Multiple linear regression

The ASTA team

Contents

1 Example from last lecture 2
1.1 Crime data set 2
1.2 Multiple regression model for crime data 2
2 The general model 3
2.1 Regression model 3
2.2 Interpretation of parameters 3
3 Estimation 3
3.1 Estimation of model parameters 3
3.2 Estimation of error variance 4
4 Multiple R-squared 4
4.1 Multiple R^{2} 4
4.2 Example 4
4.3 Example 5
4.4 F-test for comparing two models 5
5 Overall F-test for effect of predictors 6
5.1 F-test 6
5.2 Example 6
6 Interaction model 8
6.1 Interaction between effects of predictors 8
6.2 Example - interaction model 8
7 Multiple linear regression with categorical predictors 9
7.1 Dummy variables 9
7.2 Example 9
7.3 Example 9
7.4 Example 10
7.5 Example: Prediction equations 11
7.6 Interaction model 12
7.7 Example: Prediction equations 12
7.8 Example: Individual tests 13
7.9 Hierarchy of models 14
7.10 F-test 15

1 Example from last lecture

1.1 Crime data set

- The data are measurements from the 67 counties of Florida.
- Our focus is on
- The response y : Crime which is the crime rate
- The predictor x_{1} : Education which is proportion of the population with high school exam
- The predictor x_{2} : Urbanisation which is proportion of the population living in urban areas

FL <- read.delim("https://asta.math.aau.dk/datasets?file=fl-crime.txt")
head (FL, $\mathrm{n}=3$)

\#\#	Crime	Education	Urbanisation
\#\# 1	104	82.7	73.2
\#\# 2	20	64.1	21.5
\#\# 3	64	74.7	85.0

1.2 Multiple regression model for crime data

- Both Education $\left(x_{1}\right)$ and Urbanisation $\left(x_{2}\right)$ were correlated with Crime (y).
- We consider the model

$$
Y=\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon
$$

- The errors ϵ are random terms with a norm $(0, \sigma)$ distribution.
- The graph for the mean response is a 2-dimensional plane in a 3-dimensional space.

```
model <- lm(Crime ~ Education + Urbanisation, data = FL)
summary(model)
##
## Call:
## lm(formula = Crime ~ Education + Urbanisation, data = FL)
##
## Residuals:
## Min 1Q Median 3Q Max
## -34.693 -15.742 -6.226 15.812 50.678
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 59.1181 28.3653 2.084 0.0411 *
## Education -0.5834 0.4725 -1.235 0.2214
## Urbanisation 0.6825 0.1232 5.539 6.11e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.82 on 64 degrees of freedom
## Multiple R-squared: 0.4714, Adjusted R-squared: 0.4549
## F-statistic: 28.54 on 2 and 64 DF, p-value: 1.379e-09
```

- From the output we find the prediction equation

$$
\widehat{y}=59-0.58 x_{1}+0.68 x_{2} .
$$

2 The general model

2.1 Regression model

- In a multiple regression we have
- a response variable Y.
- k predictor variables $x_{1}, x_{2}, \ldots, x_{k}$.
- Multiple regression model:

$$
Y=\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}+\epsilon
$$

- The systematic part of the model says that the mean response is a linear function of the predictors:

$$
E\left(Y \mid x_{1}, x_{2}, \ldots, x_{k}\right)=\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}
$$

- Here $E\left(Y \mid x_{1}, x_{2}, \ldots, x_{k}\right)$ is used to denote the mean value of the response when we know the value of the predictors x_{1}, \ldots, x_{k}.
- The error ϵ is a random variable having a distribution with
- a normal distribution
- mean 0
- standard deviation σ

2.2 Interpretation of parameters

- In the multiple linear regression model

$$
E\left(y \mid x_{1}, x_{2}, \ldots, x_{k}\right)=\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}
$$

- The parameter α is the Intercept, corresponding to the mean response, when all predictors are equal to zero.
- The parameters $\left(\beta_{1}, \beta_{2}, \cdots, \beta_{k}\right)$ are called partial regression coefficients.
- Imagine that all predictors but x_{1} are held fixed. Then

$$
E\left(y \mid x_{1}, x_{2}, \ldots, x_{k}\right)=\tilde{\alpha}+\beta_{1} x_{1}
$$

where

$$
\tilde{\alpha}=\alpha+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}
$$

