ASTA

The ASTA team

Contents

1 Contingency tables 2
1.1 A contingency table 2
2 Independence 3
2.1 Independence 3
2.2 The Chi-squared test for independence 3
2.3 Calculation of expected table 4
2.4 Chi-squared (χ^{2}) test statistic 4
$2.5 \quad \chi^{2}$-test template. 5
2.6 The function chisq.test. 6
3 The χ^{2}-distribution 7
3.1 The χ^{2}-distribution 7
4 Agresti - Summary 8
4.1 Summary 8
5 Standardized residuals 8
5.1 Residual analysis 8
5.2 Residual analysis in R 9
5.3 Why not just use two-way ANOVA? 9
6 Models for table data in R 9
6.1 Example 9
6.2 Model specification 10
6.3 Model specification in \mathbf{R} 10
6.4 Expected values and standardized residuals 12
7 Introduction to logistic regression 13
7.1 Binary response 13
7.2 A linear model 13
8 Simple logistic regression 13
8.1 Logistic model 13
8.2 Logistic transformation 13
8.3 Odds-ratio 15
8.4 Simple logistic regression 16
8.5 Example: Credit card data 16
8.6 Example: Fitting the model 16
8.7 Test of no effect 17
8.8 Confidence interval for odds ratio 18
8.9 Plot of model predictions against actual data 19
9 Multiple logistic regression 19
9.1 Several numeric predictors 19
9.2 Example 19
9.3 Global test of no effects 20
9.4 Example 20
9.5 Test of influence of a given predictor 21
9.6 Prediction and classification 21

1 Contingency tables

1.1 A contingency table

- We return to the dataset popularKids, where we study association between 2 factors: Goals and Urban.Rural.
- Based on a sample we make a cross tabulation of the factors and we get a so-called contingency table (krydstabel).

```
popKids <- read.delim("https://asta.math.aau.dk/datasets?file=PopularKids.txt")
library(mosaic)
tab <- tally(~Urban.Rural + Goals, data = popKids, margins = TRUE)
tab
```

\#\# Goals
\#\# Urban.Rural Grades Popular Sports Total
\#\# Rural $57 \quad 50 \quad 42 \quad 149$
\#\# Suburban $\quad 87 \quad 42 \quad 22 ~ 151$
\#\# Urban $103 \quad 49 \quad 26$

\#\#	Total	247	141	90	478

1.1.1 A conditional distribution

- Another representation of data is the percent-wise distribution of Goals for each level of Urban.Rural, i.e. the sum in each row of the table is 100 (up to rounding):

```
tab <- tally(~Urban.Rural + Goals, data = popKids)
addmargins(round(100 * prop.table(tab, 1)),margin = 2)
## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 38 34 28 100
## Suburban 58 28 15 101
## Urban 58 28 15 101
```

- Here we will talk about the conditional distribution of Goals given Urban. Rural.
- An important question could be:
- Are the goals of the kids different when they come from urban, suburban or rural areas? I.e. are the rows in the table significantly different?
- There is (almost) no difference between urban and suburban, but it looks like rural is different.

2 Independence

2.1 Independence

- Recall, that two factors are independent, when there is no difference between the population's distributions of one factor given the levels of the other factor.
- Otherwise the factors are said to be dependent.
- If we e.g. have the following conditional population distributions of Goals given Urban. Rural:

\#\#	Goals			
\#\#	Urban.Rural	Grades	Popular	Sports
\#\#	Rural	500	300	200
\#\#	Suburban	500	300	200
\#\#	Urban	500	300	200

- Then the factors Goals and Urban.Rural are independent.
- We take a sample and "measure" the factors F_{1} and F_{2}. E.g. Goals and Urban.Rural for a random child.
- The hypothesis of interest today is:

$$
H_{0}: F_{1} \text { and } F_{2} \text { are independent, } \quad H_{a}: F_{1} \text { and } F_{2} \text { are dependent. }
$$

2.2 The Chi-squared test for independence

- The relative frequencies in the sample gives an estimate of the unconditional distribution of Goals:

```
n <- margin.table(tab)
pctGoals <- round(100 * margin.table(tab, 2)/n, 1)
pctGoals
```

```
## Goals
## Grades Popular Sports
## 51.7 29.5 18.8
```

- If we assume independence, then this is also a guess of the conditional distributions of Goals given Urban.Rural.
- The corresponding expected counts in the sample are then:

\#\#	Goals		Popular	Sports	Sum	
\#\#	Urban.Rural	Grades				
\#\#	Rural	77.0 (51.7\%)	44.0 (29.5\%)	28.1 (18.8\%)	149.0	(100\%)
\#\#	Suburban	78.0 (51.7\%)	44.5 (29.5\%)	28.4 (18.8\%)	151.0	(100\%)
\#\#	Urban	92.0 (51.7\%)	52.5 (29.5\%)	33.5 (18.8\%)	178.0	(100\%)
\#\#	Sum	247.0 (51.7\%)	141.0 (29.5\%)	90.0 (18.8\%)	478.0	(100\%)

2.3 Calculation of expected table

```
pctexptab
## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 77.0 (51.7%) 44.0 (29.5%) 28.1 (18.8%) 149.0 (100%)
## Suburban 78.0 (51.7%) 44.5 (29.5%) 28.4 (18.8%) 151.0 (100%)
## Urban 92.0 (51.7%) 52.5 (29.5%) 33.5 (18.8%) 178.0 (100%)
## Sum 247.0(51.7%) 141.0(29.5%) 90.0 (18.8%) 478.0 (100%)
```

- We note that
- The relative frequency for a given column is columnTotal divided by tableTotal. For example Grades, which is $\frac{247}{478}=51.7 \%$.
- The expected value in a given cell in the table is then the cell's relative column frequency multiplied by the cell's rowTotal. For example Rural and Grades: $149 \times 51.7 \%=77.0$.
- This can be summarized to:
- The expected value in a cell is the product of the cell's rowTotal and columnTotal divided by tableTotal.

2.4 Chi-squared (χ^{2}) test statistic

- We have an observed table:

```
tab
## Goals
## Urban.Rural Grades Popular Sports
## Rural 57 50 42
## Suburban 87 42 22
## Urban 103 49 26
```

- And an expected table, if H_{0} is true:

\#\#	Goals				
\#\#	Urban.Rural	Grades	Popular	Sports	Sum
\#\#	Rural	77.0	44.0	28.1	149.0
\#\#	Suburban	78.0	44.5	28.4	151.0
\#\#	Urban	92.0	52.5	33.5	178.0
\#\#	Sum	247.0	141.0	90.0	478.0

- If these tables are "far from each other", then we reject H_{0}. We want to measure the distance via the Chi-squared test statistic:
$-X^{2}=\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}$: Sum over all cells in the table
- f_{o} is the frequency in a cell in the observed table
- f_{e} is the corresponding frequency in the expected table.
- We have:

$$
X_{o b s}^{2}=\frac{(57-77)^{2}}{77}+\ldots+\frac{(26-33.5)^{2}}{33.5}=18.8
$$

- Is this a large distance??

$2.5 \quad \chi^{2}$-test template.

- We want to test the hypothesis H_{0} of independence in a table with r rows and c columns:
- We take a sample and calculate $X_{o b s}^{2}$ - the observed value of the test statistic.
- p-value: Assume H_{0} is true. What is then the chance of obtaining a larger X^{2} than $X_{o b s}^{2}$, if we repeat the experiment?
- This can be approximated by the χ^{2}-distribution with $d f=(r-1)(c-1)$ degrees of freedom.
- For Goals and Urban.Rural we have $r=c=3$, i.e. $d f=4$ and $X_{o b s}^{2}=18.8$, so the p-value is:

1 - pdist("chisq", 18.8, df = 4)

\#\# [1] 0.0008603303

- There is clearly a significant association between Goals and Urban.Rural.

2.6 The function chisq.test.

- All of the above calculations can be obtained by the function chisq.test.

```
tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)
testStat
##
## Pearson's Chi-squared test
##
## data: tab
## X-squared = 18.828, df = 4, p-value = 0.0008497
```

testStat\$expected

\#\#	Goals			
\#\#	Urban.Rural	Grades	Popular	Sports
\#\#	Rural	76.99372	43.95188	28.05439
\#\#	Suburban	78.02720	44.54184	28.43096
\#\#	Urban	91.97908	52.50628	33.51464

- The frequency data can also be put directly into a matrix.

```
data <- c(57, 87, 103, 50, 42, 49, 42, 22, 26)
tab <- matrix(data, nrow = 3, ncol = 3)
row.names(tab) <- c("Rural", "Suburban", "Urban")
colnames(tab) <- c("Grades", "Popular", "Sports")
tab
```

