Probability 1

The ASTA team

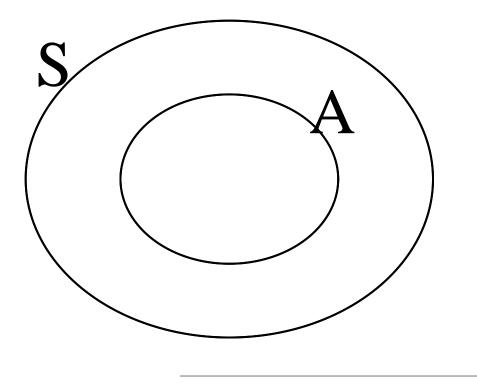
Contents

1	Intr	roduction to probability	1
	1.1	Events	2
	1.2	Combining events	2
	1.3	Probability of event	3
	1.4	Probability of mutually exclusive events	4
	1.5	Probability of union	4
	1.6	Probability of complement	5
	1.7	Conditional probability	5
	1.8	Independent events	6
	1.9	Independent events - equivalent definition	6
2	Sto	chastic variables	6
	2.1	Definition of stochastic variables	7
	2.2	Discrete or continuous stochastic variables	7
3	Disc	crete random variables	7
3	Diso 3.1	crete random variables Discrete random variables	7 7
3			•
3	3.1	Discrete random variables	7
3	3.1 3.2	Discrete random variables	7 8
3	3.1 3.2 3.3	Discrete random variables	7 8 9
3	 3.1 3.2 3.3 3.4 3.5 	Discrete random variables	7 8 9 9
	 3.1 3.2 3.3 3.4 3.5 	Discrete random variables	7 8 9 9 10
	 3.1 3.2 3.3 3.4 3.5 Con 	Discrete random variables	7 8 9 9 10 10
	3.1 3.2 3.3 3.4 3.5 Con 4.1	Discrete random variables	7 8 9 9 10 10 10
	 3.1 3.2 3.3 3.4 3.5 Con 4.1 4.2 	Discrete random variables	7 8 9 9 10 10 10 11
	 3.1 3.2 3.3 3.4 3.5 Con 4.1 4.2 4.3 	Discrete random variables	7 8 9 9 10 10 10 11 12

1 Introduction to probability

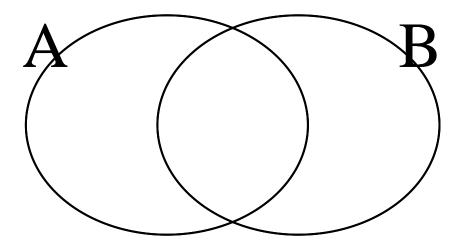
1.1 Events

- Consider an experiment.
- The state space S is the set of all possible outcomes.
- **Example:** We roll a die. The possible outcomes are $S = \{1, 2, 3, 4, 5, 6\}$.
- **Example:** We measure wind speed (in m/s). The state space is $[0, \infty)$.
- An **event** is a subset $A \subseteq S$ of the sample space.
- **Example:** Rolling a die and getting an even number is the event $A = \{2, 4, 6\}$.
- **Example:** Measuring a wind speed of at least 5m/s is the event $[5, \infty)$.

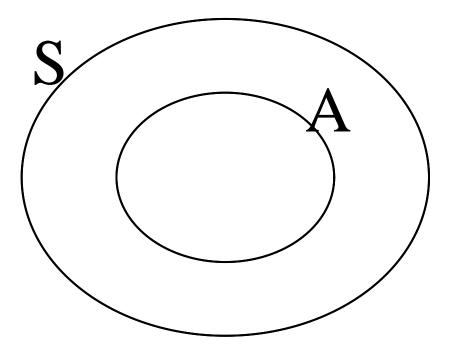


1.2 Combining events

- Consider two events A and B.
- The union $A \cup B$ of is the event that either A or B occurs.
- The intersection $A \cap B$ of is the event that both A and B occurs.



• The **complement** A^c of A of is the event that A does not occur.