- So the mean response depends linearly on x_{1} when all other variables are kept fixed.
- The line has slope β_{1}, which describes the change in the mean response, when x_{1} is changed one unit.
- The rate of change β_{1} does not depend on the value of the remaining predictors. In this case we say that there is no interaction between the effects of the predictors on the response.
- The above holds similarly for the other partial regression coefficients.

3 Estimation

3.1 Estimation of model parameters

- Suppose we have a sample of size n.
- Based on the sample, we estimate $\left(\alpha, \beta_{1}, \beta_{2}, \ldots, \beta_{k}\right)$ by the values $\left(a, b_{1}, b_{2}, \ldots, b_{k}\right)$.
- Based on this estimate we obtain the prediction equation (or regression equation) as

$$
\widehat{y}=a+b_{1} x_{1}+b_{2} x_{2}+\cdots+b_{k} x_{k}
$$

- The difference between our observations and the predictions made by the prediction equation are called the residuals $e_{i}=y_{i}-\widehat{y_{i}}$.
- The estimates $\left(a, b_{1}, b_{2}, \ldots, b_{k}\right)$ are chosen by the least squares method, which seeks to minimize the sum of squared residuals

$$
\sum_{i=1}^{n}\left(y_{i}-\widehat{y}_{i}\right)^{2}
$$

3.2 Estimation of error variance

- Recall that σ^{2} is the variance of the error terms in the model. Using the residuals as approximations of the errors in our sample, we estimate σ^{2} by

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(y_{i}-\widehat{y}_{i}\right)^{2}}{n-k-1}
$$

- Rather than n we divide by the degrees of freedom $d f=n-k-1$. Theory shows, that this is reasonable.
- The degrees of freedom $d f$ are determined by the sample size n minus the number of parameters in the regression equation.
- Currently we have $k+1$ parameters: 1 intercept and k slopes.

4 Multiple R-squared

4.1 Multiple R^{2}

- We can compare two models to predict the response y.
- Model 1: We do not use the predictors, and use \bar{y} to predict any y-measurement. The corresponding sum of squared prediction errors is
-TSS = $\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$ and is called the Total Sum of Squares.
- Model 2: We use the multiple prediction equation with predictors x_{1}, \ldots, x_{k} to predict y. The sum of squared prediction errors is now
- SSE $=\sum_{i=1}^{n}\left(y_{i}-\widehat{y}_{i}\right)^{2}$ and is called Sum of Squared Errors.
- We then define the multiple coefficient of determination

$$
R^{2}=\frac{T S S-S S E}{T S S} .
$$

- Thus, R^{2} is the relative reduction in squared prediction errors, when we use $x_{1}, x_{2}, \ldots, x_{k}$ as explanatory variables.
- We say that R^{2} is the proportion of the total variation in the data that can be explained by x_{1}, \ldots, x_{k}.
- Properties:
$-0 \leq R^{2} \leq 1$
$-R^{2}=0$ means $T S S=S S E$, so the model does not improve when we include x_{1}, \ldots, x_{k} in the model.
- $R^{2}=1$ means $S S E=0$, so the observations are predicted perfectly by x_{1}, \ldots, x_{k}.

4.2 Example

```
summary(model)
##
## Call:
## lm(formula = Crime ~ Education + Urbanisation, data = FL)
##
## Residuals:
## Min 1Q Median 3Q Max
## -34.693 -15.742 -6.226 15.812 50.678
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 59.1181 28.3653 2.084 0.0411 *
## Education -0.5834 0.4725 -1.235 0.2214
```

```
## Urbanisation 0.6825 0.1232 5.539 6.11e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.82 on 64 degrees of freedom
## Multiple R-squared: 0.4714, Adjusted R-squared: 0.4549
## F-statistic: 28.54 on 2 and 64 DF, p-value: 1.379e-09
```

