Probability 1

The ASTA team

Contents

1 Introduction to probability 1
1.1 Events 1
1.2 Combining events 2
1.3 Probability of event 3
1.4 Probability of mutually exclusive events 3
1.5 Probability of union 4
1.6 Probability of complement 4
1.7 Conditional probability 5
1.8 Independent events 5
1.9 Independent events - equivalent definition 5
2 Stochastic variables 6
2.1 Definition of stochastic variables 6
2.2 Discrete or continuous stochastic variables 6
3 Discrete random variables 6
3.1 Discrete random variables 6
3.2 The distribution function 7
3.3 Mean of a discrete variable 8
3.4 Variance of a discrete variable 8
4 Continuous random variables 9
4.1 Distribution of continuous random variables 9
4.2 Example: The uniform distribution 9
4.3 Density shapes 10
4.4 Distribution function of continuous variable 10
4.5 Mean and variance of a continuous variable 11
4.6 Rules for computing mean and variance 12

1 Introduction to probability

1.1 Events

- Consider an experiment.
- The state space S is the set of all possible outcomes.
- Example: We roll a die. The possible outcomes are $S=\{1,2,3,4,5,6\}$.
- Example: We measure wind speed (in m / s). The state space is $[0, \infty)$.
- An event is a subset $A \subseteq S$ of the sample space.
- Example: Rolling a die and getting an even number is the event $A=\{2,4,6\}$.
- Example: Measuring a wind speed of at least $5 \mathrm{~m} / \mathrm{s}$ is the event $[5, \infty)$.

1.2 Combining events

- Consider two events A and B.
- The union $A \cup B$ of is the event that either A or B occurs.
- The intersection $A \cap B$ of is the event that both A and B occurs.

- The complement A^{c} of A of is the event that A does not occur.

- Example: We roll a die and consider the events $A=\{2,4,6\}$ that we get an even number and $B=\{4,5,6\}$ that we get at least 4 . Then
$-A \cup B=\{2,4,5,6\}$
$-A \cap B=\{4,6\}$
$-A^{c}=\{1,3,5\}$

1.3 Probability of event

- The probability of an event is the proportion of times the event A would occur when the experiment is repeated many times.
- The probability of the event A is denoted $P(A)$.
- Example: We throw a coin and consider the outcome $A=\{H e a d\}$. We expect to see the outcome Head half of the time, so $P($ Head $)=\frac{1}{2}$.
- Example: We throw a die and consider the outcome $A=\{4\}$. Then $P(4)=\frac{1}{6}$.
- Properties:

1. $P(S)=1$
2. $P(\emptyset)=0$
3. $0 \leq P(A) \leq 1$ for all events A

1.4 Probability of mutually exclusive events

- Consider two events A and B.
- If A and B are mutually exclusive (never occur at the same time, i.e. $A \cap B=\emptyset$), then

- Example: We roll a die and consider the events $A=\{1\}$ and $B=\{2\}$. Then

$$
P(A \cup B)=P(A)+P(B)=\frac{1}{6}+\frac{1}{6}=\frac{1}{3} .
$$

1.5 Probability of union

- For general events A an B,

- Example: We roll a die and consider the events $A=\{1,2\}$ and $B=\{2,3\}$. Then $A \cap B=\{2\}$, so

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)=\frac{1}{3}+\frac{1}{3}-\frac{1}{6}=\frac{1}{2}
$$

1.6 Probability of complement

- Since A and A^{c} are mutually exclusive with $A \cup A^{c}=S$, we get

$$
1=P(S)=P\left(A \cup A^{c}\right)=P(A)+P\left(A^{c}\right)
$$

$$
P\left(A^{c}\right)=1-P(A)
$$

1.7 Conditional probability

- Consider events A and B.
- The conditional probability of A given B is defined by

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

if $P(B)>0$.

- Example: We toss a coin two times. The possible outcomes are $S=\{H H, H T, T H, T T\}$. Each outcome has probability $\frac{1}{4}$. What is the probability of at least one head if we know there was at least one tail?
- Let $A=\{$ at least one H$\}$ and $B=\{$ at least one T$\}$. Then

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{2 / 4}{3 / 4}=\frac{2}{3} .
$$

1.8 Independent events

- Two events A and B are said to be independent if

$$
P(A \mid B)=P(A) .
$$

- Example: Consider again a coin tossed two times with possible outcomes $H H, H T, T H, T T$.
* Let $A=\{$ at least one H$\}$ and $B=\{$ at least one T$\}$.
* We found that $P(A \mid B)=\frac{2}{3}$ while $P(A)=\frac{3}{4}$, so A and B are not independent.