- **Example:** We roll a die and consider the events $A = \{2, 4, 6\}$ that we get an even number and $B = \{4, 5, 6\}$ that we get at least 4. Then
 - $\ A \cup B = \{2,4,5,6\}$
 - $-A \cap B = \{4, 6\}$
 - $\ A^c = \{1, 3, 5\}$

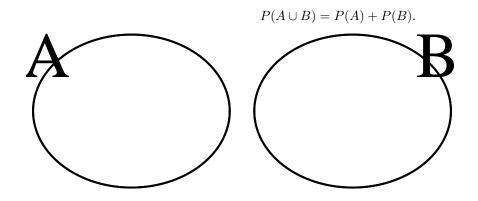
1.3 Probability of event

• The **probability** of an event is the proportion of times the event A would occur when the experiment is repeated many times.

- The probability of the event A is denoted P(A).
- **Example:** We throw a coin and consider the outcome $A = \{Head\}$. We expect to see the outcome Head half of the time, so $P(Head) = \frac{1}{2}$.
- **Example:** We throw a coin and consider the outcome $A = \{4\}$. Then $P(4) = \frac{1}{6}$.
- Properties:
- 1. P(S) = 1
- 2. $P(\emptyset) = 0$
- 3. $0 \leq P(A) \leq 1$ for all events A

1.4 Probability of mutually exclusive events

- Consider two events A and B.
- If A and B are **mutually exclusive** (never occur at the same time, i.e. $A \cap B = \emptyset$), then



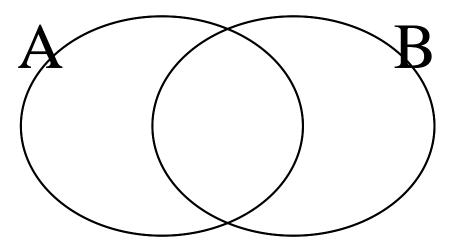
• **Example:** We roll a die and consider the events $A = \{1\}$ and $B = \{2\}$. Then

$$P(A \cup B) = P(A) + P(B) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}.$$

1.5 Probability of union

• For general events A an B,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$



• **Example:** We roll a die and consider the events $A = \{1, 2\}$ and $B = \{2, 3\}$. Then $A \cap B = \{2\}$, so

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{1}{3} + \frac{1}{3} - \frac{1}{6} = \frac{1}{2}.$$

1.6 Probability of complement

• Since A and A^c are mutually exclusive with $A \cup A^c = S$, we get

$$1 = P(S) = P(A \cup A^{c}) = P(A) + P(A^{c}),$$

 \mathbf{SO}

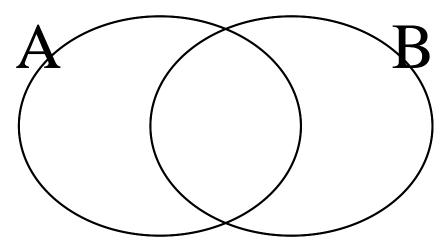
$$P(A^c) = 1 - P(A).$$

1.7 Conditional probability

- Consider events A and B.
- The **conditional probability** of A given B is defined by

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

if P(B) > 0.



- Example: We toss a coin two times. The possible outcomes are $S = \{HH, HT, TH, TT\}$. Each outcome has probability $\frac{1}{4}$. What is the probability of at least one head if we know there was at least one tail?
 - Let $A = \{ \text{at least one H} \}$ and $B = \{ \text{at least one T} \}$. Then

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{2/4}{3/4} = \frac{2}{3}$$

1.8Independent events

• Two events A and B are said to be **independent** if

$$P(A|B) = P(A).$$

- Example: Consider again a coin tossed two times with possible outcomes HH, HT, TH, TT.
 - Let $A = \{ \text{at least one H} \}$ and $B = \{ \text{at least one T} \}$.
 - We found that $P(A|B) = \frac{2}{3}$ while $P(A) = \frac{3}{4}$, so A and B are not independent.

1.9Independent events - equivalent definition

• Two events A and B are said to be **independent** if and only if

$$P(A \cap B) = P(A)P(B).$$

• Proof: A and B are independent if and only if

$$P(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Multiplying by P(B) we get $P(A)P(B) = P(A \cap B)$.

• Example: Roll a die and let $A = \{2, 4, 6\}$ be the event that we get an even number and $B = \{1, 2\}$ the event that we get at most 2. Then,

$$-P(A \cap B) = P(2) = \frac{1}{6}$$

$$- P(A)P(B) = \frac{1}{2} \cdot \frac{1}{3} =$$

 $- P(A)P(B) = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}.$ - So A and B are independent.