- The prediction equation is $\widehat{y}=59-0.58 x_{1}+0.68 x_{2}$
- The estimate for σ is $s=20.82$ (Residual standard error in \mathbf{R}) with $d f=67-3=64$ degrees of freedom.
- Multiple $R^{2}=0.4714$, i.e. 47% of the variation in the response is explained by including the predictors in the model.
- The output provides a test of the hypothesis $H_{0}: \beta_{1}=0$ corresponding to no effect of the predictor x_{1}.
- The estimate $b_{1}=-0.5834$ has standard error (Std. Error) se $=0.4725$ with corresponding observed t-value (t value) $t_{\text {obs }}=\frac{-0.5834}{0.4725}=-1.235$.
- This means that b_{1} isn't significantly different from zero, since the p-value $(\operatorname{Pr}(>|t|))$ is 22%. That means that we can exclude Education as a predictor.

4.3 Example

- Our final model is then a simple linear regression:

```
model2 <- lm(Crime ~ Urbanisation, data = FL)
summary(model2)
##
## Call:
## lm(formula = Crime ~ Urbanisation, data = FL)
##
## Residuals:
## Min 1Q Median 3Q Max
## -34.766 -16.541 -4.741 16.521 49.632
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 24.54125 4.53930 5.406 9.85e-07 ***
## Urbanisation 0.56220 0.07573 7.424 3.08e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.9 on 65 degrees of freedom
## Multiple R-squared: 0.4588, Adjusted R-squared: 0.4505
## F-statistic: 55.11 on 1 and 65 DF, p-value: 3.084e-10
```

- The coefficient of determination always decreases, when the model is simpler. Now we have $R^{2}=46 \%$, where before we had 47%. But the decrease is not significant as we will see next.

4.4 F-test for comparing two models

- We can compare two models, where one is obtained from the other by setting m parameters to zero, by an F-test.
- We can compare R^{2} for the two models via the following F-statistic:

$$
F_{o b s}=\frac{\left(R_{2}^{2}-R_{1}^{2}\right) /\left(\mathrm{df}_{1}-\mathrm{df}_{2}\right)}{\left(1-R_{2}^{2}\right) / \mathrm{df}_{2}}
$$

- R_{2}^{2} corresponds to the larger model and R_{1}^{2} corresponds to the smaller model.
- Large values of $F_{o b s}$ means that R_{2}^{2} is large compared to R_{1}^{2}, pointing towards the alternative hypothesis.
$-d f 1=m$ is the number of parameters set to zero in the null-hypothesis.
$-d f 2=n-k-1$ where n is sample size and $k+1$ is the number of unknown parameters in the larger model.
- In R the calculations are done using anova:

```
anova(model2, model)
## Analysis of Variance Table
##
## Model 1: Crime ~ Urbanisation
## Model 2: Crime ~ Education + Urbanisation
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 65 28391
## 2 64 27730 1 660.61 1.5247 0.2214
```


5 Overall F-test for effect of predictors

5.1 F-test

- We consider the hypothesis

$$
H_{0}: \beta_{1}=\beta_{2}=\ldots=\beta_{k}=0
$$

against the alternative that at least one β_{i} are non-zero.

- This is the hypothesis that there is no effect of any of the predictors.
- As test statistic we use

$$
F_{o b s}=\frac{(n-k-1) R^{2}}{k\left(1-R^{2}\right)}
$$

- Large values of R^{2} implies large values of $F_{o b s}$, which points to the alternative hypothesis.
- Thus, the p-value is the probability of observing something larger than the computed $F_{\text {obs }}$.
- The distribution of $F_{o b s}$ under the null-hypothesis is an F-distribution with degrees of freedom
$-d f_{1}=k$ (the number of parameters set to zero in the null-hypothesis).
$-d f_{2}=n-k-1$ (number of observations minus number of unknown parameters in the model).