\#\#	Grades	Popular	Sports
\#\# Rural	57	50	42
\#\# Suburban	87	42	22
\#\# Urban	103	49	26

chisq.test(tab)
\#\#
\#\# Pearson's Chi-squared test
\#\#
\#\# data: tab
\#\# X-squared $=18.828, \mathrm{df}=4, \mathrm{p}$-value $=0.0008497$

3 The χ^{2}-distribution

3.1 The χ^{2}-distribution

- The χ^{2}-distribution with $d f$ degrees of freedom:
- Is never negative.
- Has mean $\mu=d f$
- Has standard deviation $\sigma=\sqrt{2 d f}$
- Is skewed to the right, but approaches a normal distribution when $d f$ grows.

4 Agresti - Summary

4.1 Summary

- For the the Chi-squared statistic, X^{2}, to be appropriate we require that the expected values have to be $f_{e} \geq 5$.
- Now we can summarize the ingredients in the Chi-squared test for independence.
table 8.5: The Five Parts of the Chi-Squared Test of Independence

1. Assumptions: Two categorical variables, random sampling, $f_{e} \geq 5$ in all cells
2. Hypotheses: H_{0} : Statistical independence of variables

$$
H_{a}: \text { Statistical dependence of variables }
$$

3. Test statistic: $\chi^{2}=\Sigma \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}$, where $f_{e}=\frac{(\text { Row total })(\text { Column total })}{\text { Total sample size }}$
4. P-value: $P=$ right-tail probability above observed χ^{2} value, for chi-squared distribution with $d f=(r-1)(c-1)$
5. Conclusion: Report P-value

If decision needed, reject H_{0} at α-level if $P \leq \alpha$

5 Standardized residuals

5.1 Residual analysis

- If we reject the hypothesis of independence it can be of interest to identify the significant deviations.
- In a given cell in the table, $f_{o}-f_{e}$ is the deviation between data and the expected values under the null hypothesis.
- We assume that $f_{e} \geq 5$.
- If H_{0} is true, then the standard error of $f_{o}-f_{e}$ is given by

$$
s e=\sqrt{f_{e}(1-\text { rowProportion })(1-\text { columnProportion })}
$$

- The corresponding z-score

$$
z=\frac{f_{o}-f_{e}}{s e}
$$

should in 95% of the cells be between ± 2. Values above 3 or below -3 should not appear.

- In popKids table cell Rural and Grade we got $f_{e}=77.0$ and $f_{o}=57$. Here columnProportion $=51.7 \%$ and rowProportion $=149 / 478=31.2 \%$.
- We can then calculate

$$
z=\frac{57-77}{\sqrt{77(1-0.517)(1-0.312)}}=-3.95
$$

- Compared to the null hypothesis there are way too few rural kids who find grades important.
- In summary: The standardized residuals allow for cell-by-cell (f_{e} vs f_{o}) comparision.

5.2 Residual analysis in R

- In R we can extract the standardized residuals from the output of chisq.test:

```
tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)
testStat$stdres
```

\#\#	Goals			
\#\# Urban.Rural	Grades	Popular	Sports	
\#\#	Rural	-3.9508449	1.3096235	3.5225004
\#\#	Suburban	1.7666608	-0.5484075	-1.6185210
\#\#	Urban	2.0865780	-0.7274327	-1.8186224

5.3 Why not just use two-way ANOVA ?

- number of persons in different categories are not normally distributed
- variance typically larger the larger expected frequency
- underlying data are discrete (for each person, which column and row category does person belong to)
- these discrete variables are naturally modelled in terms of probabilies for different categories
- therefore hypothesis of independence becomes natural null hypothesis
- it is possible to model table frequencies as dependent variable using a regression model but then we need the framework of generalized linear models (see last slides)

Contingency table:

- counts of how many individuals fall within different categories for two (or more) categorical variables

Two-way ANOVA:

- a number of individuals/objects/... available for each combination of two categorical variables
- next a continuous variable is measured for each individual or object (this becomes the response variable)

6 Models for table data in R

6.1 Example

- We will study the dataset HairEyeColor.

```
HairEyeColor <- read.delim("https://asta.math.aau.dk/datasets?file=HairEyeColor.txt")
head(HairEyeColor)
```

