is significant at the 5% level.

1.6 Significance level
• We consider

– H0: a null hypothesis.
– Ha: an alternative hypothesis.
– T : a test statistic, where the value calculated based on the current sample is denoted tobs and the

corresponding p-value is pobs.
• Small values of pobs are critical for H0.
• In practice it can be necessary to decide whether or not we are going to reject H0.
• The decision can be made if we previously have decided on a so-called α-level, where

– α is a given percentage
– we reject H0, if pobs is less than or equal to α
– α is called the significance level of the test
– typical choices of α are 5% or 1%.

1.7 Significance test for mean
1.7.1 Two-sided t-test for mean:

• We assume that data is a sample from norm(µ, σ).
• The estimates of the population parameters are µ̂ = ȳ and σ̂ = s based on n observations.
• Null hypothesis: H0 : µ = µ0, where µ0 is a known value.
• Two-sided alternative hypothesis: Ha : µ ̸= µ0.
• Observed test statistic: tobs = ȳ−µ0

se , where se = s√
n

.
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• I.e. tobs measures, how many standard deviations (with ± sign) the empirical mean lies away from µ0.
• If H0 is true, then tobs is an observation from the t-distribution with df = n − 1.
• P -value: Values bigger than |tobs| or less than −|tobs| puts more support in Ha than H0.
• The p-value = 2 x “upper tail probability of |tobs|”. The probability is calculated in the t-distribution

with df degrees of freedom.

1.7.2 Example: Two-sided t-test

• Blood alcohol level measurements: 0.504, 0.500, 0.512, 0.524.
• These are assumed to be a sample from a normal distribution.
• We calculate

– ȳ = 0.51 and s = 0.0106
– se = s√

n
= 0.0106√

4 = 0.0053.
– H0 : µ = 0.5, i.e. µ0 = 0.5.
– tobs = ȳ−µ0

se = 0.51−0.5
0.0053 = 1.89.

• So we are almost 2 standard deviations from 0.5. Is this extreme in a t-distribution with 3 degrees of
freedom?

library(mosaic)
1 - pdist("t", q = 1.89, df = 3)

0.0

0.1

0.2

0.3

−10 −5 0 5 10
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ity

probability

A:0.922

B:0.078

## [1] 0.07757725

• The p-value is 2· 0.078, i.e. more than 15%. On the basis of this we do not reject H0.

1.8 One-sided t-test for mean
The book also discusses one-sided t-tests for the mean, but we will not use those in the course.
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1.9 Agresti: Overview of t-test

1.10 Significance test for proportion
• Consider a sample of size n, where we observe whether a given property is present or not.
• The relative frequency of the property in the population is π, which is estimated by π̂.
• Null hypothesis: H0 : π = π0, where π0 is a known number.
• Two-sided alternative hypothesis: Ha : π ̸= π0.
• If H0 is true the standard error for π̂ is given by se0 =

√
π0(1−π0)

n .
• Observed test statistic: zobs = π̂−π0

se0
• I.e. zobs measures, how many standard deviations (with ± sign) there is from π̂ to π0.

1.10.1 Approximate test

• If both nπ̂ and n(1 − π̂) are larger than 15 we know from previously that π̂ follows a normal distribution
(approximately), i.e.

– If H0 is true, then zobs is an observation from the standard normal distribution.
• P -value for two-sided test: Values greater than |zobs| or less than −|zobs| point more towards Ha than

H0.
• The p-value=2 x “upper tail probability for |zobs|”. The probability is calculated in the standard normal

distribution.
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1.10.2 Example: Approximate test

• We consider a study from Florida Poll 2006:
– In connection with problems financing public service a random sample of 1200 individuals were

asked whether they preferred less service or tax increases.
– 52% preferred tax increases. Is this enough to say that the proportion is significantly different

from fifty-fifty?
• Sample with n = 1200 observations and estimated proportion π̂ = 0.52.
• Null hypothesis H0 : π = 0.5.
• Alternative hypothesis Ha : π ̸= 0.5.
• Standard error se0 =

√
π0(1−π0)

n =
√

0.5×0.5
1200 = 0.0144

• Observed test statistic zobs = π̂−π0
se0

= 0.52−0.5
0.0144 = 1.39

• “upper tail probability for 1.39” in the standard normal distribution is 0.0823, i.e. we have a p-value of
2· 0.0823≈ 16%.