5.2 Example

- We return to Crime and the prediction equation $\widehat{y}=59-0.58 x_{1}+0.68 x_{2}$, where $n=67$ and $R^{2}=0.4714$.
- We test the hypothesis $H_{0}: \beta_{1}=\beta_{2}=0$. We have
$-d f_{1}=k=2$ since 2 parameters are set to zero under H_{0}.
$-d f_{2}=n-k-1=67-2-1=64$.
- Then we can calculate $F_{o b s}=\frac{(n-k-1) R^{2}}{k\left(1-R^{2}\right)}=28.54$
- To evaluate the value 28.54 in the relevant F-distribution:

1 - pdist("f", 28.54, df1=2, df2=64)

- So p-value $=1.38 \times 10^{-9}$ (notice we don't multiply by 2 since this is a one-sided test; only large values point more towards the alternative than the null hypothesis).
- All this can be found in the summary output we already have:

```
summary(model)
##
## Call:
## lm(formula = Crime ~ Education + Urbanisation, data = FL)
##
## Residuals:
## Min 1Q Median 3Q Max
## -34.693 -15.742 -6.226 15.812 50.678
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 59.1181 28.3653 2.084 0.0411*
## Education -0.5834 0.4725 -1.235 0.2214
## Urbanisation 0.6825 0.1232 5.539 6.11e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.82 on 64 degrees of freedom
## Multiple R-squared: 0.4714, Adjusted R-squared: 0.4549
## F-statistic: 28.54 on 2 and 64 DF, p-value: 1.379e-09
```


6 Interaction model

6.1 Interaction between effects of predictors

- Could it be possible that a combination of Education and Urbanisation is good for prediction? We investigate this using the interaction model

$$
E\left(y \mid x_{1}, x_{2}\right)=\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2}
$$

where we have extended with a possible effect of the product $x_{1} x_{2}$.

- If we fix x_{2} in this model, the mean response is linear in x_{1} with intercept $\alpha+\beta_{2} x_{2}$ and slope $\beta_{1}+\beta_{3} x_{2}$, since

$$
E\left(y \mid x_{1}, x_{2}\right)=\left(\alpha+\beta_{2} x_{2}\right)+\left(\beta_{1}+\beta_{3} x_{2}\right) x_{1}
$$

- The slope for x_{1} now depends on the value of x_{2} !
- Interaction means that the effect of x_{1} on the response depends on the value of x_{2}.
- Interaction does not mean that x_{1} and x_{2} affect each other.

6.2 Example - interaction model

- We fit the model for the Crime data set:

```
model3 <- lm(Crime ~ Education * Urbanisation, data = FL)
summary(model3)
##
## Call:
## lm(formula = Crime ~ Education * Urbanisation, data = FL)
##
## Residuals:
## Min 1Q Median 3Q Max
## -35.181 -15.207 -6.457 14.559 49.889
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19.31754 49.95871 0.387 0.700
## Education 0.03396 0.79381 0.043 0.966
## Urbanisation 1.51431 0.86809 1.744 0.086 .
## Education:Urbanisation -0.01205 0.01245 -0.968 0.337
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.83 on 63 degrees of freedom
## Multiple R-squared: 0.4792, Adjusted R-squared: 0.4544
## F-statistic: 19.32 on 3 and 63 DF, p-value: 5.371e-09
```

- When we look at the p-values in the table nothing is significant at the 5% level!
- But the F-statistic tells us that the predictors collectively have a significant prediction ability.
- Why has the highly significant effect of x_{2} disappeared? Because the predictors x_{1} and $x_{1} x_{2}$ are able to explain the same as x_{2}.
- Previously we only had x_{1} as alternative explanation to x_{2} - and that wasn't enough.
- The phenomenon is called multicollinearity. It happens because the predictors are highly correlated.
- It also illustrates that we can have different models with equally good predictive properties.
- In the case of an interaction model we always choose the model without interaction because it is simpler.
- However, in general it can be difficult to choose between models. For example, if both height and weight are good predictors of some response, but one of them can be left out, which one do we choose?

7 Multiple linear regression with categorical predictors

7.1 Dummy variables

- Suppose we want to predict the response variable using a categorical predictor variable x with k categories.
- We choose one group, say group k, as the reference category.
- For the remaining groups $1, \ldots, k-1$, we define dummy variables

$$
z_{i}= \begin{cases}0, & \text { if } x \neq i \\ 1, & \text { if } x=i\end{cases}
$$

for $i=1, \ldots, k-1$.

