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0.1 Sources of variation
We shall study 2 types of variation

e measurement variation due to random errors on a measuring device
e component variation due to random errors in the production proces

0.2 Data from Peter Koch

Peter has done 100 independent measurements of the capacity of 4 of the displayed capacitors and one
additional. Nominal values are 47, 47, 100, 150, 150. All with stated tolerance of 1%.

load(url("https://asta.math.aau.dk/datasets?file=cap_lpct.RData"))
head(capDat, 4)

##  capacity nomval sample

## 1 45.69 47 s_1_nF47
# 2 45.71 47 s_1_nF47
## 3 45.69 47 s_1_nF47
## 4 45.71 47 s_1_nF47

Here we see the first 4 capacity measurements of the first capacitor with nominal value 47.

o Remark: The measured values are consistently below the nominal value minus the 1% tolerance:
47 — 0.47 = 46.53.



table(capDat$sample)

##
## s_1_nF47 s_2_nF47 s_3_nF100 s_4_nF150 s_5_nF150
#i 100 100 100 100 100

0.3 Transformation

Linearisation:
f(z) = f(x0) + f'(z0)(z — x0)
o — 1
f(z) = loga
flx)=1/z
x=m/n
log (%) ~log1+ % (% — 1)
_m-n
T oon
m m-—n
tog (1) ~ =
n <- 47

m <- seq(47-5%0.01%47, 47+5%0.01*47, length.out = 100)

plot(m, log(m/n), col = "red", type = "1")

lines(m, (m - n)/n, col = "blue", type = "1")

legend("topleft", legend = c("log(m/n)", "(m-n)/n"), 1ty = 1, col = c("red", "blue"))
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0.4 Transformation
m m-—n
e(2)
n n
Instead of the raw measurement we will consider:
InError = In(measuredValue/nominalValue)
Remark that by linear approximation:
InError ~ measuredValue/nominalValue - 1 = (measuredValue-nominalValue) /nominalValue

which is the error relative to the nominal value.

I.e.: 1nError can be interpreted as relative error.

0.5 Transformed data

capDat = within(capDat, lnError <- log(capacity/nomval))
head(capDat, 2)

##  capacity nomval sample InError
## 1 45.69 47 s_1_nF47 -0.02826815
## 2 45.71 47 s_1_nF47 -0.02783051

tail(capDat, 2)

## capacity nomval sample InError
## 499 145.7 150 s_5_nF150 -0.02908558
## 500 145.6 150 s_5_nF150 -0.02977216

o The resolution on Peters capacitance meter is with 2/1 decimal(s) in the 47/150 nF range, which means
that only a limited number of different values(3-8) are observed. Meaning that box- or histogram-plots

are noninformative.



0.6 Model considerations

o The measurements are more than 2.7% below the nominal value. This must be due to a systematic
error on the meter.

In this case we have as earlier mentioned two further sources of error:

o In(measuredValue / nominalValue) = systematicError + productionError + measurementError

0.7 Statistical model

In(measuredValue / nominalValue) = systematicError 4+ productionError + measurementError

We formulate the model:
o YVij=p+ Aty

where

Y;; is the log error measurement

w is the systematic error on the meter

e A, is the random production error

€;; is the random measurement error

e i=1,2,3,4,k = 5 is the number of the 5 samples

e j=1,...,n =100 is the number of the observation in each sample

0.8 Assumptions
This is the model treated in WMM chapter 13.11, where it is assumed that

e A; is normally distributed with mean 0 and variance o2, which represents the production error
e &;; is normally distributed with mean 0 and variance o2, which represents the measurement error

0.9 Estimation of systematic error

The systematic error is simply estimated by the mean

s A=y.
muhat <- mean(capDat$lnError)
muhat

## [1] -0.0288375

The meter systematically reports a value, which is estimated to be 2.88% too low.

0.10 Estimation of random error
Notation from WMM chapter 13.3:

o SSA=n3,(y. —y.)? (related to production error)
o SSE =3 ,(vij — 7:.)? (related to measurement error)

Theorem 13.4 states:
e E(SSA) = (k—1)o%+n(k—1)o2
e E(SSE)=k(n-— 1)02

0.11 Fit



fit <- lm(lnError ~ sample, data = capDat)
anova(fit)

## Analysis of Variance Table

##

## Response: lnError

#Hit Df Sum Sq Mean Sq F value Pr(>F)

## sample 4 0.0046576 0.00116440 4067.4 < 2.2e-16 ***

## Residuals 495 0.0001417 0.00000029

## ——

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

where we read

SS <- anova(fit)$ Sum Sq-
SSA <- SS[1]
SSE <- Ss[2]

e SSA = 0.00466 and SSE = 0.000142

0.12 Solution
Solving the equations

e SSA = E(SSA) and SSE = E(SSE)

yields
e 62 =21(54 _52) =11.64 x 10°°
~2 _ _SSE __ —6
e 67 = ;238 = 0.29 % 10

0.13 Summing up

o the meter has an estimated systematic error of —2.88%

o the estimated standard error of the meter is v/0.29 x 10-6 = 0.054%

o the estimated standard error of the production is v/11.64 x 10-% = 0.34%. So the 3-sigma limit is
1.02%, which is in accordance with the tolerance of 1%. It should be noted that the estimate is insecure,
as it is based on 4 degrees of freedom only.