$\mathbf{2}$ Stochastic variables

2.1 Definition of stochastic variables

- A stochastic variable is a function that assigns a real number to every element of the state space.
- Example: Throw a coin three times. The possible outcomes are

 $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}.$

- The random variable X assigns to each outcome the number of heads, e.g.

$$X(HHH) = 3, \quad X(HTT) = 1.$$

• Example: Consider the question whether a certain machine is defect. Define

-X = 0 if the machine is not defect,

-X = 1 if the machine is defect.

• Example: X is the temperature in the lecture room.

2.2 Discrete or continuous stochastic variables

- A stochastic variable X may be
- Discrete: X can take a finite or infinite list of values.
- Examples:
 - Number of heads in 3 coin tosses (can take values 0, 1, 2, 3)
 - Number of machines that break down over a year (can take values $0, 1, 2, 3, \ldots$)
- Continuous: X takes values on a continuous scale.
- Examples:
 - Temperature, speed, mass,...

3 Discrete random variables

3.1 Discrete random variables

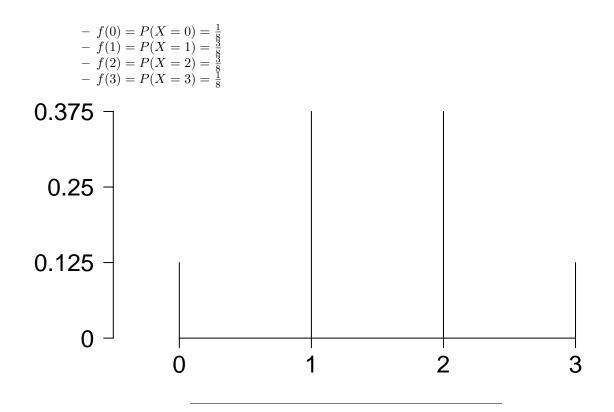
- Let X be a discrete stochastic variable which can take the values x_1, x_2, \ldots
- The distribution of X is given by the **probability function**, which is given by

$$f(x_i) = P(X = x_i), \quad i = 1, 2, \dots$$

• Example: We throw a coin three times and let X be the number of heads. The possible outcomes are

$$S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}.$$

The probability function is



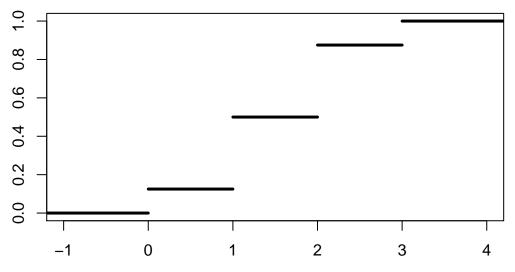
3.2 The distribution function

• Let X be a discrete random variable with probability function f. The **distribution function** of X is given by

$$F(x) = P(X \le x) = \sum_{y \le x} f(y), \quad x \in \mathbb{R}.$$

• **Example:** For the three coin tosses, we have

$$- F(0) = P(X \le 0) = \frac{1}{8} - F(1) = P(X \le 1) = P(X = 0) + P(X = 1) = \frac{1}{2} - F(2) = P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2) = \frac{7}{8} - F(3) = P(X \le 3) = 1$$



• For a discrete variable, the result is an increasing step function.

3.3 A few examples

- The binomial distribution: An experiment with two possible outcomes (success/failure) is repeated n times. Let X be the number of successes. Then X can take the values $0, 1, \ldots, n$.
- **Example:** Flip a coin n times. In each flip, the probability of head is $p = \frac{1}{2}$. Let X be the number of heads.
- **Example:** We buy n items of the same type. Each has probability p of being defect. Let X be the number of defect items.

$$P(X = x) = \binom{n}{x} p^{x} (1-p)^{n-x}, \quad x = 0, 1, \dots, n$$

- The Poisson distribution is the natural distribution for counting variables.
- **Example:** Number of cars passing on a road within one hour. Number of radioactive decays from a radioactive material within a fixed time period.

