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1 Models with expogenous variables

1.1 Exogenous variables

• The ARMA processes are flexible models for xt for t = 1 . . . , n evolving randomly over time, but it
does not include the possibility that anything is influencing xt

• An exogeneous variable is another variable, say yt, that influences the behaviour of xt

• Here yt may be another stochastic process, which we do not model, but only consider as given, or it
might be something we can control.

1.2 Regression models with exogenous variables

• We can combine regression models with ARMA models to obtain a stochastic process which is influenced
by exogenous variables.

• Consider a linear regression, but where the noise term is an ARMA process:

yt = γxt + εt, α(B)εt = β(B)wt
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• If we isolate yt and insert into the ARMA expression, we get something that looks more like an ARMA
process but with yt adjusted by the exogenous variable:

α(B)(yt − γxt) = β(B)wt

• Modelling a dataset with this model will allow us to simultaneously include influence by earlier times of
the process itself, but also from external sources.

• The purpose of fitting such a model is both to obtain a good model for the evolution of the data and to
obtain an understanding of the relation between yt and xt.

• Note that here γ is a single number, and xt is a single stochastic process, but we can also include
multiple stochastic processes, and let γ be a vector instead.

1.3 Example

• As an example consider a simple linear regression combined with an AR(1) process for noise terms:

yt = γxt + εt, εt = α1εt−1 + wt

or
yt = α1yt−1 + γ(xt − α1xt−1) + wt

• Notice that the model behaves like an AR(1) process, but instead of having a constant mean of 0, its
mean is constantly adjusted by the exogenous variable.

1.4 Simulation of the example

• We simulate some data resembling the example, where we just let xt follow a sine curve:

alpha = 0.9; gamma = 1; n = 100
x = as.ts(5*sin(1:n/5))
eps = arima.sim(model=list(ar=alpha),n=n)
y = gamma*x+eps
ts.plot(x,y,col=1:2)
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- We should
think of the red curve as some data we want to model, and the black curve as another variable which
we believe may influence the data. - We can also plot xt against yt to get a view of the relation between the
two variables rather the time evolution.

plot(as.numeric(x),as.numeric(y))
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1.5 Estimation and model checking

• We can estimate the parameters using the arima function in R.
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• We fit a linear regression model with AR(1) noise to the simulated data (i.e. the true model used for
simulation):

mod=arima(y,order=c(1,0,0),xreg=x); mod

##
## Call:
## arima(x = y, order = c(1, 0, 0), xreg = x)
##
## Coefficients:
## ar1 intercept x
## 0.9312 0.1709 1.0364
## s.e. 0.0331 1.0367 0.1098
##
## sigma^2 estimated as 0.6428: log likelihood = -120.81, aic = 249.62

• The output looks as usual, but we have an additional term describing the relation between yt and xt.
• Model checking can be performed as usual.

plot(resid(mod))
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acf(resid(mod))
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1.6 Prediction

• Prediction can only be performed if we know the behavior of xt for future time points, for example if
we are able to control it.

• For the previous example we assume that the sine curve continues:

nnew = 20
xnew = lag(as.ts(5*sin(((n+1):(n+nnew))/5)),-n)
ts.plot(x,y,xnew,col=c(1,2,1),lty=c(1,1,2))
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- we use the
predict function.

p = predict(mod,n.ahead=nnew,newxreg=xnew)
ts.plot(x,y,xnew,p$pred,p$pred+2*p$se,p$pred-2*p$se,col=c(1,2,1,2,2,2),lty=c(1,1,2,2,3,3))
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1.7 An example with delay

• When we observe two stochastic processes, and want to model one conditional on the other one with a
regression model with ARMA noise, we may encounter the problem that there is a delay before the
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influence of xt has an effect on yt, and we may not know what this delay is.
• That is, we want to model yt based on xt−k for some unknown value of k.
• First we simulate a dataset with a built-in delay, and the we model this afterwards.

alpha = 0.5; gamma = 1; n = 100; delay = 5
x = as.ts(5*sin(1:(n+delay)/5))
eps = arima.sim(model=list(ar=alpha),n=n+delay)
y = gamma*lag(x,-delay)+eps
dat = ts.intersect(x,y)
ts.plot(dat[,1],dat[,2],col=1:2)
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• The cross correlation function is used for checking the relation between two time series at different time
points:

ρxy(t, t+ k) = E[(xt − µx
t )(yt+k − µy

t + k)]
σx

t σ
y
t+k

Values that are close to 1 or -1 indicate that the time series are closely related if one is delayed by k
time steps.

cc = ccf(dat[,1],dat[,2],lag.max=10)
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estlag = cc$lag[which(cc$acf==max(cc$acf))];estlag