The estimated variance on log error
e 029 x107%+11.64 x 107 =11.93 x 1076

is clearly dominated by the production error.

0.14 Test of no random effect
We have the possibility of testing the hypothesis
e Hy: 0,=0
This is equivalent to
e E(SSA/(k—1))=E(SSE/k/(n—1)) =02
Under Hj the statistic

o I'= <53
E(n—1)




has an F-distribution with degrees of freedom (k — 1, k(n — 1))
In the actual case fops = 4067.4, which is highly significant (p-value=0).

0.15 Lognormal variation
In the preceeding we assumed normal errors after a log transformation.
Let X be a random variable and Y = In(X).

We say that X has a lognormal distribution if Y has a normal distribution with - say - mean u and standard
deviation o.

Density plots:

— (Ko)=(0,1)
- = (|.1,0) = (1! 1)

density
0.4 0.5

0.3

0.2

0.1

0.16 Moments of lognormal

If Y = In(X) has a normal distribution with mean p and standard deviation o, then Theorem 6.7 of WMM
states:

e B(X)=exp(p+0?/2)

o Var(X) = exp(2u + o?)(exp(a?) — 1)
If we are interested in relative variation, it is common to look at the coefficient of variation
if e.g. CV=0.05 then 95% of our measurements are within

o pt20=p+2%0.050=p(l+0.1)

i.e. most observations are within 10% of the mean.



0.17 CV of Lognormal

If Y = In(X) has a normal distribution with mean u and standard deviation o, we calculate CV for X as
. - _EX) \/—2_
CV(X) Ty exp(o?) —1

In Peter’s data we estimated the variance of the log error to 11.64 x 1075, which means that the estimated
CV of the capacity measurement is

e CV = /exp (11.64 x 10-6) — 1 = 0.34%.

i.e., if we correct for the systematic error of the meter, then our measurements are extremely precise.

0.18 Linear calibration

In our previous analysis, we assumed, that the systematic error on the meter did not depend on nominal
value.

To check this assumption consider the model

o Y = In(measuredValue) is a linear model of z = In(nominalValue)
e Y=a+fzx+¢

where we have previously assumed slope(3) equal to 1.

0.19 Linear calibration fit

fit <- 1m(log(capacity) ~ log(nomval), data = capDat)
summary (fit)

##

## Call:

## lm(formula = log(capacity) ~ log(nomval), data = capDat)
##

## Residuals:

## Min 1Q Median 3Q Max
## -0.0064121 -0.0010784 0.0007315 0.0013879 0.0050839
##

## Coefficients:

#it Estimate Std. Error t value Pr(>|t])

## (Intercept) -0.0300145 0.0011907 -25.21 <2e-16 **x*
## log(nomval) 1.0002636 0.0002648 3776.74 <2e-16 **x*

## ——

## Signif. codes: O 'xxx' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 0.003101 on 498 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1

## F-statistic: 1.426e+07 on 1 and 498 DF, p-value: < 2.2e-16

The slope is more than close to 1. But is actually extremely significantly different from 1 (tvalue=3776.74 »»
3).

Clearly, it is a bit dubious to assume a linear relationship, as we only have 3 nominal values.

0.20 Calibrated values

If we stick to the linear calibration model, it is sensible to correct our measured errors according to the
calibration of the meter:



measuredError = a 4 § * correctError

correctError = (measuredError — «) /8

ab
ab

coef (fit)

## (Intercept) log(nomval)
## -0.03001454 1.00026359

capDat$lnError_c = (capDat$lnError - ab[1])/abl[2]

0.21 Calibrated data

head (capDat)

##  capacity nomval sample InError InError_c
## 1 45.69 47 s_1_nF47 -0.02826815 0.001745930
## 2 45.71 47 s_1_nF47 -0.02783051 0.002183452
## 3 45.69 47 s_1_nF47 -0.02826815 0.001745930
## 4 45.71 47 s_1_nF47 -0.02783051 0.002183452
## 5 45.70 47 s_1_nF47 -0.02804930 0.001964715
## 6 45.69 47 s_1_nF47 -0.02826815 0.001745930

The calibrated data now shows that the production error on component s_ 1 nF47 is in the vicinity of 0.2%.
Well below the tolerance 1%.




