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1 Basic stochastic process models
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1.1 Stochastic processes
• Last time we introduced stochastic processes
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• We saw three basic models:

– White noise: independent random variables - not very interesting by itself, but an essential
building block in more complicated/realistic models.

– Random walk: cumulatively adding white noise - non-stationary, tendency to wander off.
– Autoregressive process AR(1): weaker dependence on previous value than random walk, is

stationary or not depending on choice of parameters.

• Today we will consider more stochastic process models.

• First we take a recap of the three models above, and add some details.

2 White noise

2.1 White noise
• A time series Wt, t = 1, . . . , n is white noise if the variables W1, W2, . . . , Wn are

– independent
– identically distributed
– have mean zero and variance σ2

• From the definition it follows that white noise is a second order stationary process since
– The mean is constant (= 0)
– The variance function σ2(t) = σ2 is constant
– The autocorrelation Cor(Wt, Wt+k) = 0 for all k ̸= 0, which does not depend on t.
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• Hence, we have a well-defined mean,
µ = 0,

autocovariance function

γ(k) = Cov(Wt, Wt+k) =
{

σ2 for k = 0,

0 for k ̸= 0,

and autocorrelation function

ρ(k) =
{

1 for k = 0,

0 for k ̸= 0.

2.2 Correlogram for white noise
• To understand how white noise behaves we can simulate it with R and plot both the series and the

autocorrelation:
w <- rnorm(100, mean = 0, sd = 1)
par(mfrow = c(2,1), mar = c(4,4,0,0))
ts.plot(w)
acf(w)
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• 95% of the estimated autocorrelations at lag k > 0 lie between the blue lines.

• It is a good idea to repeat this simulation and plot a few times to appreciate the variability of the
results.
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3 Random walk

3.1 Random walk
• A time series Xt is called a random walk if

Xt = Xt−1 + Wt

where Wt is a white noise series.

• Using Xt−1 = Xt−2 + Wt−1 we get

Xt = Xt−2 + Wt−1 + Wt

• Substituting for Xt−2 we get
Xt = Xt−3 + Wt−2 + Wt−1 + Wt

• Continuing this way, assuming we start at X0 = 0,

Xt = W1 + W2 + · · · + Wt

3.2 Properties of random walk
• A random walk Xt has a constant mean function

µ(t) = 0.

• The variance function is given by

σ2(t) = V ar(Xt) = V ar(W1 + · · · + Wt) = V ar(W1) + · · · + V ar(Wt) = t · σ2,

which clearly depends on the time t, so the process is not stationary.

• Similarly, one can compute the autocovariance and autocorrelation function (see Cowpertwait and
Metcalfe for details)

Cov(Xt, Xt+k) = tσ2.

Cor(Xt, Xt+k) = 1√
1 + k/t

• The autocorrelation is non-stationary.

• When t is large compared to k we have very high correlation (close to 1)

• We expect the correlogram of a reasonably long random walk to show very slow decay.

3.3 Simulation and correlogram of random walk
• We already know how to simulate Gaussian white noise Wt(with rnorm) and the random walk is just

generated by repeatedly adding noise terms:
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w <- rnorm(1000)
rw<-w
for(t in 2:1000) rw[t]<- rw[t-1] + w[t]
par(mfrow = c(2,1), mar = c(4,4,0.5,0.5))
ts.plot(rw)
acf(rw, lag.max = 100)
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• The slowly decaying acf for random walk is a classical sign of non-stationarity, indicating there may be
some kind of trend. In this case there is no real trend, since the theoretical mean is constant zero, but
we refer to the apparent trend which seems to change directions unpredictiably as a stochastic trend.

3.4 Differencing
• If a non-stationary time series shows a stochastic trend we can try to study the time series of

differences and see if that is stationary and easier to understand:

∇Xt = Xt − Xt−1.

• Since we assume X0 = 0 we get
∇X1 = X1.

• Specifically when we difference a random walk Xt = Xt−1 + Wt we recover the white noise series

∇Xt = Wt
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diffrw <- diff(rw)
par(mfrow = c(2,1), mar = c(4,4,0.5,0.5))
ts.plot(diffrw)
acf(diffrw, lag.max = 30)
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• If a time series needs to be differenced to become stationary, we say that the series is integrated (of
order 1).

3.5 Example: Exchange rate
• We consider a data set for the exchange rate from GBP to NZD. We observe what looks like an

unpredictable stochastic trend and we would like to see if it could reasonably be described as a random
walk.

www <- "https://asta.math.aau.dk/eng/static/datasets?file=pounds_nz.dat"
exchange_data <- read.table(www, header = TRUE)[[1]]
exchange <- ts(exchange_data, start = 1991, freq = 4)
plot(exchange)
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• We difference the series and see if the differences looks like white noise:
diffexchange <- diff(exchange)
par(mfrow = c(2,1), mar = c(4,4,0.5,0.5))
plot(diffexchange)
acf(diffexchange)
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• The first order difference looks reasonably stationary, so the original exchange rate series could be
considered integrated of order 1. However, there is an indication of significant autocorrelation at lag 1,
so a random walk might not be a completely satisfactory model for this dataset.