• Conclusion: There is not sufficient evidence to reject H0, i.e. we do not reject that the preference in the
population is fifty-fifty.

• Note, the above calculations can also be performed automatically in R by (a little different results due
to rounding errors in the manual calculation):

count <- 1200 * 0.52 # number of individuals preferring tax increase
prop.test(x = count, n = 1200, correct = F)

##
## 1-sample proportions test without continuity correction
##
## data: count out of 1200
## X-squared = 1.92, df = 1, p-value = 0.1659
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
## 0.4917142 0.5481581
## sample estimates:
## p
## 0.52

1.10.3 Binomial (exact) test

• Consider again a sample of size n, where we observe whether a given property is present or not.
• The relative frequency of the property in the population is π, which is estimated by π̂.
• Let y+ = nπ̂ be the frequency (total count) of the property in the sample.
• It can be shown that y+ follows the binomial distribution with size parameter n and success

probability π. We use Bin(n, π) to denote this distribution.
• Null hypothesis: H0 : π = π0, where π0 is a known number.
• Alternative hypothesis: Ha : π ̸= π0, where π0 is a known number.
• P -value for two-sided binomial test:

– If y+ ≥ nπ0: 2 x “upper tail probability for y+” in the Bin(n, π0) distribution.
– If y+ < nπ0: 2 x “lower tail probability for y+” in the Bin(n, π0) distribution.

1.10.4 Example: Binomial test

• Experiment with n = 30, where we have y+ = 14 successes.
• We want to test H0 : π = 0.3 vs. Ha : π ̸= 0.3.
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• Since y+ > nπ0 = 9 we use the upper tail probability corresponding to the sum of the height of the
red lines to the right of 14 in the graph below. (Notice, the graph continues on the right hand side to
n = 30, but it has been cut off for illustrative purposes.)

• The upper tail probability from 14 and up (i.e. greater than 13) is:
lower_tail <- pdist("binom", q = 13, size = 30, prob = 0.3)

0.00

0.05

0.10

0.15

0 5 10 15

pr
ob

ab
ili

ty probability

A:0.960

B:0.040

1 - lower_tail

## [1] 0.04005255

• The two-sided p-value is then 2 x 0.04 = 0.08.

1.10.5 Binomial test in R

• We return to the Chile data, where we again look at the variable sex.
• Let us test whether the proportion of females is different from 50 %, i.e., we look at H0 : π = 0.5 and

Ha : π ̸= 0.5, where π is the unknown population proportion of females.
Chile <- read.delim("https://asta.math.aau.dk/datasets?file=Chile.txt")
binom.test( ~ sex, data = Chile, p = 0.5, conf.level = 0.95)

##
##
##
## data: Chile$sex [with success = F]
## number of successes = 1379, number of trials = 2700, p-value = 0.2727
## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:
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## 0.4916971 0.5297610
## sample estimates:
## probability of success
## 0.5107407

• The p-value for the binomial exact test is 27%, so there is no significant difference between the proportion
of males and females.

• The approximate test has a p-value of 26%, which can be calculated by the command
prop.test( ~ sex, data = Chile, p = 0.5, conf.level = 0.95, correct = FALSE)

(note the additional argument correct = FALSE).

1.11 Agresti: Overview of tests for mean and proportion

1.12 Response variable and explanatory variable
• We conduct an experiment, where we at random choose 50 IT-companies and 50 service companies and

measure their profit ratio. Is there association between company type (IT/service) and profit ratio?
• In other words we compare samples from 2 different populations. For each company we register:

– The binary variable company type, which is called the explanatory variable and divides data
in 2 groups.

– The quantitative variable profit ratio, which is called the response variable.
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1.13 Dependent/independent samples
• In the example with profit ratio of 50 IT-companies and 50 service companies we have independent

samples, since the same company cannot be in both groups.
• Now, think of another type of experiment, where we at random choose 50 IT-companies and measure

their profit ratio in both 2009 and 2010. Then we may be interested in whether there is association
between year and profit ratio?

• In this example we have dependent samples, since the same company is in both groups.
• Dependent samples may also be referred to as paired samples.

1.14 Comparison of two means (Independent samples)
• We consider the situation, where we have two quantitative samples:

– Population 1 has mean µ1, which is estimated by µ̂1 = ȳ1 based on a sample of size n1.
– Population 2 has mean µ2, which is estimated by µ̂2 = ȳ2 based on a sample of size n2.
– We are interested in the difference µ2 − µ1, which is estimated by d = ȳ2 − ȳ1.
– Assume that we can find the estimated standard error sed of the difference and that this has

degrees of freedom df .
– Assume that the samples either are large or come from a normal population.