0.22 Checking for log normality
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Picture of a “lot” of capacitors.
The word lot is used to identify several components produced in a single run.

Where a run is a production series limited to a given timeinterval and fixed production parameters.

0.23 Lot variation
Peter Koch has tested 269 of the capacitors in the displayed lot.

First of all, we will check the assumption that our measurements have a log normal error.

Cap220=read.csv(url("https://asta.math.aau.dk/datasets?file=capacitor_lot_220_nF.txt"))[,1]
1n_Error=log(Cap220/220)

qgnorm(ln_Error,ylab="1n_Error")

qqline(ln_Error,lwd=2,col="red")

10
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0.24 Testing normality

The qq-plot(WMM - section 8.8) supports normality of the In_ Error.
There are several tests of normality.

Two of these are considered in WMM section 10.11:

e Gearys test
e goodness of fit

0.25 GGearys test

Consider a sample Xi,..., X, and an estimate of o - the standard deviation of the population:

C So= IS0 X2

Sy is always a good estimator of the population standard deviation o - no matter the form of the population
distribution.

Next consider

« S1=F X Xi-X|/n
This is a good estimator of o, if the population is normal. But otherwise, it will under- or overestimate o
depending on the form of the population distribution.

0.26 Gearys test

Hence we expect that

o U= % should be close to one in case of normality.

For large values of n a normal approximation yields that

o Z = % has a standard normal distribution if the sample is normal

that is, if —2 < 24, < 2, we do not reject normality, if we test on level 5%.

mln_E=mean(ln_Error)
sl=sqrt(mean((ln_Error-mln_E) 2))

sO=sqrt (pi/2)*mean(abs(1ln_Error-mln_E))
u=s1/s0
z_obs=sqrt(length(ln_Error))*(u-1)/0.2261
z_obs

11



## [1] -1.628122

Hence there is no evidence of non-normality.

0.27 Goodness of fit
Is a general method for investigating whether a sample has a specific distribution.
The first example in WMM is concerned with the problem of whether a dice is balanced.
That is, all sides have probability 1/6 of showing up.
Rolling the dice 120 times we expect
o ExpectedFrequency: (20, 20, 20, 20, 20, 20)
Actually we observe
o ObservedFrequency: (20, 22, 17, 18, 19, 24)

Distance measure between observed and expected:

X2=y (ObservedFrequencies - ExpectedFrequencies)”
* B ExpectedFrequencies

If the dice is balanced then
e X2 has a so-called chi-square distribution (WMM chapter 6.7) with df=k-1=5, degrees of freedom

where k=6 is the number of possible outcomes.

0.28 Goodness of fit
For the actual data:

o 22, = 1.7 and we need to judge whether this is higher than expected. If the null hypothesis is true.
critical_value <- qdist('"chisq", .95, df = 5)

probability

20

critical_value

## [1] 11.0705

At 5% significance the critical value is 11.07, so there is no evidence of unbalancedness.

0.29 Goodness of fit - normal distribution

We assume that In_ Error is a sample from a normal distribution and divide the population distribution into
10 bins with equal probabilities p=10%.

The number of bins could be changed. It is required that the expected frequency should be at least 5.

12



m <- mean(ln_Error)
s <- sd(1n_Error)
breaks <- gnorm((0:10)/10, m, s)

Histogram and population curve
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Area in each bin of the red population curve is 0.1 and as sample size is 269 we obtain

o Expected_ frequency is 26.9 in each bin

0.30 Goodness of fit - normal distribution

Observed frequecies:

observed <- table(cut(ln_Error, breaks))
names (observed) <- paste("bin", 1:10, sep = "")
observed

## binl bin2 bin3 bin4 bind5 bin6 bin7 bin8 bin9 binl0
## 25 37 25 19 28 30 21 25 25 34

X2 statistic:

chisq_obs <- sum((observed-26.9)°2)/26.9
chisq_obs

## [1] 10.21933

The degrees of freedom is the number of bins minus 3 (number of parameters + 1), i.e. df = 10-3 = 7.
0.31 Goodness of fit - normal distribution

chisq_obs

## [1] 10.21933
critical_value <- qdist('"chisq", .95, df = 7)

13



probability

0 10 20 30

critical_value

## [1] 14.06714

p_value <- 1 - pchisq(chisq_obs, 7)
p_value

## [1] 0.1764812

We do not reject normality at level 5%.

0.32 Other tests of normality
As mentioned, there are multiple tests of normality.
We introduce one other test: Shapiro-Wilks. It is standard in R.

