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0.1 Checking for log normality

Picture of a “lot” of capacitors.

The word lot is used to identify several components produced in a single run.

Where a run is a production series limited to a given timeinterval and fixed production parameters.

0.2 Lot variation
Peter Koch has tested 269 of the capacitors in the displayed lot.

First of all, we will check the assumption that our measurements have a log normal error.
Cap220=read.csv(url("https://asta.math.aau.dk/datasets?file=capacitor_lot_220_nF.txt"))[,1]
ln_Error=log(Cap220/220)
qqnorm(ln_Error,ylab="ln_Error")
qqline(ln_Error,lwd=2,col="red")
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0.3 Testing normality
The qq-plot(WMM - section 8.8) supports normality of the ln_Error.

There are several tests of normality.

Two of these are considered in WMM section 10.11:

• Gearys test
• goodness of fit

0.4 Gearys test
Consider a sample X1, . . . , Xn and an estimate of σ - the standard deviation of the population:

• S0 =
√

1
n

∑
i(Xi − X̄)2

S0 is always a good estimator of the population standard deviation σ - no matter the form of the population
distribution.

Next consider

• S1 =
√

π
2

∑
i |Xi − X̄|/n

This is a good estimator of σ, if the population is normal. But otherwise, it will under- or overestimate σ
depending on the form of the population distribution.

0.5 Gearys test
Hence we expect that

• U = S1
S0

should be close to one in case of normality.

For large values of n a normal approximation yields that

• Z =
√

n(U−1)
0.2661 has a standard normal distribution if the sample is normal

that is, if −2 ≤ zobs ≤ 2, we do not reject normality, if we test on level 5%.
mln_E=mean(ln_Error)
s1=sqrt(mean((ln_Error-mln_E)ˆ2))
s0=sqrt(pi/2)*mean(abs(ln_Error-mln_E))
u=s1/s0
z_obs=sqrt(length(ln_Error))*(u-1)/0.2261
z_obs
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## [1] -1.628122

Hence there is no evidence of non-normality.

0.6 Goodness of fit
Is a general method for investigating whether a sample has a specific distribution.

The first example in WMM is concerned with the problem of whether a dice is balanced.

That is, all sides have probability 1/6 of showing up.

Rolling the dice 120 times we expect

• ExpectedFrequency: (20, 20, 20, 20, 20, 20)

Actually we observe

• ObservedFrequency: (20, 22, 17, 18, 19, 24)

Distance measure between observed and expected:

• X2 =
∑ (ObservedFrequencies - ExpectedFrequencies)2

ExpectedFrequencies
If the dice is balanced then

• X2 has a so-called chi-square distribution (WMM chapter 6.7) with df=k-1=5, degrees of freedom

where k=6 is the number of possible outcomes.

0.7 Goodness of fit
For the actual data:

• x2
obs = 1.7 and we need to judge whether this is higher than expected. If the null hypothesis is true.

critical_value <- qdist("chisq", .95, df = 5)
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## [1] 11.0705

At 5% significance the critical value is 11.07, so there is no evidence of unbalancedness.

0.8 Goodness of fit - normal distribution
We assume that ln_Error is a sample from a normal distribution and divide the population distribution into
10 bins with equal probabilities p=10%.

The number of bins could be changed. It is required that the expected frequency should be at least 5.
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m <- mean(ln_Error)
s <- sd(ln_Error)
breaks <- qnorm((0:10)/10, m, s)

Histogram and population curve
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Area in each bin of the red population curve is 0.1 and as sample size is 269 we obtain

• Expected_frequency is 26.9 in each bin

0.9 Goodness of fit - normal distribution
Observed frequecies:
observed <- table(cut(ln_Error, breaks))
names(observed) <- paste("bin", 1:10, sep = "")
observed

## bin1 bin2 bin3 bin4 bin5 bin6 bin7 bin8 bin9 bin10
## 25 37 25 19 28 30 21 25 25 34

X2 statistic:
chisq_obs <- sum((observed-26.9)ˆ2)/26.9
chisq_obs

## [1] 10.21933

The degrees of freedom is the number of bins minus 3 (number of parameters + 1), i.e. df = 10-3 = 7.

0.10 Goodness of fit - normal distribution

chisq_obs

## [1] 10.21933

critical_value <- qdist("chisq", .95, df = 7)
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## [1] 14.06714

p_value <- 1 - pchisq(chisq_obs, 7)
p_value

## [1] 0.1764812

We do not reject normality at level 5%.

0.11 Other tests of normality
As mentioned, there are multiple tests of normality.

We introduce one other test: Shapiro-Wilks. It is standard in R.