1.9 Independent events - equivalent definition

- Two events A and B are said to be independent if and only if

$$
P(A \cap B)=P(A) P(B) .
$$

- Proof: A and B are independent if and only if

$$
P(A)=P(A \mid B)=\frac{P(A \cap B)}{P(B)} .
$$

Multiplying by $P(B)$ we get $P(A) P(B)=P(A \cap B)$.

- Example: Roll a die and let $A=\{2,4,6\}$ be the event that we get an even number and $B=\{1,2\}$ the event that we get at most 2 . Then,
* $P(A \cap B)=P(2)=\frac{1}{6}$
* $P(A) P(B)=\frac{1}{2} \cdot \frac{1}{3}=\frac{1}{6}$.
* So A and B are independent.

2 Stochastic variables

2.1 Definition of stochastic variables

- A stochastic variable is a function that assigns a real number to every element of the state space.
- Example: Throw a coin three times. The possible outcomes are

$$
S=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}
$$

* The random variable X assigns to each outcome the number of heads, e.g.

$$
X(H H H)=3, \quad X(H T T)=1
$$

- Example: Consider the question whether a certain machine is defect. Define
* $X=0$ if the machine is not defect,
* $X=1$ if the machine is defect.
- Example: X is the temperature in the lecture room.

2.2 Discrete or continuous stochastic variables

- A stochastic variable X may be
- Discrete: X can take a finite or infinite list of values.
- Examples:
* Number of heads in 3 coin tosses (can take values $0,1,2,3$)
* Number of machines that break down over a year (can take values $0,1,2,3, \ldots$)
- Continuous: X takes values on a continuous scale.
- Examples:
* Temperature, speed, mass,...

3 Discrete random variables

3.1 Discrete random variables

- Let X be a discrete stochastic variable which can take the values x_{1}, x_{2}, \ldots
- The distribution of X is given by the probability function, which is given by

$$
f\left(x_{i}\right)=P\left(X=x_{i}\right), \quad i=1,2, \ldots
$$

- Example: We throw a coin three times and let X be the number of heads. The possible outcomes are

$$
S=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}
$$

The probability function is

* $f(0)=P(X=0)=\frac{1}{8}$
* $f(1)=P(X=1)=\frac{3}{8}$
* $f(2)=P(X=2)=\frac{3}{8}$
* $f(3)=P(X=3)=\frac{1}{8}$

3.2 The distribution function

- Let X be a discrete random variable with probability function f. The distribution function of X is given by

$$
F(x)=P(X \leq x)=\sum_{y \leq x} f(y), \quad x \in \mathbb{R}
$$

- Example: For the three coin tosses, we have
* $F(0)=P(X \leq 0)=\frac{1}{8}$
* $F(1)=P(X \leq 1)=P(X=0)+P(X=1)=\frac{1}{2}$
* $F(2)=P(X \leq 2)=P(X=0)+P(X=1)+P(X=2)=\frac{7}{8}$
* $F(3)=P(X \leq 3)=1$

- For a discrete variable, the result is an increasing step function.

3.3 Mean of a discrete variable

- The mean or expected value of a discrete random variable X with values x_{1}, x_{2}, \ldots and probability function $f\left(x_{i}\right)$ is

$$
\mu=E(X)=\sum_{i} x_{i} P\left(X=x_{i}\right)=\sum_{i} x_{i} f\left(x_{i}\right) .
$$

- Interpretation: A weighted average of the possible values of X, where each value is weighted by its probability. A sort of "center" value for the distribution.
- Example: Toss a coin 3 times. What are the expected number of heads?

$$
E(X)=0 \cdot P(X=0)+1 \cdot P(X=1)+2 \cdot P(X=2)+3 \cdot P(X=3)=0 \cdot \frac{1}{8}+1 \cdot \frac{3}{8}+2 \cdot \frac{3}{8}+3 \cdot \frac{1}{8}=1.5 .
$$

3.4 Variance of a discrete variable

- The variance is the mean squared distance between the values of the variable and the mean value. More precisely,

$$
\sigma^{2}=\sum_{i}\left(x_{i}-\mu\right)^{2} P\left(X=x_{i}\right)=\sum_{i}\left(x_{i}-\mu\right)^{2} f\left(x_{i}\right) .
$$

- A high variance indicates that the values of X have a high probability of being far from the mean values.
- The standard deviation is the square root of the variance

$$
\sigma=\sqrt{\sigma^{2}} .
$$

- The advantage of the standard deviation over the variance is that it is measured in the same units as X.
- Example Let X be the number of heads in 3 coin tosses. What is the variance and standard deviation?
* Solution: The mean was found to be 1.5. Thus,

$$
\sigma^{2}=(0-1.5)^{2} \cdot f(0)+(1-0.5)^{2} \cdot f(1)+(2-1.5)^{2} \cdot f(2)+(3-1.5)^{2} \cdot f(3)=(0-1.5)^{2} \cdot \frac{1}{8}+(1-0.5)^{2} \cdot \frac{3}{8}+(2-1.5)^{2} \cdot \frac{3}{8}+(3-
$$

The standard deviation is $\sigma=\sqrt{0.75} \approx 0.866$.