\#\#	Hair	Eye	Sex	Freq
\#\#	1	Black	Brown Male	32
\#\# 2	Brown Brown Male	53		
\#\#	3	Red Brown Male	10	
\#\# 4	Blond Brown Male	3		
\#\#	5	Black	Blue Male	11
\#\# 6	Brown	Blue Male	50	

- Data is organized such that the variable Freq gives the frequency of each combination of the factors Hair, Eye and Sex.
- For example: 32 observations are men with black hair and brown eyes.
- We are interested in the association between eye color and hair color ignoring the sex
- We aggregate data, so we have a table with frequencies for each combination of Hair and Eye.

```
HairEye <- aggregate(Freq ~ Eye + Hair, FUN = sum, data = HairEyeColor)
HairEye
```

\#\# Eye Hair Freq
\#\# 1 Blue Black 20
\#\# 2 Brown Black 68
\#\# 3 Green Black 5
\#\# 4 Hazel Black 15
\#\# 5 Blue Blond 94
\#\# 6 Brown Blond 7
\#\# 7 Green Blond 16
\#\# 8 Hazel Blond 10
\#\# 9 Blue Brown 84
\#\# 10 Brown Brown 119
\#\# 11 Green Brown 29
\#\# 12 Hazel Brown 54
\#\# 13 Blue Red 17
\#\# 14 Brown Red 26
\#\# 15 Green Red 14
\#\# 16 Hazel Red 14

6.2 Model specification

- We can write down a model for (the logarithm of) the expected frequencies by using dummy variables $z_{e 1}, z_{e 2}, z_{e 3}$ and $z_{h 1}, z_{h 2}, z_{h 3}$
- To denote the different levels of Eye and Hair (the reference level has all dummy variables equal to 0):

$$
\log \left(f_{e}\right)=\alpha+\beta_{e 1} z_{e 1}+\beta_{e 2} z_{e 2}+\beta_{e 3} z_{e 3}+\beta_{h 1} z_{h 1}+\beta_{h 2} z_{h 2}+\beta_{h 3} z_{h 3}
$$

- Note that we haven't included an interaction term, which is this case implies, that we assume independence between Eye and Hair in the model.
- Since our response variable now is a count it is no longer a linear model (lm) as we have been used to (linear regression).
- Instead it is a so-called generalized linear model and the relevant R command is glm.

6.3 Model specification in R

```
model <- glm(Freq ~ Hair + Eye, family = poisson, data = HairEye)
```

- The argument family = poisson ensures that R knows that data should be interpreted as discrete counts and not a continuous variable.

```
summary(model)
```

```
##
## Call:
## glm(formula = Freq ~ Hair + Eye, family = poisson, data = HairEye)
##
## Deviance Residuals:
\begin{tabular}{lrrrrr} 
\#\# & Min & \(1 Q\) & Median & 3Q & Max \\
\#\# & -7.326 & -2.065 & -0.212 & 1.235 & 6.172
\end{tabular}
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.66926 0.11055 33.191 < 2e-16 ***
## HairBlond 0.16206 0.13089 1.238 0.21569
## HairBrown 0.97386 0.11294 8.623 < 2e-16 ***
## HairRed -0.41945 0.15279 -2.745 0.00604 **
## EyeBrown 0.02299 0.09590 0.240 0.81054
## EyeGreen -1.21175 0.14239 -8.510 < 2e-16 ***
## EyeHazel -0.83804 0.12411 -6.752 1.46e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 453.31 on 15 degrees of freedom
## Residual deviance: 146.44 on 9 degrees of freedom
## AIC: 241.04
##
## Number of Fisher Scoring iterations: 5
```

- A value of $X^{2}=146.44$ with $d f=9$ shows that there is very clear significance and we reject the null hypothesis of independence between hair and eye color.

```
1 - pdist("chisq", 146.44, df = 9)
```


\#\# [1] 0

6.4 Expected values and standardized residuals

- We also want to look at expected values and standardized (studentized) residuals.
- The null hypothesis predicts $e^{3.67+0.02}=40.1$ with brown eyes and black hair, but we have observed 68 .
- This is significantly too many, since the standardized residual is 5.86.
- The null hypothesis predicts 47.2 with brown eyes and blond hair, but we have seen 7 . This is significantly too few, since the standardized residual is -9.42 .

```
HairEye$fitted <- fitted(model)
HairEye$resid <- rstudent(model)
HairEye
```