- The dummy variable z_{i} is 1 if an observation is in group i and 0 otherwise.
- When all dummy variables $z_{i}=0, i=1, \ldots, k-1$, it means that the observation belongs to the reference group k.
- We can use the variables z_{1}, \ldots, z_{k-1} in a multiple regression along with other predictor variables.

7.2 Example

- Consider the dataset mtcars. We are interested in how engine type vs (categorical) and weight of the car wt (quantitative, x_{1}) are associated with fuel consumption mpg.
- The variable vs is already coded as a dummy variable z in R , taking the value 1 if the engine is v -shaped and 0 otherwise.
- The multiple regression model becomes

$$
E\left(Y \mid x_{1}, z\right)=\alpha+\beta_{1} x_{1}+\beta_{2} z
$$

- For $z=0$:

$$
E\left(Y \mid x_{1}, z\right)=\alpha+\beta_{1} x_{1}
$$

- For $z=1$:

$$
E\left(Y \mid x_{1}, z\right)=\alpha+\beta_{2}+\beta_{1} x_{1}
$$

- So we get two different regression lines for the two groups.
- The lines have a common slope β_{1} (parallel lines).
- The lines have different intercepts. The difference in intercepts is β_{2}.

7.3 Example

- We always start with some graphics (remember the function gf_point for plotting points and gf_lm for adding a regression line).
library (mosaic)
gf_point(mpg ~ wt, color = ~factor(vs), group=~factor(vs), data = mtcars) \% \% \% gf_lm()

- An unclear picture, but a tendency to decreasing number of miles per gallon with increasing weight for both engine types.
- The slope of the lines for the two engine types look different. But is the difference significant? Or can the difference be explained by sampling variation?

7.4 Example

- We fit a multiple regression model without interaction in R :

```
model1 <- lm(mpg ~ wt + factor(vs) , data = mtcars)
summary(model1)
##
## Call:
## lm(formula = mpg ~ wt + factor(vs), data = mtcars)
##
## Residuals:
## Min rrran
## -3.7071 -2.4415 -0.3129 1.4319 6.0156
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 33.0042 2.3554 14.012 1.92e-14 ***
## wt -4.4428 0.6134 -7.243 5.63e-08 ***
## factor(vs)1 3.1544 1.1907 2.649 0.0129 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
```

```
## Residual standard error: 2.78 on 29 degrees of freedom
## Multiple R-squared: 0.801, Adjusted R-squared: 0.7873
## F-statistic: 58.36 on 2 and 29 DF, p-value: 6.818e-11
```

- The common slope to wt is estimated to be $\widehat{\beta}_{1}=-4.44$, with corresponding p-value $5.63 \cdot 10^{-8}$, so the effect of wt is significantly different from zero.
- The estimate is negative, so increasing weight decreases the number of miles per gallon.
- The estimate for intercept in the reference group ("not v-shaped") is $\widehat{\alpha}=33.0$, which is significantly different from zero if we test at level 5% (this test is not really of interest).
- The difference between intercepts for the two engine types is $\widehat{\beta}_{1}=3.15$, which is significant with p -value $=1 \%$.
- This suggests that the regression lines are not the same for the two engine types.
- The value 3.15 is the vertical distance between the two regression lines.

```
plotModel(model1)
```


7.5 Example: Prediction equations

```
summary(model1)
##
## Call:
## lm(formula = mpg ~ wt + factor(vs), data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7071 -2.4415 -0.3129 1.4319 6.0156
##
```

```
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 33.0042 2.3554 14.012 1.92e-14 ***
## wt -4.4428 0.6134 -7.243 5.63e-08 ***
## factor(vs)1 3.1544 1.1907 2.649 0.0129 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.78 on 29 degrees of freedom
## Multiple R-squared: 0.801, Adjusted R-squared: 0.7873
## F-statistic: 58.36 on 2 and 29 DF, p-value: 6.818e-11
```