## [1] -4

• Plotting the data with this lags can be useful to check the choice:

dat2 = ts.intersect(as.ts(dat[,1]),lag(dat[,2],k=-estlag))
ts.plot(dat2[,1],dat2[,2],col=1:2)
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• We can now fit a model based on the lag:

mod=arima(dat2[,2],order=c(1,0,0),xreg=dat2[,1]); mod

##
## Call:
## arima(x = dat2[, 2], order = c(1, 0, 0), xreg = dat2[, 1])
##
## Coefficients:
## ar1 intercept dat2[, 1]
## 0.5595 -0.0524 0.9128
## s.e. 0.0837 0.2225 0.0588
##
## sigma^2 estimated as 0.9432: log likelihood = -133.6, aic = 275.2

1.8 ARMAX models

• An alternative way of including exogenous variables into an ARMA model is an ARMAX model.
• The ARMAX(p, q, b) model is an ARMA(p, q) model including b terms of an exogenous variable, i.e. it

is defined by

yt =
p∑

i=1
αiyt−i +

b∑
i=1

γixt−i + wt +
q∑

i=1
βiwt−i

• Using the backshift operator, this can be written as

α(B)yt = γ(B)xt + β(B)wt

with α(B) = 1−
∑p

i=1 αiB
i, β(B) = 1 +

∑q
i=1 βiB

i, and γ(B) =
∑b

i=1 γiB
i.
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• Compare with the regression with ARMA noise:

α(B)(yt − γxt) = β(B)wt ⇒ α(B)yt = α(B)γxt + β(B)wt

Notice that the difference is only how the model includes the exogenous variable. It is mostly a matter
of taste which kind of model you should choose. Only the regression with ARMA noise is included into
R as standard.

2 Discrete vs. continuous time

There are two fundamentally different model classes for time series data.

• Discrete time stochastic processes

• Continuous time stochastic processes

So far we have only looked at the discrete time case. We will finish todays lecture by looking a bit at the
continuous time case, just to give you an idea of this topic.

2.1 Continuous time stochastic processes

In this setup we see the underlying Xt as a continuous function of t for t in some interval [0, T ].

In principle we imagine that there are infinitely many data points, simply because there are infinitely many
time points between 0 and T . Of course this is never true: In practice we will always only have finitely many
data points.

But it makes sense to believe that the real data actually contains all the data points. We are just not able to
measure them (and to store them in a computer).

With a model for all datapoints, we are - through simulation - able to describe the behaviour of data. Also
between the observations.

2.2 Wiener process

A key example of a process in continuous time will be the so–called Wiener process.

Three simulated realizations (black, blue and red) of this process can be seen here
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A Wiener process has the following properties:

• It starts in 0: W0 = 0.

• It has independent increments: For 0 < s < t it holds that Wt −Ws is independent of everything that
has happened up to time s, that is Wu for all u ≤ s.

• It has normally distributed increments: For 0 < s < t it holds that the increment Wt −Ws is normally
distributed with variance t− s:

Wt −Ws ∼ Normal(µ = 0, σ2 = t− s).

The intuition of this process is that it somehow changes direction all the time: How the process changes after
time s will be independent of what has happened before time s. So whether the process should increase or
decrease after s will not be affected by how much it was increasing or decreasing before.

This gives the very bumpy behaviour over time.

2.3 Stochastic differential equations

A common way to define a continuous time stochastic process model is through a stochastic differential
equation (SDE) which we will turn to shortly, but before doing so we will recall some basic things about
ordinary differential equations.

Suppose f is an unknown differentiable function and f(0) = 1. Recall the mathematical description of a
differential equation

df(t)
dt

= −4f(t)

With the condition f(0) = 1 this equation has the solution
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f(t) = exp(−4t)
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With a slightly unusual notation we can rewrite this as

df(t) = −4 · f(t)dt

This equation has the following (hopefully intuitive) interpretation:

• When time increases by a small amount dt the value of f changes (approximately) by −4f(t) dt.

So when t is increased, then f is decreased. And the decrease is determined by the value of f(t). That is why
f decreases slower and slower, when t is increased.

We say that the function has a drift towards zero, and this drift is determined by the value of the function.

2.4 Stochastic differential equations

It will probably never be true that data behaves exactly like the exponentially decreasing curve on the
previous slide.

Instead we will consider a model, where some random noise from a Wiener process has been added. Two
different (black/blue) simulated realizations can be seen below
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The type of process that is simulated above is described formally by the equation

dXt = −4Xtdt+ 0.1dWt

This is called a Stochastic Differential Equation (SDE), and the processes simulated above are called
solutions of the stochastic differential equation.

The SDE dXt = −4Xtdt+ 0.1dWt has two terms:

• −4Xtdt is the drift term.

• 0.1dWt is the diffusion term.

The intuition behind this notation is very similar to the intuition in the equation df(t) = −4 · f(t) dt for an
ordinary differential equation. When the time is increased by the small amount dt, then the process Xt is
increased by −4Xt dt AND by how much the process 0.1Wt has increased on the time interval [t, t+ dt].

So this process has a drift towards zero, but it is also pushed in a random direction (either up or down) by
the Wiener process (more precisely, the process 0.1Wt)
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