\#\#	Eye Hair	Freq	fitted	resid
\#\# 1	Blue Black	20	39.22	-4.492
\#\# 2	Brown Black	68	40.14	5.856
\#\# 3	Green Black	5	11.68	-2.508
\#\# 4	Hazel Black	15	16.97	-0.583
\#\# 5	Blue Blond	94	46.12	9.368
\#\# 6	Brown Blond	7	47.20	-9.423
\#\# 7	Green Blond	16	13.73	0.719
\#\# 8	Hazel Blond	10	19.95	-2.936
\#\# 9	Blue Brown	84	103.87	-3.437
\#\# 10	Brown Brown	119	106.28	2.151
\#\# 11	Green Brown	29	30.92	-0.511

\#\#	12	Hazel	Brown	54	44.93
\#\#	13	Blue	Red	17	25.79
\#\#	14	Brown	Red	26	26.39
\#\#	-0.101				
\#\#	Green	Red	14	7.68	2.368
Hazel	Red	14	11.15	0.961	

7 Introduction to logistic regression

7.1 Binary response

- We consider a binary response y with outcome 1 or 0 . This might be a code indicating whether a person is able or unable to perform a given task.
- Furthermore, we are given an explanatory variable x, which is numeric, e.g. age.
- We shall study models for

$$
P(y=1 \mid x)
$$

i.e. the probability that a person of age x is able to complete the task.

- We shall see methods for determining whether or not age actually influences the probability, i.e. is y independent of x ?

7.2 A linear model

$$
P(y=1 \mid x)=\alpha+\beta x
$$

is simple, but often inappropiate. If β is positive and x sufficiently large, then the probability exceeds 1 .

8 Simple logistic regression

8.1 Logistic model

Instead we consider the odds that the person is able to complete the task

$$
\operatorname{Odds}(y=1 \mid x)=\frac{P(y=1 \mid x)}{P(y=0 \mid x)}=\frac{P(y=1 \mid x)}{1-P(y=1 \mid x)}
$$

which can have any positive value.
The logistic model is defined as:

$$
\operatorname{logit}(P(y=1 \mid x))=\log (\operatorname{Odds}(y=1 \mid x))=\alpha+\beta x
$$

The function $\operatorname{logit}(p)=\log \left(\frac{p}{1-p}\right)$ - i.e. \log of odds - is termed the logistic transformation.
Remark that log odds can be any number, where zero corresponds to $P(y=1 \mid x)=0.5$. Solving $\alpha+\beta x=0$ shows that at age $x_{0}=-\alpha / \beta$ you have fifty-fifty chance of solving the task.

8.2 Logistic transformation

- The function logit() (remember to load mosaic first) can be used to calculate the logistic transformation:

```
p<- seq(0.1, 0.9, by = 0.2)
p
```


1 <- logit (p)
1
\#\# [1] $-2.197 \quad-0.847 \quad 0.000 \quad 0.847 \quad 2.197$

- The inverse logistic transformation ilogit() applied to the transformed values can recover the original probabilities:

```
ilogit(l)
```

\#\# [1] $0.1 \begin{array}{lllllll} & 0.3 & 0.5 & 0.7 & 0.9\end{array}$

Plot of logistic function and inverse logistic

```
p=seq(0.001,0.999,by=0.005)
```

plot(p,logit(p),type="l")


```
x=seq(-7,7,by= 0.1)
plot(x,ilogit(x),type="l")
```


8.3 Odds-ratio

Interpretation of β :
What happens to odds, if we increase age by 1 year?
Consider the so-called odds-ratio:

$$
\frac{\operatorname{Odds}(y=1 \mid x+1)}{\operatorname{Odds}(y=1 \mid x)}=\frac{\exp (\alpha+\beta(x+1))}{\exp (\alpha+\beta x)}=\exp (\beta)
$$

where we see, that $\exp (\beta)$ equals the odds for age $x+1$ relative to odds at age x.
This means that when age increase by 1 year, then the relative change

$$
\frac{\exp (\alpha+\beta(x+1))-\exp (\alpha+\beta x)}{\exp (\alpha+\beta x)}
$$

in odds is given by $100(\exp (\beta)-1) \%$.