• Then we can construct a
– confidence interval for the unknown population difference of means µ2 − µ1 by

(ȳ2 − ȳ1) ± tcritsed,

where the critical t-score, tcrit, determines the confidence level.
– significance test:

∗ for the null hypothesis H0 : µ2 − µ1 = 0 and alternative hypothesis Ha : µ2 − µ1 ̸= 0.
∗ which uses the test statistic: tobs = (ȳ2−ȳ1)−0

sed
, that has to be evaluated in a t-distribution with

df degrees of freedom.

1.15 Comparison of two means (Independent samples)
• In the independent samples situation it can be shown that

sed =
√

se2
1 + se2

2,

where se1 and se2 are estimated standard errors for the sample means in populations 1 and 2, respectively.
• We recall, that for these we have se = s√

n
, i.e.

sed =

√
s2

1
n1

+ s2
2

n2
,

where s1 and s2 are estimated standard deviations for population 1 and 2, respectively.
• The degrees of freedom df for sed can be estimated by a complicated formula, which we will not

present here.
• For the confidence interval and the significance test we note that:

– If both n1 and n2 are above 30, then we can use the standard normal distribution (z-score) rather
than the t-distribution (t-score).

– If n1 or n2 are below 30, then we let R calculate the degrees of freedom and p-value/confidence
interval.

1.16 Example: Comparing two means (independent samples)
We return to the Chile data. We study the association between the variables sex and statusquo (scale
of support for the status-quo). So, we will perform a significance test to test for difference in the mean of
statusquo for male and females.
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Chile <- read.delim("https://asta.math.aau.dk/datasets?file=Chile.txt")
library(mosaic)
fv <- favstats(statusquo ~ sex, data = Chile)
fv

## sex min Q1 median Q3 max mean sd n missing
## 1 F -1.80 -0.975 0.121 1.033 2.02 0.0657 1.003 1368 11
## 2 M -1.74 -1.032 -0.216 0.861 2.05 -0.0684 0.993 1315 6

• Difference: d = 0.0657 − (−0.0684) = 0.1341.
• Estimated standard deviations: s1 = 1.0032 (females) and s2 = 0.9928 (males).
• Sample sizes: n1 = 1368 and n2 = 1315.
• Estimated standard error of difference: sed =

√
s2

1
n1

+ s2
2

n2
=

√
1.00322

1368 + 0.99282

1315 = 0.0385.
• Observed t-score for H0 : µ1 − µ2 = 0 is: tobs = d−0

sed
= 0.1341

0.0385 = 3.4786.
• Since both sample sizes are “pretty large” (> 30), we can use the z-score instead of the t-score for

finding the p-value (i.e. we use the standard normal distribution):
1 - pdist("norm", q = 3.4786, xlim = c(-4, 4))

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4

de
ns

ity

probability

A:1.000

B:0.000

## [1] 0.0002520202

• Then the p-value is 2 · 0.00025 = 0.0005, so we reject the null hypothesis.
• We can leave all the calculations to R by using t.test:

t.test(statusquo ~ sex, data = Chile)

##
## Welch Two Sample t-test
##
## data: statusquo by sex
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## t = 3.4786, df = 2678.7, p-value = 0.0005121
## alternative hypothesis: true difference in means between group F and group M is not equal to 0
## 95 percent confidence interval:
## 0.05849179 0.20962982
## sample estimates:
## mean in group F mean in group M
## 0.06570627 -0.06835453

• We recognize the t-score 3.4786 and the p-value 0.0005. The estimated degrees of freedom df = 2679 is
so large that we can not tell the difference between results obtained using z-score and t-score.

1.17 Comparison of two means: confidence interval (independent samples)
• We have already found all the ingredients to construct a confidence interval for µ2 − µ1:

– d = ȳ2 − ȳ1 estimates µ2 − µ1.
– sed =

√
s2

1
n1

+ s2
2

n2
estimates the standard error of d.

• Then:
d ± tcritsed

is a confidence interval for µ2 − µ1.
• The critical t-score, tcrit is chosen corresponding to the wanted confidence level. If n1 and n2 both are

greater than 30, then tcrit = 2 yields a confidence level of approximately 95%.