4 First order auto-regressive models AR(1)

4.1 Auto-regressive model of order 1: AR(1)
• If the correlogram shows a significant auto-correlation at lag 1, it means that Xt and Xt−1 are correlated.

• The simplest way to model this, is the auto-regressive model of order one, AR(1):

Xt = α1Xt−1 + Wt

where Wt is white noise and the auto-regressive coefficient α1 is a parameter to be estimated from data.

4.2 Properties of AR(1) models
• From last time: The model can only be stationary if −1 < α1 < 1 such that the dependence on the

past decreases with time.

• For a stationary AR(1) model with −1 < α1 < 1 we found

– µ(t) = 0
– V ar(Xt) = σ2

t = σ2/(1 − α2
1)

– γ(k) = αk
1σ2/(1 − α2

1)
– ρ(k) = αk

1

4.3 Simulation of AR(1) models
• R has a built-in function arima.sim to simulate AR(1) models (and other more complicated models

called ARMA and ARIMA).

• It needs the model (i.e. the autoregressive coefficient α1) and the desired number of time steps n.

• To simulate 200 time steps of AR(1) with α1 = 0.7 we do:
x <- arima.sim(model = list(ar = 0.7), n = 200)
plot(x)
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• Here we have compared the empirical correlogram with the theoretical values of the model.
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4.4 Fitted AR(1) models
• There are several ways to estimate the parameters in an AR(1) process. We use the so-called maximum

likelihood estimation method (MLE).

• We skip the details of this, and simply use the function ar:
fit <- ar(x, order.max = 1, method="mle")

• The resulting object contains the value of the estimated parameter α̂1 and a bunch of other information.

• In this example, the input data are artificial so we know that α̂1 should ideally be close to 0.7:
fit$ar

## [1] 0.7658155

• An estimate of the variance (squared standard error) of α̂1 is given in fit$asy.var.coef

fit$asy.var.coef

## [,1]
## [1,] 0.002060059

• The estimated std. error is the square root of this:
se <- sqrt(fit$asy.var.coef)
se

## [,1]
## [1,] 0.04538788

ci <- c(fit$ar - 2*se, fit$ar + 2*se)
ci

## [1] 0.6750398 0.8565913

4.5 Residuals for AR(1) models
• The AR(1) model defined earlier has mean 0. However, we cannot expect data to fulfill this.

• This is fixed by subtracting the average X̄ of the data before doing anything else, so the model that is
fitted is actually:

Xt − X̄ = α1 · (Xt−1 − X̄) + Wt

• The fitted model can be used to make predictions. To predict Xt from Xt−1, we use that Wt is white
noise, so we expect it to be zero on average:

x̂t − x̄ = α̂1 · (xt−1 − x̄),

so
x̂t = x̄ + α̂1 · (xt−1 − x̄), t ≥ 2.

• We can estimate the white noise terms as usual by the model residuals:

ŵt = xt − x̂t, t ≥ 2.

• If the model is correct, the residuals should look like a sample of white noise. We check this by plotting
the acf:
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res <- na.omit(fit$resid)
par(mfrow = c(2,1), mar = c(4,4,1,1))
plot(res)
acf(res)
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• It naturally looks good for this artificial dataset.

4.6 AR(1) model fitted to exchange rate
• A random walk is an example of an AR(1) model with α1 = 1. It didn’t provide an ideal fit for the

exchange rate dataset, so we might suggest a stationary AR(1) model with α1 as a parameter to be
estimated from data:

fitexchange <- ar(exchange, order.max = 1, method="mle")
fitexchange$ar

## [1] 0.9437125

resexchange <- na.omit(fitexchange$resid)
par(mfrow = c(2,1), mar = c(4,4,1,1))
plot(resexchange)
acf(resexchange)
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• This does not appear to really provide a better fit than the random walk model proposed earlier.

• An alternative would be to propose an AR(1) model for the differenced time series ∇Xt = Xt − Xt−1:
dexchange <- diff(exchange)
fitdiff <- ar(dexchange, order.max = 1,method="mle")
fitdiff$ar

## [1] 0.3495624

resdiff <- na.omit(fitdiff$resid)
par(mfrow = c(2,1), mar = c(4,4,1,1))
plot(resdiff)
acf(resdiff)
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4.7 Prediction/forecasting from AR(1) model
• We can use a fitted AR(1) model to predict the next value of an observed time series x1, . . . , xn.

x̂n+1 = x̄ + α̂1 · (xn − x̄).