$$P(X = x) = \exp(-\lambda x)\frac{\lambda^x}{x!}, \quad x = 0, 1, 2, \dots$$

3.4 Mean of a discrete variable

• The mean or expected value of a discrete random variable X with values x_1, x_2, \ldots and probability function $f(x_i)$ is

$$\mu = E(X) = \sum_{i} x_i P(X = x_i) = \sum_{i} x_i f(x_i)$$

- Interpretation: A weighted average of the possible values of X, where each value is weighted by its probability. A sort of "center" value for the distribution.
- Example: Toss a coin 3 times. What are the expected number of heads?

$$E(X) = 0 \cdot P(X=0) + 1 \cdot P(X=1) + 2 \cdot P(X=2) + 3 \cdot P(X=3) = 0 \cdot \frac{1}{8} + 1 \cdot \frac{3}{8} + 2 \cdot \frac{3}{8} + 3 \cdot \frac{1}{8} = 1.5.$$

3.5 Variance of a discrete variable

• The **variance** is the mean squared distance between the values of the variable and the mean value. More precisely,

$$\sigma^{2} = \sum_{i} (x_{i} - \mu)^{2} P(X = x_{i}) = \sum_{i} (x_{i} - \mu)^{2} f(x_{i})$$

- A high variance indicates that the values of X have a high probability of being far from the mean values.
- The standard deviation is the square root of the variance

$$\sigma = \sqrt{\sigma^2}.$$

- The advantage of the standard deviation over the variance is that it is measured in the same units as X.
- Example Let X be the number of heads in 3 coin tosses. What is the variance and standard deviation?
 - Solution: The mean was found to be 1.5. Thus,

$$\sigma^2 = (0-1.5)^2 \cdot f(0) + (1-0.5)^2 \cdot f(1) + (2-1.5)^2 \cdot f(2) + (3-1.5)^2 \cdot f(3) = (0-1.5)^2 \cdot \frac{1}{8} + (1-0.5)^2 \cdot \frac{3}{8} + (2-1.5)^2 \cdot \frac{3}{8} + (3-1.5)^2 \cdot \frac{1}{8} + (1-0.5)^2 \cdot \frac{1}{8} + (1-0.5)^2 \cdot \frac{3}{8} + (3-1.5)^2 \cdot \frac{1}{8} + (1-0.5)^2 \cdot \frac{3}{8} + (3-1.5)^2 \cdot \frac{1}{8} + \frac{1}{8} +$$

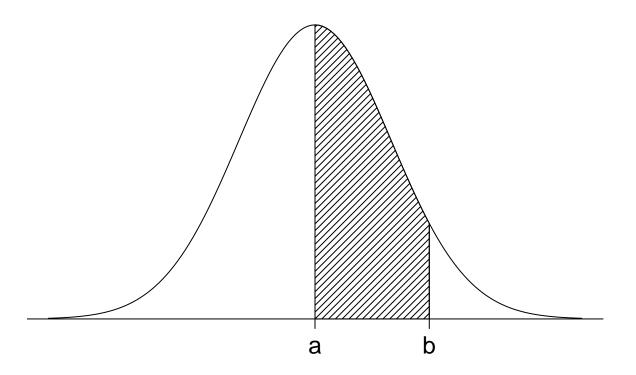
The standard deviation is $\sigma = \sqrt{0.75} \approx 0.866$.

4 Continuous random variables

4.1 Distribution of continuous random variables

- The distribution of a continuous random variable X is given by a **probability density function** f, which is a function satisfying
- 1. f(x) is defined for all x in \mathbb{R} ,
- 2. $f(x) \ge 0$ for all x in \mathbb{R} ,
- 3. $\int_{-\infty}^{\infty} f(x) dx = 1.$
- The probability that X lies between the values a and b is given by

$$P(a < X < b) = \int_{a}^{b} f(x) dx.$$

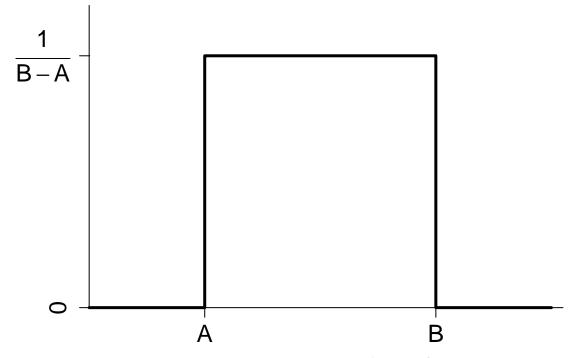


- Notes:
- Condition 3. ensures that $P(-\infty < X < \infty) = 1$.
- The probability of X assuming a specific value a is zero, i.e. P(X = a) = 0.