1.18 Comparison of two means: paired t-test (dependent samples)
• Experiment:

– You choose 32 students at random and measure their average reaction time in a driving simulator
while they are listening to radio or audio books.

– Later the same 32 students redo the simulated driving while talking on a cell phone.
• It is interesting to investigate whether or not the fact that you are actively participating in a conversation

changes your average reaction time compared to when you are passively listening.
• So we have 2 samples corresponding to with/without phone. In this case we have dependent samples,

since we have 2 measurement for each student.
• We use the following strategy for analysis:

– For each student calculate the change in average reaction time with and without talking on the
phone.

– The changes d1, d2, . . . , d32 are now considered as ONE sample from a population with mean µ.
– Test the hypothesis H0 : µ = 0 as usual (using a t-test for testing the mean as in the previous

lecture).

1.18.1 Reaction time example

• Data is organized in a data frame with 3 variables:
– student (integer – a simple id)
– reaction_time (numeric – average reaction time in milliseconds)
– phone (factor – yes/no indicating whether speaking on the phone)

reaction <- read.delim("https://asta.math.aau.dk/datasets?file=reaction.txt")
head(reaction, n = 3)

## student reaction_time phone
## 1 1 604 no
## 2 2 556 no
## 3 3 540 no
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Instead of doing manual calculations we let R perform the significance test (using t.test with paired =
TRUE as our samples are paired/dependent):
t.test(reaction_time ~ phone, data = reaction, paired = TRUE)

##
## Paired t-test
##
## data: reaction_time by phone
## t = -5.4563, df = 31, p-value = 5.803e-06
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -69.54814 -31.70186
## sample estimates:
## mean difference
## -50.625

• With a p-value of 0.0000058 we reject that speaking on the phone has no influence on the reaction time.

• To understand what is going on, we can manually find the reaction time difference for each student and
do a one sample t-test on this difference:

yes <- subset(reaction, phone == "yes")
no <- subset(reaction, phone == "no")
reaction_diff <- data.frame(student = no$student, yes = yes$reaction_time, no = no$reaction_time)
reaction_diff$diff <- reaction_diff$yes - reaction_diff$no
head(reaction_diff)

## student yes no diff
## 1 1 636 604 32
## 2 2 623 556 67
## 3 3 615 540 75
## 4 4 672 522 150
## 5 5 601 459 142
## 6 6 600 544 56
t.test( ~ diff, data = reaction_diff)

##
## One Sample t-test
##
## data: diff
## t = 5.4563, df = 31, p-value = 5.803e-06
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 31.70186 69.54814
## sample estimates:
## mean of x
## 50.625

2 Comparison of two proportions
2.1 Comparison of two proportions

• We consider the situation, where we have two qualitative samples and we investigate whether a given
property is present or not:
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– Let the proportion of population 1 which has the property be π1, which is estimated by π̂1 based
on a sample of size n1.

– Let the proportion of population 2 which has the property be π2, which is estimated by π̂2 based
on a sample of size n2.

– We are interested in the difference π2 − π1, which is estimated by d = π̂2 − π̂1.
– Assume that we can find the estimated standard error sed of the difference.

• Then we can construct
– an approximate confidence interval for the difference, π2 − π1.
– a significance test.

2.2 Comparison of two proportions: Independent samples
• In the situation where we have independent samples we know that

sed =
√

se2
1 + se2

2,

where se1 and se2 are the estimated standard errors for the sample proportion in population 1 and 2,
respectively.

• We recall, that these are given by se =
√

π̂(1−π̂)
n , i.e.

sed =

√
π̂1(1 − π̂1)

n1
+ π̂2(1 − π̂2)

n2
.

• A (approximate) confidence interval for π2 − π1 is obtained by the usual construction:

(π̂2 − π̂1) ± zcritsed,

where the critical z-score determines the confidence level.

2.3 Approximate test for comparing two proportions (independent samples)
• We consider the null hypothesis H0: π1 = π2 (equivalently H0 : π1 − π2 = 0) and the alternative

hypothesis Ha: π1 ̸= π2.
• Assuming H0 is true, we have a common proportion π, which is estimated by

π̂ = n1π̂1 + n2π̂2

n1 + n2
,

i.e. we aggregate the populations and calculate the relative frequency of the property (with other words:
we estimate the proportion, π, as if the two samples were one).