• This can be iterated to predict xn+2

x̂n+2 = x̄ + α̂1 · (x̂n+1 − x̄),

and we can continue this way.

• Prediction is performed by predict in R.

• E.g. for the AR(1) model fitted to the exchange rate data, the last observation is in third quarter of
2000. If we want to predict 1 year ahead to third quarter of 2001:

pred1 <- predict(fitexchange, n.ahead = 4)
pred1

## $pred
## Qtr1 Qtr2 Qtr3 Qtr4
## 2000 3.501528
## 2001 3.473716 3.447469 3.422699
##
## $se
## Qtr1 Qtr2 Qtr3 Qtr4
## 2000 0.1348262
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## 2001 0.1853845 0.2208744 0.2482461

• Note how the prediction returns both the predicted value and a standard error for this value.

• We can use this to say that we are 95% confident that the exchange rate in third quarter of 2001 would
be within 3.42 ± 2 · 0.25.

• We can plot a prediction and approximate 95% pointwise prediction intervals with ts.plot (where we
use a 10 year prediction – which is a very bad idea – to see how it behaves in the long run):

pred10 <- predict(fitexchange, n.ahead = 40)
lower10 <- pred10$pred-2*pred10$se
upper10 <- pred10$pred+2*pred10$se
ts.plot(exchange, pred10$pred, lower10, upper10, lty = c(1,2,3,3))
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5 Auto-regressive models of higher order (AR(p)-models)

5.1 Auto-regressive models of higher order
• The first order auto-regressive model can be generalised to higher order by adding more lagged terms

to explain the current value Xt.

• An AR(p) process is
Xt = α1Xt−1 + α2Xt−2 + · · · + αpXt−p + Wt

where Wt is white noise and α1, α2, . . . , αp are parameters to be estimated from data.

• To simplify the notation, we introduce the backshift operator B, that takes the time series one step
back, i.e.

BXt = Xt−1
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• This can be used repeatedly, for example B2Xt = BBXt = BXt−1 = Xt−2. We can then make a
“polynomial” of backshift operators

α(B) = 1 − α1B − α2B2 − · · · − αpBp

and write the AR(p) process as
Wt = α(B)Xt.

5.2 Stationarity for AR(p) models
• Not all AR(p) models are stationary. To check that a given AR(p) model is stationary we consider the

characteristic equation
1 − α1z − α2z2 − · · · − αpzp = 0.

• The characteristic equation can be written with the polynomial α from previous slide, but with z
inserted instead of B, i.e.

α(z) = 0.

• The process is stationary if and only if all roots of the characteristic equation have an absolute value
that is greater than 1.

• Solving a p-order polynomial is hard for high values of p, so we will let R do this for us.

5.3 Estimation of AR(p) models
• For an AR(p) model there are typically two things we need to estimate:

1. The maximal non-zero lag p in the model.
2. The autoregressive coefficients/parameters α1, . . . , αp.

• To select p we can use AIC (Akaike’s Information Criterion).
– More complex models can always fit a dataset better
– AIC is essentially a balance between model simplicity and good fit.
– The AIC results in a single real number, where smaller is better.
– The ar function in R uses AIC to automatically select the value for p by calculating the AIC for all

models with p between 1 and some chosen maximal value, and picking the one with the smallest
AIC.

• Once the order p is chosen, the estimates α̂1, . . . , α̂p can be computed by the ar function.
– The corresponding standard errors can be found as the square root of the diagonal of the matrix

stored as asy.var.coef in the fitted model object.

5.4 Example of AR(p) model for electricity data
• We try to fit an AR(p) model to the detrended data for the log of the electricity production in Australia:

15



Electricity production

Time

R
an

do
m

 te
rm

5 10 15 20 25 30

−
0.

06
−

0.
02

0.
02

0.
06

fit <- ar(random, order.max = 5,method="mle")
fit

##
## Call:
## ar(x = random, order.max = 5, method = "mle")
##
## Coefficients:
## 1 2 3 4 5
## 0.2047 0.0714 -0.0280 -0.1975 -0.2440
##
## Order selected 5 sigma^2 estimated as 0.0003103

resid <- na.omit(fit$resid)
par(mfrow = c(2,1), mar = c(4,4,1,1))
plot(resid)
acf(resid, lag.max = 30)
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• There are too many significant autocorrelations. Suggests the model is not a good fit.

• We are not assured that the estimated model will be stationary. To check stationarity we solve α(z) = 0:
abs(polyroot(c(1,-fit$ar)))

## [1] 1.148425 1.415987 1.415987 1.148425 1.549525

• All absolute values of the roots are greater than 1, indicating stationarity.

