Probability 1

The ASTA team

Contents

1	Inti	roduction to probability	1
	1.1	Events	1
	1.2	Combining events	2
	1.3	Probability of event	3
	1.4	Probability of mutually exclusive events	3
	1.5	Probability of union	4
	1.6	Probability of complement	4
	1.7	Conditional probability	5
	1.8	Independent events	5
	1.9	Independent events - equivalent definition	5
2	Sto	chastic variables	6
	2.1	Definition of stochastic variables	6
	2.2	Discrete or continuous stochastic variables	6
3	\mathbf{Dis}	crete random variables	6
	3.1	Discrete random variables	6
	3.2	The distribution function	7
	$3.2 \\ 3.3$	The distribution function	$7 \\ 8$
	• • •		•
4	3.3 3.4	Mean of a discrete variable	8
4	3.3 3.4	Mean of a discrete variable	8 8
4	3.3 3.4 Cor	Mean of a discrete variable	8 8 9
4	3.3 3.4 Cor 4.1	Mean of a discrete variable	8 8 9 9
4	3.3 3.4 Con 4.1 4.2	Mean of a discrete variable	8 8 9 9 9
4	3.3 3.4 Cor 4.1 4.2 4.3	Mean of a discrete variable	8 8 9 9 9 10

1 Introduction to probability

1.1 Events

- Consider an experiment.
- The state space S is the set of all possible outcomes.
 - **Example:** We roll a die. The possible outcomes are $S = \{1, 2, 3, 4, 5, 6\}$.
 - **Example:** We measure wind speed (in m/s). The state space is $[0, \infty)$.
- An **event** is a subset $A \subseteq S$ of the sample space.

- **Example:** Rolling a die and getting an even number is the event $A = \{2, 4, 6\}$.
- **Example:** Measuring a wind speed of at least 5m/s is the event $[5, \infty)$.

1.2 Combining events

- Consider two events A and B.
 - The **union** $A \cup B$ of is the event that either A or B occurs.
 - The intersection $A \cap B$ of is the event that both A and B occurs.

• The **complement** A^c of A of is the event that A does not occur.

- **Example:** We roll a die and consider the events $A = \{2, 4, 6\}$ that we get an even number and $B = \{4, 5, 6\}$ that we get at least 4. Then
 - $A \cup B = \{2, 4, 5, 6\}$
 - $-A \cap B = \{4, 6\}$
 - $-A^{c} = \{1, 3, 5\}$

1.3 Probability of event

- The **probability** of an event is the proportion of times the event A would occur when the experiment is repeated many times.
- The probability of the event A is denoted P(A).
 - **Example:** We throw a coin and consider the outcome $A = \{Head\}$. We expect to see the outcome Head half of the time, so $P(Head) = \frac{1}{2}$.
 - **Example:** We throw a die and consider the outcome $A = \{4\}$. Then $P(4) = \frac{1}{6}$.
- Properties:
 - 1. P(S) = 1
 - 2. $P(\emptyset) = 0$
 - 3. $0 \le P(A) \le 1$ for all events A

1.4 Probability of mutually exclusive events

- Consider two events A and B.
- If A and B are **mutually exclusive** (never occur at the same time, i.e. $A \cap B = \emptyset$), then

• **Example:** We roll a die and consider the events $A = \{1\}$ and $B = \{2\}$. Then

$$P(A \cup B) = P(A) + P(B) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}.$$

1.5 Probability of union

• For general events A an B,

• **Example:** We roll a die and consider the events $A = \{1, 2\}$ and $B = \{2, 3\}$. Then $A \cap B = \{2\}$, so

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{1}{3} + \frac{1}{3} - \frac{1}{6} = \frac{1}{2}.$$

1.6 Probability of complement

• Since A and A^c are mutually exclusive with $A \cup A^c = S$, we get

$$1 = P(S) = P(A \cup A^{c}) = P(A) + P(A^{c}),$$

 \mathbf{SO}

$$P(A^c) = 1 - P(A).$$

1.7 Conditional probability

- Consider events A and B.
- The **conditional probability** of A given B is defined by

• **Example:** We toss a coin two times. The possible outcomes are $S = \{HH, HT, TH, TT\}$. Each outcome has probability $\frac{1}{4}$. What is the probability of at least one head if we know there was at least one tail?