4 Continuous random variables

4.1 Distribution of continuous random variables

- The distribution of a continuous random variable X is given by a probability density function f, which is a function satisfying

1. $f(x)$ is defined for all x in \mathbb{R},
2. $f(x) \geq 0$ for all x in \mathbb{R},
3. $\int_{-\infty}^{\infty} f(x) d x=1$.

- The probability that X lies between the values a and b is given by

$$
P(a<X<b)=\int_{a}^{b} f(x) d x .
$$

- Notes:
- Condition 3. ensures that $P(-\infty<X<\infty)=1$.
- The probability of X assuming a specific value a is zero, i.e. $P(X=a)=0$.

4.2 Example: The uniform distribution

- The uniform distribution on the interval (A, B) has density

$$
f(x)= \begin{cases}\frac{1}{B-A} & A \leq x \leq B \\ 0 & \text { otherwise }\end{cases}
$$

- Example: If X has a uniform distribution on $(0,1)$, find $P\left(\frac{1}{3}<X \leq \frac{2}{3}\right)$.
* Solution:
$P\left(\frac{1}{3}<X \leq \frac{2}{3}\right)=P\left(\frac{1}{3}<X<\frac{2}{3}\right)+P\left(X=\frac{2}{3}\right)=\int_{1 / 3}^{2 / 3} f(x) d x+0=\int_{1 / 3}^{2 / 3} 1 d x=\frac{1}{3}$.

4.3 Density shapes

Symmetric density
U-shaped

Right skew density

Symmetric density

 Bell-shaped$\stackrel{>}{\bar{D}}$
$\stackrel{\rightharpoonup}{\Phi}$
$\stackrel{0}{0}$

Left skew density
$\stackrel{\rightharpoonup}{\bar{N}}$
$\stackrel{\rightharpoonup}{\Phi}$
$\stackrel{0}{0}$

4.4 Distribution function of continuous variable

- Let X be a continuous random variable with probability density f. The distribution function of X is given by

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(y) d y, \quad x \in \mathbb{R}
$$

- Example: For the uniform distribution on $[0,1]$, the density was

$$
f(x)= \begin{cases}1, & 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Hence,

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(y) d y=\int_{0}^{x} 1 d y=x, \quad x \in[0,1] .
$$

4.5 Mean and variance of a continuous variable

- The mean or expected value of a continuous random variable X is

$$
\mu=E(X)=\int_{-\infty}^{\infty} x f(x) d x
$$

- The variance is given by

$$
\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x
$$

- In calculations, it is often more convenient to use the formula

$$
\sigma^{2}=E\left(X^{2}\right)-E(X)^{2}=\int_{-\infty}^{\infty} x^{2} f(x) d x-\mu^{2}
$$

4.5.1 Example: Mean and variance in the uniform distribution

- Consider again the uniform distribution on the interval $(0,1)$ with density

$$
f(x)= \begin{cases}1 & 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Find the mean and variance.

- Solution: The mean is

$$
\mu=E(X)=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{1} x \cdot 1 d x=\left[\frac{1}{2} x^{2}\right]_{0}^{1}=\frac{1}{2}
$$

and the variance is computed using the formula

$$
\sigma^{2}=E\left(X^{2}\right)-E(X)^{2}=\int_{-\infty}^{\infty} x^{2} f(x) d x-\mu^{2}=\int_{0}^{1} x^{2} d x-\mu^{2}=\left[\frac{1}{3} x^{3}\right]_{0}^{1}-\left(\frac{1}{2}\right)^{2}=\frac{1}{3}-\frac{1}{4}=\frac{1}{12}
$$

4.6 Rules for computing mean and variance

- Let X be a random variable and a, b be constants. Then,

1. $E(a X+b)=a E(X)+b$.
2. $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$.

- Example: If X has mean μ and variance σ^{2}, then
* $E\left(\frac{X-\mu}{\sigma}\right)=\frac{1}{\sigma} E(X-\mu)=\frac{1}{\sigma}(E(X)-\mu)=0$,
* $\operatorname{Var}\left(\frac{X-\mu}{\sigma}\right)=\frac{1}{\sigma^{2}} \operatorname{Var}(X-\mu)=\frac{1}{\sigma^{2}} \operatorname{Var}(X)=\frac{1}{\sigma^{2}} \sigma^{2}=1$.
* So $\frac{X-\mu}{\sigma}$ is a standardization of X that has mean 0 and variance 1 .