4.2 Example: The uniform distribution

• The uniform distribution on the interval (A, B) has density

$$f(x) = \begin{cases} \frac{1}{B-A} & A \le x \le B\\ 0 & \text{otherwise} \end{cases}$$

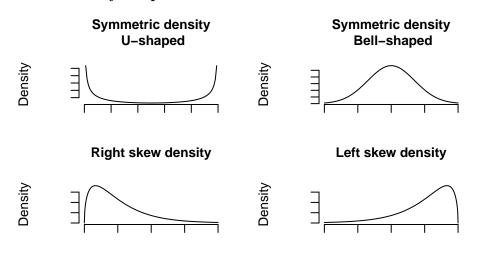


• **Example:** If X has a uniform distribution on (0, 1), find $P(\frac{1}{3} < X \le \frac{2}{3})$.

– Solution:

$$P\left(\frac{1}{3} < X \le \frac{2}{3}\right) = P\left(\frac{1}{3} < X < \frac{2}{3}\right) + P\left(X = \frac{2}{3}\right) = \int_{1/3}^{2/3} f(x)dx + 0 = \int_{1/3}^{2/3} 1dx = \frac{1}{3}$$

4.3 Density shapes



4.4 Distribution function of continuous variable

• Let X be a continuous random variable with probability density f. The **distribution function** of X is given by

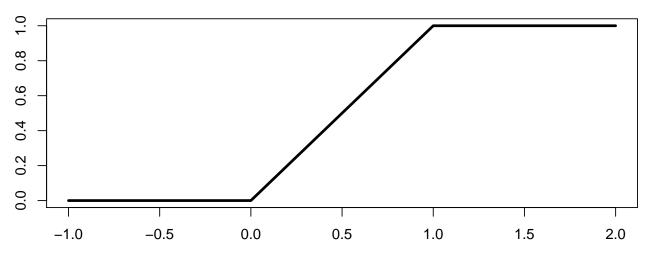
$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(y) dy, \quad x \in \mathbb{R}.$$

• **Example:** For the uniform distribution on [0, 1], the density was

$$f(x) = \begin{cases} 1, & 0 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

Hence,

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(y) dy = \int_{0}^{x} 1 dy = x, \quad x \in [0, 1].$$



4.5 Mean and variance of a continuous variable

• The **mean** or **expected value** of a continuous random variable X is

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx.$$

• The **variance** is given by

$$\sigma^2 = \int_{-\infty}^{\infty} (x-\mu)^2 f(x) dx.$$

4.5.1 Example: Mean and variance in the uniform distribution

• Consider again the uniform distribution on the interval (0,1) with density

$$f(x) = \begin{cases} 1 & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

Find the mean and variance.

• Solution: The mean is

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{1} x \cdot 1 dx = \left[\frac{1}{2}x^{2}\right]_{0}^{1} = \frac{1}{2},$$

and the variance is

$$\sigma^2 = \int_{-\infty}^{\infty} (x-\mu)^2 f(x) dx = \int_0^1 (x-\frac{1}{2})^2 dx = \left[\frac{1}{3}(x-\frac{1}{2})^3\right]_0^1 = \frac{1}{12}.$$

4.6 Rules for computing mean and variance

- Let X be a random variable and a, b be constants. Then,
- 1. E(aX + b) = aE(X) + b.
- 2. $\operatorname{Var}(aX + b) = a^2 \operatorname{Var}(X).$
- **Example:** If X has mean μ and variance σ^2 , then

$$- E\left(\frac{X-\mu}{\sigma}\right) = \frac{1}{\sigma}E(X-\mu) = \frac{1}{\sigma}(E(X)-\mu) = 0,$$

$$- \operatorname{Var}\left(\frac{X-\mu}{\sigma}\right) = \frac{1}{\sigma^2}\operatorname{Var}(X-\mu) = \frac{1}{\sigma^2}\operatorname{Var}(X) = \frac{1}{\sigma^2}\sigma^2 = 1.$$

$$- \operatorname{So}\frac{X-\mu}{\sigma} \text{ is a standardization of } X \text{ that has mean } 0 \text{ and variance } 1.$$