8.4 Simple logistic regression

Logistic curves

X

Examples of logistic curves for $P(y=1 \mid x)$. The black curve has a positive β-value (=10), whereas the red has a negative $\beta(=-3)$.
In addition we note that:

- Increasing the absolute value of β yields a steeper curve.
- When $P(y=1 \mid x)=\frac{1}{2}$ then logit is zero, i.e. $\alpha+\beta x=0$.

This means that at age $x=-\frac{\alpha}{\beta}$ you have 50% chance to perform the task.

8.5 Example: Credit card data

We shall investigate if income is a good predictor of whether or not you have a credit card.

- Data structure: For each level of income, we let n denote the number of persons with that income, and credit how many of these that carries a credit card.

```
creInc <- read.csv("https://asta.math.aau.dk/datasets?file=income-credit.csv")
```

head(creInc)

\#\#	Income	n	credit
\#\#	1	12	1
\#\#	2	13	1
\#\#	3	14	8
\#\# 4	15	14	2
\#\#	5	16	9
\#\# 6	17	8	2

8.6 Example: Fitting the model

```
modelFit <- glm(cbind(credit,n-credit) ~ Income, data = creInc, family = binomial)
```

- cbind gives a matrix with two column vectors: credit and n-credit, where the latter is the vector counting the number of persons without a credit card.
- The response has the form cbind(credit, n -credit).
- We need to use the function glm (generalized linear model).
- The argument family=binomial tells the function that the data has binomial variation. Leaving out this argument will lead R to believe that data follows a normal distribution - as with lm.
- The function coef extracts the coefficients (estimates of parameters) from the model summary:

```
coef(summary(modelFit))
```

\#\#	Estimate	Std. Error z value $\operatorname{Pr}(>\|z\|)$		
\#\# (Intercept)	-3.518	0.7103	-4.95	$7.33 \mathrm{e}-07$
\#\# Income	0.105	0.0262	4.03	$5.58 \mathrm{e}-05$

8.7 Test of no effect

```
coef(summary(modelFit))
```

```
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.518 0.7103 -4.95 7.33e-07
## Income 0.105 0.0262 4.03 5.58e-05
```

Our model for dependence of odds of having a credit card related to income (x) is

$$
\operatorname{logit}(x)=\alpha+\beta x
$$

The hypothesis of no relation between income and ability to obtain a credit card corresponds to

$$
H_{0}: \quad \beta=0
$$

with the alternative $\beta \neq 0$. Inspecting the summary reveals that $\hat{\beta}=0.1054$ is more than 4 standard errors away from zero.

With a z-score equal to 4.03 we get the tail probability

```
ptail <- 2*(1-pdist("norm",4.03,xlim=c(-5,5)))
```


Which is very significant - as reflected by the p-value.

8.8 Confidence interval for odds ratio

From the summary:

- $\hat{\beta}=0.10541$ and hence $\exp (\hat{\beta})-1=0.11$. If income increases by 1000 euro, then odds increases by 11%.
- Standard error on $\hat{\beta}$ is 0.02616 and hence a 95% confidence interval for log-odds ratio is $\hat{\beta} \pm 1.96 \times$ $0.02616=(0.054 ; 0,157)$.
- Corresponding interval for odds ratio: $\exp ((0.054 ; 0,157))=(1.056 ; 1.170)$, i.e. the increase in odds is - with confidence 95% - between 5.6% and 17%.

8.9 Plot of model predictions against actual data
 Expected (red line) and observed (black dots) probabilities

- Tendency is fairly clear and very significant.
- Due to low sample size at some income levels, the deviations are quite large.

9 Multiple logistic regression

9.1 Several numeric predictors

We generalize the model to the case, where we have k predictors $x_{1}, x_{2}, \ldots, x_{k}$. Where some might be dummies for a factor.

$$
\operatorname{logit}\left(P\left(y=1 \mid x_{1}, x_{2}, \ldots, x_{k}\right)\right)=\alpha+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}
$$

Interpretation of β-values is unaltered: If we fix x_{2}, \ldots, x_{k} and increase x_{1} by one unit, then the relative change in odds is given by $\exp \left(\beta_{1}\right)-1$.

9.2 Example

Wisconsin Breast Cancer Database covers 683 observations of 10 variables in relation to examining tumors in the breast.

- Nine clinical variables with a score between 0 and 10 .
- The binary variable Class with levels benign/malignant.
- By default R orders the levels lexicografically and chooses the first level as reference ($y=0$). Hence benign is reference, and we model odds of malignant.