We do not treat the details, but the test statistic is somewhat like a correlation for the qqg-plot. If the
“correlation is far from 1”7, we reject normality.

shapiro.test(ln_Error)

#it

## Shapiro-Wilk normality test
#t

## data: 1n_Error

## W = 0.99255, p-value = 0.1971

With p-value=19.71%, we do not reject normality, if we test on level 5%.

0.33 Sources of variation
In lecture 1 we discussed

¢ systematic measurement error
e random measurement variation
e production variation

Generally it is relevant to decompose the production variation in 2 components:

e variation within lot, i.e. the variation around the lot mean
e variation between lots, i.e. the variation of the lot means.

0.34 Sources of variation
As we have one lot only, we cannot identify the variation between lots.
Our actual data are thus composed of

o systematic measurement error - call it p,,

14



e systematic lot error - call it yy
o standard deviation of measurement - call it o,
¢ standard deviation within lot - call it o

0.35 Linear calibration
In lecture 1 we developed a linear calibration eliminating the systematic measurement error.

Adopting this to the actual data yields

load("ab.RData")
1n_Error_corrected <- (1ln_Error-ab[1])/ab[2]
hist(ln_Error_corrected, breaks = "FD", col = "wheat")

Histogram of In_Error_corrected
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0.36 Sources of variation
We are now left with a sample, which has
 mean gy and variance o2, + o7
where we have assumed that the random measurement error and the random lot error are independent.

Estimate of p;

myl <- mean(ln_Error_corrected)
myl

## [1] -0.02686793

That is, the systematic lot error is around -2.7%.

0.37 Estimate of variances

Estimate of 02, + o7

var (1ln_Error_corrected)
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## [1] 0.0003892828

that is s2, + s7 = 3.9e-04

In lecture 1 we estimated s2, = 0.29e-06 and hence
o 51 = sqrt(3.9e-04) = 2.0%.

3 sigma limits for the correct lot values:
o -2,7 + 3%2.0 = [-8.7; 3.3]%

clearly respecting the 10% tolerance.

0.38 Mixture of lots

Peter has also tested 311 capacitors with nominal value 470 nF

cap470 <- read.table(url("https://asta.math.aau.dk/datasets?file=capacitor_lot_470_nF2.txt"))[, 1]
hist(cap470, breaks = 15, col = "greenyellow")

Histogram of cap470
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Consulting Peter, it turned out, that his box of capacitors contained components from 2 different lots.

0.39 Transforming

We In-transform and calibrate:

1n_Error <- log(cap470/470)
1n_Error_corrected <- (1ln_Error-ab[1])/ab[2]
hist(ln_Error_corrected, breaks = 15, col = "gold")
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Histogram of In_Error_corrected
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range (1n_Error_corrected)

## [1] -0.08888934 0.08323081

0.40 Mixture model

We assume that the In_ Error

e is normal with mean pu; if the component is from lot 1
e is normal with mean ps if the component is from lot 2
o both distributions have variance 0% = 02, + o7

¢ the probability of coming from lot 1 is p

So we have 4 unknown parameters: (u1, o, o, p).

How to estimate these, we entrust to the R-package mclust.

0.41 Fitting a mixture

library(mclust)
fit <- Mclust(ln_Error_corrected, 2 , "E")# 2 clusters;
pr <- fit$parameters$pro[1]

pI‘
## [1] 0.728314

The chance of coming from lotl is around 73%.

means <- fit$parameters$mean
means

## 1 2
## -0.05174452 0.05406515

e The mean in lot 1 is around -5.2%
e The mean in lot 2 is around 5.4%

17
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sigma <- sqrt(fit$parameters$variance$sigmasq)
sigma

## [1] 0.01692654

e ¢ is around 1.7%

0.42 Comparing model and data

hist(ln_Error_corrected,breaks=15,col="lightcyan",probability = TRUE,ylim=c(0,18) ,main="Histogram and p
curve (pr*dnorm(x,means[1],sigma)+(1-pr)*dnorm(x,means[2],sigma),-.1,.1,add=TRUE,1lwd=2)

Histogram and population curve
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0.43 Concluding remarks
Estimate of o was 1.7%. In relation to the 220 nF lot we estimated 2.0%, which is comparable.

o 3 sigma limits for the correct lot 1 values: -5.2 + 3*1.7=[-10.3;-0.1]%
o 3 sigma limits for the correct lot 2 values: 5.4 + 3*1.7=[0.3;10.5]%

do not completely respect the tolerance 10%. However, in the sample the minimum is -8.9% and the maximum
8.3%.

o The difference in lot means is 5.4-(-5,2)=10.6%.
This indicates that the variation between lots is much greater than the variation within lots.

Which is also clearly illustrated by the histogram/density plots.
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