6 Moving average models (MA(q)-models)

6.1 The moving average model
• A moving average process of order q, MA(q), is defined by

Xt = Wt + β1Wt−1 + β2Wt−2 + · · · + βqWt−q

where Wt is a white noise process with mean 0 and variance σ2
w and β1, β2, . . . , βq are parameters to be

estimated.

• The moving average process can also be written using the backshift operator:

Xt = β(B)Wt

where the polynomial β(B) is given by

β(B) = 1 + β1B + β2B2 + · · · + βqBq.

17



• Since a moving average process is a finite sum of stationary white noise terms it is itself stationary with
mean and variance:

– Mean µ(t) = 0.
– Variance σ2(t) = σ2

w(1 + β2
1 + β2

2 + · · · + β2
q ).

• The autocorrelation function is

ρ(k) =


1 k = 0∑q−k

i=0 βiβi+k/
∑q

i=0 β2
i k = 1, 2, . . . , q

0 k > q

where β0 = 1.

6.2 Simulation of MA(q) processes
• An MA(q) process can be simulated by first generating a white noise process Wt and then transforming

it using the MA coefficients.

• To simulate a model with β1 = −0.7, β2 = 0.5, and β3 = −0.2 we can use arima.sim:

Time

xs
im

0 50 100 150 200

−
2

0
2

4

• The theoretical autocorrelations are in this case:

ρ(1) = 1 · (−0.7) + (−0.7) · 0.5 + 0.5 · (−0.2)
1 + (−0.7)2 + 0.52 + (−0.2)2 = −0.65

ρ(2) = 1 · 0.5 + (−0.7) · (−0.2)
1 + (−0.7)2 + 0.52 + (−0.2)2 = 0.36

ρ(3) = 1 · (−0.2)
1 + (−0.7)2 + 0.52 + (−0.2)2 = −0.11

and ρ(k) = 0 for k > 3.

• We plot the acf of the simulated series together with the theoretical one.
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acf(xsim,ylim=c(-1,1))
points(0:25, c(1,-.65, .36, -.11, rep(0,22)), col = "red")
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6.3 Estimation of MA(q) models
• To estimate the parameters of an MA(3) model we use arima:

xfit <- arima(xsim, order = c(0,0,3))
xfit

##
## Call:
## arima(x = xsim, order = c(0, 0, 3))
##
## Coefficients:
## ma1 ma2 ma3 intercept
## -0.6653 0.5569 -0.2513 0.0356
## s.e. 0.0688 0.0668 0.0703 0.0434
##
## sigma^2 estimated as 0.9133: log likelihood = -275.09, aic = 560.18

• The function arima does not include automatic selection of the order of the model so this has to be
chosen beforehand or selected by comparing several proposed models and choosing the model with the
minimal AIC.

AIC(xfit)

## [1] 560.1832
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7 Auto-regressive moving average models (ARMA)

7.1 Mixed models: Auto-regressive moving average models
• A time series Xt follows an auto-regressive moving average (ARMA) process of order (p, q), denoted

ARMA(p, q), if

Xt = α1Xt−1 + α2Xt−2 + · · · + αpXt−p + Wt + β1Wt−1 + β2Wt−2 + · · · + βqWt−q

where Wt is a white noise process and α1, α2, . . . , αp, β1, β2, . . . , βq are parameters to be estimated.

• We can simulate an ARMA model with arima.sim. E.g. an ARMA(1,1) model with α1 = −0.6 and
β1 = 0.5:

xarma <- arima.sim(model = list(ar = -0.6, ma = 0.5), n = 200)
plot(xarma)
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• Estimation is done with arima as before.

7.2 Example with exchange rate data
For the exchange rate data we may e.g. suggest either a AR(1), MA(1) or ARMA(1,1) model. We can
compare fitted models using AIC (smaller is better):
exchange_ar <- arima(exchange, order = c(1,0,0))
AIC(exchange_ar)

## [1] -37.40417

exchange_ma <- arima(exchange, order = c(0,0,1))
AIC(exchange_ma)

## [1] -3.526895
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exchange_arma <- arima(exchange, order = c(1,0,1))
AIC(exchange_arma)

## [1] -42.27357

exchange_arma

##
## Call:
## arima(x = exchange, order = c(1, 0, 1))
##
## Coefficients:
## ar1 ma1 intercept
## 0.8925 0.5319 2.9597
## s.e. 0.0759 0.2021 0.2435
##
## sigma^2 estimated as 0.01505: log likelihood = 25.14, aic = -42.27

par(mfrow = c(2,1), mar = c(4,4,1,1))
resid_arma <- na.omit(exchange_arma$residuals)
plot(resid_arma)
acf(resid_arma)
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