• Rather than using the estimated standard error of the difference from previous, we use the following
that holds under H0:

se0 =

√
π̂(1 − π̂)

(
1
n1

+ 1
n2

)
• The observed test statistic/z-score for H0 is then:

zobs = (π̂2 − π̂1) − 0
se0

,

which is evaluated in the standard normal distribution.
• The p-value is calculated in the usual way.

WARNING: The approximation is only good, when n1π̂, n1(1 − π̂), n2π̂, n2(1 − π̂) all are greater than 5.
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2.4 Example: Approximate confidence interval and test for comparing propor-
tions

We return to the Chile dataset. We make a new binary variable indicating whether the person intends to
vote no or something else (and we remember to tell R that it should think of this as a grouping variable,
i.e. a factor):
Chile$voteNo <- relevel(factor(Chile$vote == "N"), ref = "TRUE")

We study the association between the variables sex and voteNo:
tab <- tally( ~ sex + voteNo, data = Chile, useNA = "no")
tab

## voteNo
## sex TRUE FALSE
## F 363 946
## M 526 697

This gives us all the ingredients needed in the hypothesis test:

• Estimated proportion of men that vote no: π̂1 = 526
526+697 = 0.430

• Estimated proportion of women that vote no: π̂2 = 363
363+946 = 0.277

2.5 Example: Approximate confidence interval (cont.)
• Estimated difference:

d = π̂2 − π̂1 = 0.277 − 0.430 = −0.153

• Standard error of difference:

sed =

√
π̂1(1 − π̂1)

n1
+ π̂2(1 − π̂2)

n2

=
√

0.430(1 − 0.430)
1223 + 0.277(1 − 0.277)

1309 = 0.0188.

• Approximate 95% confidence interval for difference:

d ± 1.96 · sed = (−0.190, −0.116).

2.6 Example: p-value (cont.)
• Estimated common proportion:

π̂ = 1223 × 0.430 + 1309 × 0.277
1309 + 1223 = 526 + 363

1309 + 1223 = 0.351.

• Standard error of difference when H0 : π1 = π2 is true:

se0 =

√
π̂(1 − π̂)

(
1
n1

+ 1
n2

)
= 0.0190.

• The observed test statistic/z-score:
zobs = d

se0
= −8.06.

• The test for H0 against Ha : π1 ≠ π2 yields a p-value that is practically zero, i.e. we can reject that the
proportions are equal.
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2.7 Automatic calculation in R

Chile2 <- subset(Chile, !is.na(voteNo))
prop.test(voteNo ~ sex, data = Chile2, correct = FALSE)

##
## 2-sample test for equality of proportions without continuity correction
##
## data: tally(voteNo ~ sex)
## X-squared = 64.777, df = 1, p-value = 8.389e-16
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.1896305 -0.1159275
## sample estimates:
## prop 1 prop 2
## 0.2773109 0.4300899

2.8 Fisher’s exact test
• If n1π̂, n1(1 − π̂), n2π̂, n2(1 − π̂) are not all greater than 5, then the approximate test cannot be

trusted. Instead you can use Fisher’s exact test:
fisher.test(tab)

##
## Fisher's Exact Test for Count Data
##
## data: tab
## p-value = 1.04e-15
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.4292768 0.6021525
## sample estimates:
## odds ratio
## 0.5085996

• Again the p-value is seen to be extremely small, so we definitely reject the null hypothesis of equal
voteNo proportions for women and men.
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2.9 Agresti: Overview of comparison of two groups

3 Contingency tables
3.1 A contingency table

• The dataset popularKids, we study the association between the factors Goals and Urban.Rural:

– Urban.Rural: The students were selected from urban, suburban, and rural schools.

– Goals: The students indicated whether good grades, athletic ability, or popularity was most
important to them.

• Based on a sample we make a cross tabulation of the factors and we get a so-called contingency table
(krydstabel).

popKids <- read.delim("https://asta.math.aau.dk/datasets?file=PopularKids.dat")
library(mosaic)
tab <- tally(~Urban.Rural + Goals, data = popKids, margins = TRUE)
tab

## Goals
## Urban.Rural Grades Popular Sports Total
## Rural 57 50 42 149
## Suburban 87 42 22 151
## Urban 103 49 26 178
## Total 247 141 90 478
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3.2 A conditional distribution
• Another representation of data is the probability distribution of Goals for each level of Urban.Rural,

i.e. the sum in each row of the table is 1 (up to rounding):

## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 0.383 0.336 0.282 1.000
## Suburban 0.576 0.278 0.146 1.000
## Urban 0.579 0.275 0.146 1.000
## Total 0.517 0.295 0.188 1.000

• Here we will talk about the conditional distribution of Goals given Urban.Rural.