We do not treat the details, but the test statistic is somewhat like a correlation for the qq-plot. If the
“correlation is far from 1”, we reject normality.
shapiro.test(ln_Error)

##
## Shapiro-Wilk normality test
##
## data: ln_Error
## W = 0.99255, p-value = 0.1971

With p-value=19.71%, we do not reject normality, if we test on level 5%.

0.12 Sources of variation
In lecture 1 we discussed

• systematic measurement error
• random measurement variation
• production variation

Generally it is relevant to decompose the production variation in 2 components:

• variation within lot, i.e. the variation around the lot mean
• variation between lots, i.e. the variation of the lot means.

0.13 Sources of variation
As we have one lot only, we cannot identify the variation between lots.

Our actual data are thus composed of

• systematic measurement error - call it µm

6



• systematic lot error - call it µl

• standard deviation of measurement - call it σm

• standard deviation within lot - call it σl

0.14 Linear calibration
In lecture 1 we developed a linear calibration eliminating the systematic measurement error.

Adopting this to the actual data yields
load("ab.RData")
ln_Error_corrected <- (ln_Error-ab[1])/ab[2]
hist(ln_Error_corrected, breaks = "FD", col = "wheat")

Histogram of ln_Error_corrected
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0.15 Sources of variation
We are now left with a sample, which has

• mean µl and variance σ2
m + σ2

l

where we have assumed that the random measurement error and the random lot error are independent.

Estimate of µl

myl <- mean(ln_Error_corrected)
myl

## [1] -0.02686793

That is, the systematic lot error is around -2.7%.

0.16 Estimate of variances
Estimate of σ2

m + σ2
l

var(ln_Error_corrected)
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## [1] 0.0003892828

that is s2
m + s2

l = 3.9e-04

In lecture 1 we estimated s2
m = 0.29e-06 and hence

• sl = sqrt(3.9e-04) = 2.0%.

3 sigma limits for the correct lot values:

• -2,7 ± 3*2.0 = [-8.7; 3.3]%

clearly respecting the 10% tolerance.

0.17 Mixture of lots
Peter has also tested 311 capacitors with nominal value 470 nF
cap470 <- read.table(url("https://asta.math.aau.dk/datasets?file=capacitor_lot_470_nF2.txt"))[, 1]
hist(cap470, breaks = 15, col = "greenyellow")

Histogram of cap470
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Consulting Peter, it turned out, that his box of capacitors contained components from 2 different lots.

0.18 Transforming
We ln-transform and calibrate:
ln_Error <- log(cap470/470)
ln_Error_corrected <- (ln_Error-ab[1])/ab[2]
hist(ln_Error_corrected, breaks = 15, col = "gold")
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Histogram of ln_Error_corrected
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range(ln_Error_corrected)

## [1] -0.08888934 0.08323081

0.19 Mixture model
We assume that the ln_Error

• is normal with mean µ1 if the component is from lot 1
• is normal with mean µ2 if the component is from lot 2
• both distributions have variance σ2 = σ2

m + σ2
l

• the probability of coming from lot 1 is p

So we have 4 unknown parameters: (µ1, µ2, σ, p).

How to estimate these, we entrust to the R-package mclust.

0.20 Fitting a mixture

library(mclust)
fit <- Mclust(ln_Error_corrected, 2 , "E")# 2 clusters; "E"qual variances
pr <- fit$parameters$pro[1]
pr

## [1] 0.728314

The chance of coming from lot1 is around 73%.
means <- fit$parameters$mean
means

## 1 2
## -0.05174452 0.05406515

• The mean in lot 1 is around -5.2%
• The mean in lot 2 is around 5.4%
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sigma <- sqrt(fit$parameters$variance$sigmasq)
sigma

## [1] 0.01692654

• σ is around 1.7%

0.21 Comparing model and data

hist(ln_Error_corrected,breaks=15,col="lightcyan",probability = TRUE,ylim=c(0,18),main="Histogram and population curve")
curve(pr*dnorm(x,means[1],sigma)+(1-pr)*dnorm(x,means[2],sigma),-.1,.1,add=TRUE,lwd=2)

Histogram and population curve

ln_Error_corrected

D
en

si
ty

−0.05 0.00 0.05

0
5

10
15

0.22 Concluding remarks
Estimate of σ was 1.7%. In relation to the 220 nF lot we estimated 2.0%, which is comparable.

• 3 sigma limits for the correct lot 1 values: -5.2 ± 3*1.7=[-10.3;-0.1]%
• 3 sigma limits for the correct lot 2 values: 5.4 ± 3*1.7=[0.3;10.5]%

do not completely respect the tolerance 10%. However, in the sample the minimum is -8.9% and the maximum
8.3%.

• The difference in lot means is 5.4-(-5,2)=10.6%.

This indicates that the variation between lots is much greater than the variation within lots.

Which is also clearly illustrated by the histogram/density plots.
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