- Reference/baseline group (not v-shaped):

$$
\widehat{y}=33.0-4.44 x
$$

- V-shaped:

$$
\widehat{y}=33.0+3.15-4.44 x=36.15-4.44 x .
$$

7.6 Interaction model

- We can expand the regression model by including an interaction between x and z :

$$
E(y \mid x, z)=\alpha+\beta_{1} x+\beta_{2} z+\beta_{3} z \cdot x
$$

- This yields a regression line for engine type:
- Not v-shaped $(z=0): E(y \mid x, z)=\alpha+\beta_{1} x$
- V-shaped $(z=1): E(y \mid x, z)=\alpha+\beta_{2}+\left(\beta_{1}+\beta_{3}\right) x$.
- β_{2} is the difference in Intercept between the two groups, while β_{3} is the difference in slope between the two groups.

7.7 Example: Prediction equations

- When we use * in the model formula we include interaction between vs and wt:

```
model2 <- lm(mpg ~ wt * factor(vs), data = mtcars)
summary(model2)
##
## Call:
## lm(formula = mpg ~ wt * factor(vs), data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9950 -1.7881 -0.3423 1.2935 5.2061
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 29.5314 2.6221 11.263 6.55e-12 ***
## wt -3.5013 0.6915 -5.063 2.33e-05 ***
## factor(vs)1 11.7667 3.7638 3.126 0.0041 **
## wt:factor(vs)1 -2.9097 1.2157 -2.393 0.0236 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.578 on 28 degrees of freedom
## Multiple R-squared: 0.8348, Adjusted R-squared: 0.8171
## F-statistic: 47.16 on 3 and 28 DF, p-value: 4.497e-11
```

- We use the output to write the prediction equations:
- Reference/baseline group (not v-shaped):

$$
\widehat{y}=29.5-3.5 x
$$

- V-shaped:

$$
\widehat{y}=(29.5+11.8)+(-3.5-2.9) x=41.3-6.4 x
$$

7.8 Example: Individual tests

```
summary(model2)
##
## Call:
## lm(formula = mpg ~ wt * factor(vs), data = mtcars)
##
## Residuals:
\#\# Min 1Q Median 3Q Max
## -3.9950 -1.7881 -0.3423 1.2935 5.2061
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 29.5314 2.6221 11.263 6.55e-12 ***
## wt -3.5013 0.6915 -5.063 2.33e-05 ***
## factor(vs)1 11.7667 3.7638 3.126 0.0041 **
## wt:factor(vs)1 -2.9097 1.2157 -2.393 0.0236 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.578 on 28 degrees of freedom
## Multiple R-squared: 0.8348, Adjusted R-squared: 0.8171
## F-statistic: 47.16 on 3 and 28 DF, p-value: 4.497e-11
```

- The difference in slope between the two engine types is estimated to $\widehat{\beta}_{3}=-2.9$ which is significant with p -value $=0.0236$, so the slopes are significantly different.
plotModel(model2)

7.9 Hierarchy of models
- Always test for no interaction $\left(\beta_{3}=0\right)$ before making tests for main effects $\left(\beta_{1}=0\right.$ or $\left.\beta_{2}=0\right)$.

$$
\text { Model: } E(Y \mid x, z)=\alpha+\beta_{1} x+\beta_{2} z+\beta_{3} x z
$$

Interaction

$$
\downarrow \quad H_{0}: \beta_{3}=0
$$

Main effects only

\[

\]

$7.10 \quad$ F-test

- We can compare the two models in the mtcars example, namely the model with and without interaction via

```
anova(model1, model2)
```

\#\# Analysis of Variance Table
\#\#
\#\# Model 1: mpg ~ wt + factor(vs)
\#\# Model 2: mpg ~ wt * factor(vs)
\#\# Res.Df RSS Df Sum of Sq F $\operatorname{Pr}(>F)$
\#\# 1229224.09
\#\# $2 \quad 28186.031 \quad 38.0625 .7287 \quad 0.02363$ *
\#\# ---
\#\# Signif. codes: $0{ }^{\prime * * * '} 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