• An important question could be:

– Are the goals of the kids different when they come from urban, suburban or rural areas? I.e. are
the rows in the table significantly different?

• There is (almost) no difference between urban and suburban, but it looks like rural is different.

3.3 Independence
• Recall, that two factors are independent, when there is no difference between the population’s

distributions of one factor given the levels of the other factor.

• Otherwise the factors are said to be dependent.

• If we e.g. have the following conditional population distributions of Goals given Urban.Rural:

## Goals
## Urban.Rural Grades Popular Sports
## Rural 0.5 0.3 0.2
## Suburban 0.5 0.3 0.2
## Urban 0.5 0.3 0.2

• Then the factors Goals and Urban.Rural are independent.

• We take a sample and “measure” the factors F1 and F2. E.g. Goals and Urban.Rural for a random
child.

• The hypothesis of interest today is:

H0 : F1 and F2 are independent, Ha : F1 and F2 are dependent.

3.4 The Chi-squared test for independence
• Our best guess of the distribution of Goals is the relative frequencies in the sample:

tab <- tally(~Urban.Rural + Goals, data = popKids)
n <- margin.table(tab)
pctGoals <- round(margin.table(tab, 2) / n, 3)
pctGoals

## Goals
## Grades Popular Sports
## 0.517 0.295 0.188

• If we assume independence, then this is also a guess of the conditional distributions of Goals given
Urban.Rural.

• The corresponding expected counts in the sample are then:
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## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 77.0 (0.517) 44.0 (0.295) 28.1 (0.188) 149.0 (1.000)
## Suburban 78.0 (0.517) 44.5 (0.295) 28.4 (0.188) 151.0 (1.000)
## Urban 92.0 (0.517) 52.5 (0.295) 33.5 (0.188) 178.0 (1.000)
## Sum 247.0 (0.517) 141.0 (0.295) 90.0 (0.188) 478.0 (1.000)

3.5 Calculation of expected table

pctexptab

## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 77.0 (0.517) 44.0 (0.295) 28.1 (0.188) 149.0 (1.000)
## Suburban 78.0 (0.517) 44.5 (0.295) 28.4 (0.188) 151.0 (1.000)
## Urban 92.0 (0.517) 52.5 (0.295) 33.5 (0.188) 178.0 (1.000)
## Sum 247.0 (0.517) 141.0 (0.295) 90.0 (0.188) 478.0 (1.000)

• We note that

– The relative frequency for a given column is column total divided by table total. For example
Grades, which is 247

478 = 0.517.

– The expected value in a given cell in the table is then the cell’s relative column frequency multiplied
by the cell’s row total. For example Rural and Grades: 149 × 0.517 = 77.0.

• This can be summarized to:

– The expected value in a cell is the product of the cell’s row total and column total divided by
the table total

3.6 Chi-squared (χ2) test statistic
• We have an observed table:

tab

## Goals
## Urban.Rural Grades Popular Sports
## Rural 57 50 42
## Suburban 87 42 22
## Urban 103 49 26

• And an expected table, if H0 is true:

## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 77.0 44.0 28.1 149.0
## Suburban 78.0 44.5 28.4 151.0
## Urban 92.0 52.5 33.5 178.0
## Sum 247.0 141.0 90.0 478.0

• If these tables are “far from each other”, then we reject H0. We want to measure the distance via the
Chi-squared test statistic:

– X2 =
∑ (fo−fe)2

fe
: Sum over all cells in the table

– fo is the frequency in a cell in the observed table

– fe is the corresponding frequency in the expected table.
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• We have:
X2

obs = (57 − 77)2

77 + . . . + (26 − 33.5)2

33.5 = 18.8

• Is this a large distance??

3.7 χ2-test template.
• We want to test the hypothesis H0 of independence in a table with r rows and c columns:

– We take a sample and calculate X2
obs - the observed value of the test statistic.

– p-value: Assume H0 is true. What is then the chance of obtaining a larger X2 than X2
obs, if we

repeat the experiment?

• This can be approximated by the χ2-distribution with df = (r − 1)(c − 1) degrees of freedom.