- Let $A = \{ \text{at least one H} \}$ and $B = \{ \text{at least one T} \}$. Then

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{2/4}{3/4} = \frac{2}{3}.$$

1.8 Independent events

• Two events A and B are said to be **independent** if

$$P(A|B) = P(A).$$

- Example: Consider again a coin tossed two times with possible outcomes HH, HT, TH, TT.
 - * Let $A = \{ \text{at least one H} \}$ and $B = \{ \text{at least one T} \}$.
 - * We found that $P(A|B) = \frac{2}{3}$ while $P(A) = \frac{3}{4}$, so A and B are not independent.

1.9 Independent events - equivalent definition

• Two events A and B are said to be **independent** if and only if

$$P(A \cap B) = P(A)P(B).$$

• Proof: A and B are independent if and only if

$$P(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Multiplying by P(B) we get $P(A)P(B) = P(A \cap B)$.

- **Example:** Roll a die and let $A = \{2, 4, 6\}$ be the event that we get an even number and $B = \{1, 2\}$ the event that we get at most 2. Then,

 - * $P(A \cap B) = P(2) = \frac{1}{6}$ * $P(A)P(B) = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$. * So A and B are independent.

Stochastic variables 2

2.1Definition of stochastic variables

- A stochastic variable is a function that assigns a real number to every element of the state space.
 - **Example:** Throw a coin three times. The possible outcomes are

 $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}.$

* The random variable X assigns to each outcome the number of heads, e.g.

$$X(HHH) = 3, \quad X(HTT) = 1.$$

- Example: Consider the question whether a certain machine is defect. Define
 - * X = 0 if the machine is not defect,
 - * X = 1 if the machine is defect.
- **Example:** X is the temperature in the lecture room.

2.2Discrete or continuous stochastic variables

- A stochastic variable X may be
- **Discrete:** X can take a finite or infinite list of values.
 - Examples:
 - * Number of heads in 3 coin tosses (can take values 0, 1, 2, 3)
 - * Number of machines that break down over a year (can take values $0, 1, 2, 3, \ldots$)
- Continuous: X takes values on a continuous scale.
 - Examples:
 - * Temperature, speed, mass,...

3 **Discrete random variables**

3.1**Discrete random variables**

- Let X be a discrete stochastic variable which can take the values x_1, x_2, \ldots
- The distribution of X is given by the **probability function**, which is given by

$$f(x_i) = P(X = x_i), \quad i = 1, 2, \dots$$

- **Example:** We throw a coin three times and let X be the number of heads. The possible outcomes are

 $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}.$

The probability function is

3.2The distribution function

• Let X be a discrete random variable with probability function f. The distribution function of X is given by

$$F(x) = P(X \le x) = \sum_{y \le x} f(y), \quad x \in \mathbb{R}.$$

- **Example:** For the three coin tosses, we have

*
$$F(0) = P(X \le 0) = \frac{1}{8}$$

- * $F(1) = P(X \le 1) = P(X = 0) + P(X = 1) = \frac{1}{2}$ * $F(2) = P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2) = \frac{7}{8}$
- * $F(3) = P(X \le 3) = 1$

• For a discrete variable, the result is an increasing step function.

3.3 Mean of a discrete variable

• The mean or expected value of a discrete random variable X with values x_1, x_2, \ldots and probability function $f(x_i)$ is

$$\mu = E(X) = \sum_{i} x_i P(X = x_i) = \sum_{i} x_i f(x_i)$$

- Interpretation: A weighted average of the possible values of X, where each value is weighted by its probability. A sort of "center" value for the distribution.
 - **Example:** Toss a coin 3 times. What are the expected number of heads?

$$E(X) = 0 \cdot P(X=0) + 1 \cdot P(X=1) + 2 \cdot P(X=2) + 3 \cdot P(X=3) = 0 \cdot \frac{1}{8} + 1 \cdot \frac{3}{8} + 2 \cdot \frac{3}{8} + 3 \cdot \frac{1}{8} = 1.5.$$

3.4 Variance of a discrete variable

• The **variance** is the mean squared distance between the values of the variable and the mean value. More precisely,

$$\sigma^{2} = \sum_{i} (x_{i} - \mu)^{2} P(X = x_{i}) = \sum_{i} (x_{i} - \mu)^{2} f(x_{i}).$$