We shall work with only 4 of the predictors, where two of these have been discretized.

BC <- read.table("https://asta.math.aau.dk/datasets?file=BCO.dat", header=TRUE) head (BC)

\#\#	nuclei cromatin	Size.low	Size.medium	Shape.low	Class	
\#\#	1	1	3	TRUE	FALSE	TRUE

9.3 Global test of no effects

First we fit the model mainEffects with main effect of all predictors - remember the notation ~ . for all predictors. Then we fit the model noEffects with no predictors.

```
mainEffects <- glm(factor(Class)~., data=BC, family=binomial)
noEffects <- glm(factor(Class)~1, data=BC, family=binomial)
```

First we want to test, whether there is any effect of the predictors, i.e the null hypothesis

$$
H_{0}: \quad \beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=\beta_{5}=0
$$

9.4 Example

Similarly to lm we can use the function anova to compare mainEffects and noEffects. Only difference is that we need to tell the function that the test is a chi-square test and not an F-test.

```
anova(noEffects, mainEffects, test="Chisq")
## Analysis of Deviance Table
##
## Model 1: factor(Class) ~ 1
## Model 2: factor(Class) ~ nuclei + cromatin + Size.low + Size.medium +
## Shape.low
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 682 884
## 2 677 135 5 749 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

mainEffects is a much better model.
The test statistic is the Deviance (749.29), which should be small.
It is evaluated in a chi-square with 5 (the number of parameters equal to zero under the nul hypothesis) degrees of freedom.
The 95%-critical value for the $\chi^{2}(5)$ distribution is 11.07 and the p -value is in practice zero.

9.5 Test of influence of a given predictor

```
round(coef(summary(mainEffects)),4)
```

\#\#	Estimate	Std. Error	z value	Pr $(>\|z\|)$
\#\# (Intercept)	-0.709	0.8570	-0.827	0.4080
\#\# nuclei	0.440	0.0823	5.348	0.0000
\#\# cromatin	0.506	0.1444	3.503	0.0005
\#\# Size.lowTRUE	-3.615	0.8081	-4.474	0.0000
\#\# Size.mediumTRUE	-2.377	0.7188	-3.307	0.0009
\#\# Shape.lowTRUE	-2.149	0.6054	-3.550	0.0004

For each predictor p can we test the hypothesis:

$$
H_{0}: \quad \beta_{p}=0
$$

- Looking at the z-values, there is a clear effect of all 5 predictors. Which of course is also supported by the p-values.

9.6 Prediction and classification

```
BC$pred <- round(predict(mainEffects,type="response"),3)
```

- We add the column pred to our dataframe BC.
- pred is the final model's estimate of the probability of malignant.

```
head(BC[,c("Class","pred")])
## Class pred
## 1 benign 0.011
## 2 benign 0.945
## 3 benign 0.017
## 4 benign 0.929
## 5 benign 0.011
## 6 malignant 1.000
```

Not good for patients 2 and 4.

We may classify by round(BC\$pred):

- 0 to denote benign (probability BC\$pred less than 0.5)
- 1 to denote malignant (probability BC\$pred more than 0.5)
tally (~ Class + round (pred), data $=B C$)

\#\#		round (pred)	
\#\#	Class	0	1
\#\#	benign	433	11
\#\#	malignant	11	228

22 patients are misclassified.

```
sort(BC$pred[BC$Class=="malignant"]) [1:5]
```

\#\# [1] 0.0350 .0370 .0890 .1900 .205

There is a malignant woman with a predicted probability of malignancy, which is only 3.5%.
If we assign all women with predicted probability of malignancy above 5% to further investigation, then we only miss two malignant.
tally(~ Class + I(pred>.05), data = BC)

\#\#	I (pred >		$0.05)$
\#\#	Class	TRUE	FALSE
\#\#	benign	50	394
\#\#	malignant	237	2

The expense is that the number of false positive increases from 11 to 50 .

```
tally(~ Class + I(pred>.1), data = BC)
```

\#\#	I (pred >		0.1)
\#\#	Class	TRUE FALSE	
\#\#	benign	27	417
\#\#	malignant	236	3

- If we instead set the alarm to 10%, then the number of false positives decreases from 50 to 27 .
- But at the expense of 3 false negative.