• For Goals and Urban.Rural we have r = c = 3, i.e. df = 4 and X2
obs = 18.8, so the p-value is:

1 - pdist("chisq", 18.8, df = 4)

0.00

0.05

0.10

0.15

0 5 10 15 20

de
ns

ity

probability

A:0.999

B:0.001

## [1] 0.0008603303

• There is clearly a significant association between Goals and Urban.Rural.

3.8 The function chisq.test

• All of the above calculations can be obtained by the function chisq.test.
tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)
testStat
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##
## Pearson's Chi-squared test
##
## data: tab
## X-squared = 18.828, df = 4, p-value = 0.0008497
testStat$expected

## Goals
## Urban.Rural Grades Popular Sports
## Rural 76.99372 43.95188 28.05439
## Suburban 78.02720 44.54184 28.43096
## Urban 91.97908 52.50628 33.51464

• The frequency data can also be put directly into a matrix.
data <- c(57, 87, 103, 50, 42, 49, 42, 22, 26)
tab <- matrix(data, nrow = 3, ncol = 3)
row.names(tab) <- c("Rural", "Suburban", "Urban")
colnames(tab) <- c("Grades", "Popular", "Sports")
tab

## Grades Popular Sports
## Rural 57 50 42
## Suburban 87 42 22
## Urban 103 49 26
chisq.test(tab)

##
## Pearson's Chi-squared test
##
## data: tab
## X-squared = 18.828, df = 4, p-value = 0.0008497

3.9 The χ2-distribution
• The χ2-distribution with df degrees of freedom:

– Is never negative. And X2 = 0 only happens if fe = fo.

– Has mean µ = df

– Has standard deviation σ =
√

2df

– Is skewed to the right, but approaches a normal distribution when df grows.
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3.10 Summary
• For the the Chi-squared statistic, X2, to be appropriate we require that the expected values have to be

fe ≥ 5.

• Now we can summarize the ingredients in the Chi-squared test for independence.

3.11 Residual analysis
• If we reject the hypothesis of independence it can be of interest to identify the significant deviations.

• In a given cell in the table, fo − fe is the deviation between data and the expected values under the
null hypothesis.

• We assume that fe ≥ 5.

• If H0 is true, then the standard error of fo − fe is given by

se =
√

fe(1 − row proportion)(1 − column proportion)
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• The corresponding z-score
z = fo − fe

se

should in 95% of the cells be between ±2. Values above 3 or below -3 should not appear.

• In popKids table cell Rural and Grade we got fe = 77.0 and fo = 57. Here column proportion
= 0.517 and row proportion = 149/478 = 0.312.

• We can then calculate
z = 57 − 77√

77(1 − 0.517)(1 − 0.312)
= −3.95

• Compared to the null hypothesis there are way too few rural kids who find grades important.

• In summary: The standardized residuals allow for cell-by-cell (fe vs fo) comparision.

3.12 Residual analysis in R

• In R we can extract the standardized residuals from the output of chisq.test:
tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)
testStat$stdres

## Goals
## Urban.Rural Grades Popular Sports
## Rural -3.9508449 1.3096235 3.5225004
## Suburban 1.7666608 -0.5484075 -1.6185210
## Urban 2.0865780 -0.7274327 -1.8186224

3.13 Cramér’s V
• To measure the strength of the association, the Swedish mathematician Harald Cramér developed a

measure which is estimated by

V =

√
X2

n · min(r − 1, c − 1)

where r and c are the number of columns and rows in the contingency table and n is the sample size.

• Property:

– Cramér’s V lies between 0(no association) and 1(complete association)

• In the situation with the factors Goals and Urban.Rural from the dataset popularKids we get

V =

√
X2

n · min(r − 1, c − 1) =

√
18.8

479 · min(3 − 1, 3 − 1) = 0.14,

which indicates a weak (but significant) association.

• The function CramerV in the package DescTools gives you the value and a confidence interval
library(DescTools)

##
## Attaching package: 'DescTools'

## The following object is masked from 'package:mosaic':
##
## MAD
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CramerV(tab, conf = 0.95, type = "perc")

## Cramer V lwr.ci upr.ci
## 0.14033592 0.06014641 0.19419139

4 Ordinal variables
4.1 Association between ordinal variables

• For a random sample of black males the General Social Survey in 1996 asked two questions:

– Q1: What is your yearly income (income)?

– Q2: How satisfied are you with your job (satisfaction)?

• Both measurements are on an ordinal scale.