- A high variance indicates that the values of X have a high probability of being far from the mean values.
- The standard deviation is the square root of the variance

$$\sigma=\sqrt{\sigma^2}.$$

- The advantage of the standard deviation over the variance is that it is measured in the same units as X.
 - **Example** Let X be the number of heads in 3 coin tosses. What is the variance and standard deviation?
 - * Solution: The mean was found to be 1.5. Thus,

$$\sigma^2 = (0-1.5)^2 \cdot f(0) + (1-0.5)^2 \cdot f(1) + (2-1.5)^2 \cdot f(2) + (3-1.5)^2 \cdot f(3) = (0-1.5)^2 \cdot \frac{1}{8} + (1-0.5)^2 \cdot \frac{3}{8} + (2-1.5)^2 \cdot \frac{3}{8} + (3-1.5)^2 \cdot \frac{1}{8} + (1-0.5)^2 \cdot \frac{3}{8} + (2-1.5)^2 \cdot \frac{3}{8} + (3-1.5)^2 \cdot \frac{1}{8} + (1-0.5)^2 \cdot \frac{3}{8} + (2-1.5)^2 \cdot \frac{3}{8} + (3-1.5)^2 \cdot \frac{1}{8} + (1-0.5)^2 \cdot \frac{3}{8} + (2-1.5)^2 \cdot \frac{3}{8} + (3-1.5)^2 \cdot \frac{3}{8} + (3-1$$

4 Continuous random variables

4.1 Distribution of continuous random variables

- The distribution of a continuous random variable X is given by a **probability density function** f, which is a function satisfying
 - 1. f(x) is defined for all x in \mathbb{R} ,
 - 2. $f(x) \ge 0$ for all x in \mathbb{R} ,
 - 3. $\int_{-\infty}^{\infty} f(x) dx = 1.$
- The probability that X lies between the values a and b is given by

- Notes:
 - Condition 3. ensures that $P(-\infty < X < \infty) = 1$.
 - The probability of X assuming a specific value a is zero, i.e. P(X = a) = 0.

4.2 Example: The uniform distribution

• The uniform distribution on the interval (A, B) has density

$$f(x) = \begin{cases} \frac{1}{B-A} & A \le x \le B\\ 0 & \text{otherwise} \end{cases}$$

4.4 Distribution function of continuous variable

• Let X be a continuous random variable with probability density f. The **distribution function** of X is given by

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(y) dy, \quad x \in \mathbb{R}.$$

- **Example:** For the uniform distribution on [0, 1], the density was

$$f(x) = \begin{cases} 1, & 0 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

Hence,

4.5 Mean and variance of a continuous variable

• The mean or expected value of a continuous random variable X is

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx.$$

• The **variance** is given by

$$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx.$$

- In calculations, it is often more convenient to use the formula

$$\sigma^{2} = E(X^{2}) - E(X)^{2} = \int_{-\infty}^{\infty} x^{2} f(x) dx - \mu^{2}.$$

4.5.1 Example: Mean and variance in the uniform distribution

• Consider again the uniform distribution on the interval (0,1) with density

$$f(x) = \begin{cases} 1 & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

Find the mean and variance.

• Solution: The mean is

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{1} x \cdot 1 dx = \left[\frac{1}{2}x^{2}\right]_{0}^{1} = \frac{1}{2},$$

and the variance is computed using the formula

$$\sigma^{2} = E(X^{2}) - E(X)^{2} = \int_{-\infty}^{\infty} x^{2} f(x) dx - \mu^{2} = \int_{0}^{1} x^{2} dx - \mu^{2} = \left[\frac{1}{3}x^{3}\right]_{0}^{1} - \left(\frac{1}{2}\right)^{2} = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$$

4.6 Rules for computing mean and variance

- Let X be a random variable and a, b be constants. Then,
 - 1. E(aX + b) = aE(X) + b.
 - 2. $\operatorname{Var}(aX + b) = a^2 \operatorname{Var}(X).$
 - **Example:** If X has mean μ and variance σ^2 , then

*
$$E\left(\frac{X-\mu}{\sigma}\right) = \frac{1}{\sigma}E(X-\mu) = \frac{1}{\sigma}(E(X)-\mu) = 0,$$

* $\operatorname{Var}\left(\frac{X-\mu}{\sigma}\right) = \frac{1}{\sigma^2}\operatorname{Var}(X-\mu) = \frac{1}{\sigma^2}\operatorname{Var}(X) = \frac{1}{\sigma^2}\sigma^2 = 1.$

* So $\frac{X-\mu}{\sigma}$ is a standardization of X that has mean 0 and variance 1.