VeryD LittleD ModerateS VeryS
< 15k 1 3 10 6
15-25k 2 3 10 7
25-40k 1 6 14 12
> 40k 0 1 9 11

• We might do a chi-square test to see whether Q1 and Q2 are associated, but the test does not exploit
the ordinality.

• We shall consider a test that incorporates ordinality.

4.2 Gamma coefficient
• Consider a pair of respondents, where respondent 1 is below respondent 2 in relation to Q1.

– If respondent 1 is also below respondent 2 in relation to Q2 then the pair is concordant.

– If respondent 1 is above respondent 2 in relation to Q2 then the pair is disconcordant.

• Let:

C = the number of concordant pairs in our sample.

D = the number of disconcordant pairs in our sample.

• We define the estimated gamma coefficient

γ̂ = C − D

C + D
= C

C + D︸ ︷︷ ︸
concordant prop.

− D

C + D︸ ︷︷ ︸
discordant prop.

4.3 Gamma coefficient
• Properties:

– Gamma lies between -1 og 1

– The sign tells whether the association is positive or negative

– Large absolute values correspond to strong association

• The standard error se(γ̂) on γ̂ is complicated to calculate, so we leave that to software.
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• We can now determine a 95% confidence interval:

γ̂ ± 1.96se(γ̂)

and if zero is contained in the interval, then there is no significant association, when we perform a test
with a 5% significance level.

4.4 Example
• First, we need to install the package vcdExtra, which has the function GKgamma for calculating gamma.

It also has the dataset on job satisfaction and income built-in:
library(vcdExtra)
JobSat

## satisfaction
## income VeryD LittleD ModerateS VeryS
## < 15k 1 3 10 6
## 15-25k 2 3 10 7
## 25-40k 1 6 14 12
## > 40k 0 1 9 11
GKgamma(JobSat, level = 0.90)

## gamma : 0.221
## std. error : 0.117
## CI : 0.028 0.414

• A positive association. Marginally significant at the 10% level, but not so at the 5% level.

5 Validation of data
5.1 Goodness of fit test

• You have collected a sample and want to know, whether the sample is representative for people living
in Hirtshals.

• E.g. whether the distribution of gender, age, or profession in the sample do not differ significantly from
the distribution in Hirtshals.

• Actually, you know how to do that for binary variables like gender, but not if you e.g. have 6 agegroups.

5.2 Example
• As an example we look at k groups, where data from Hjørring kommune tells us the distribution in

Hirtshals is given by the vector
π = (π1, . . . , πk),

where πi is the proportion which belongs to group number i, i = 1, 2 . . . , k in Hirtshals.

• Consider the sample represented by the vector:

O = (O1, . . . , Ok),

where Oi is the observed number of individuals in group number i, i = 1, 2, . . . , k.

• The total number of individuals:

n =
k∑

i=1
Oi.

24



• The expected number of individuals in each group, if we have a sample from Hirtshals:

Ei = nπi, i = 1, 2, . . . , k

5.3 Goodness of fit test
• We will use the following measure to see how far away the observed is from the expected:

X2 =
k∑

i=1

(Oi − Ei)2

Ei

• If this is large we reject the hypothesis that the sample has the same distribution as Hirtshals. The
reference distribution is the χ2 with k − 1 degrees of freedom.

5.4 Example
• Assume we have four groups and that the true distribution is given by:

k <- 4
pi_vector <- c(0.3, 0.2, 0.25, 0.25)

• Assume that we have the following sample:
O_vector <- c(74, 72, 40, 61)

• Expected number of individuals in each group:
n <- sum(O_vector)
E_vector <- n * pi_vector
E_vector

## [1] 74.10 49.40 61.75 61.75

• X2 statistic:
Xsq = sum((O_vector - E_vector)ˆ2 / E_vector)
Xsq

## [1] 18.00945

• p-value:
p_value <- 1 - pchisq(Xsq, df = k-1)
p_value

## [1] 0.0004378808

5.5 Test in R

Xsq_test <- chisq.test(O_vector, p = pi_vector)
Xsq_test

##
## Chi-squared test for given probabilities
##
## data: O_vector
## X-squared = 18.009, df = 3, p-value = 0.0004379

• As the hypothesis is rejected, we look at the standardized residuals (z-scores):
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Xsq_test$stdres

## [1] -0.01388487 3.59500891 -3.19602486 -0.11020775

• We conclude that group 1 and 4 is close to true distribution in Hirtshals, but in groups 2 og 3 we have
a significant mismatch.
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