# Contingency tables 

The ASTA team

## Contents

1 Contingency tables ..... 1
1.1 A contingency table ..... 1
2 Independence ..... 2
2.1 Independence ..... 2
2.2 The Chi-squared test for independence ..... 3
2.3 Calculation of expected table ..... 3
2.4 Chi-squared ( $\chi^{2}$ ) test statistic ..... 4
$2.5 \quad \chi^{2}$-test template. ..... 4
2.6 The function chisq.test. ..... 5
3 The $\chi^{2}$-distribution ..... 6
3.1 The $\chi^{2}$-distribution ..... 6
4 Agresti - Summary ..... 7
4.1 Summary ..... 7
5 Standardized residuals ..... 7
5.1 Residual analysis ..... 7
5.2 Residual analysis in R ..... 8
5.3 Why not just use two-way ANOVA ? ..... 8
6 Models for table data in R ..... 8
6.1 Example ..... 8
6.2 Model specification ..... 9
6.3 Model specification in $\mathbf{R}$ ..... 9
6.4 Expected values and standardized residuals ..... 11

## 1 Contingency tables

### 1.1 A contingency table

- We return to the dataset popularKids, where we study association between 2 factors: Goals and Urban.Rural.
- Based on a sample we make a cross tabulation of the factors and we get a so-called contingency table (krydstabel).

```
popKids <- read.delim("https://asta.math.aau.dk/datasets?file=PopularKids.txt")
library(mosaic)
tab <- tally(~Urban.Rural + Goals, data = popKids, margins = TRUE)
tab
```

| \#\# | Goals |  |  |  |  |
| :--- | :--- | ---: | ---: | ---: | ---: |
| \#\# | Urban.Rural | Grades | Popular | Sports | Total |
| \#\# | Rural | 57 | 50 | 42 | 149 |
| \#\# | Suburban | 87 | 42 | 22 | 151 |
| \#\# | Urban | 103 | 49 | 26 | 178 |
| \#\# | Total | 247 | 141 | 90 | 478 |

### 1.1.1 A conditional distribution

- Another representation of data is the percent-wise distribution of Goals for each level of Urban.Rural, i.e. the sum in each row of the table is 100 (up to rounding):

```
tab <- tally(~Urban.Rural + Goals, data = popKids)
addmargins(round(100 * prop.table(tab, 1)),margin = 2)
## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 38 34 28 100
## Suburban 58 28 15 101
## Urban 58 28 15 101
```

- Here we will talk about the conditional distribution of Goals given Urban.Rural.
- An important question could be:
- Are the goals of the kids different when they come from urban, suburban or rural areas? I.e. are the rows in the table significantly different?
- There is (almost) no difference between urban and suburban, but it looks like rural is different.


## 2 Independence

### 2.1 Independence

- Recall, that two factors are independent, when there is no difference between the population's distributions of one factor given the levels of the other factor.
- Otherwise the factors are said to be dependent.
- If we e.g. have the following conditional population distributions of Goals given Urban.Rural:

| \#\# | Goals |  |  |  |
| :--- | :--- | ---: | ---: | ---: |
| \#\# | Urban.Rural | Grades | Popular | Sports |
| \#\# | Rural | 500 | 300 | 200 |
| \#\# | Suburban | 500 | 300 | 200 |
| \#\# | Urban | 500 | 300 | 200 |

- Then the factors Goals and Urban. Rural are independent.
- We take a sample and "measure" the factors $F_{1}$ and $F_{2}$. E.g. Goals and Urban. Rural for a random child.
- The hypothesis of interest today is:

$$
H_{0}: F_{1} \text { and } F_{2} \text { are independent, } \quad H_{a}: F_{1} \text { and } F_{2} \text { are dependent. }
$$

### 2.2 The Chi-squared test for independence

- The relative frequencies in the sample gives an estimate of the unconditional distribution of Goals:

```
n <- margin.table(tab)
pctGoals <- round(100 * margin.table(tab, 2)/n, 1)
pctGoals
## Goals
## Grades Popular Sports
## 51.7 29.5 18.8
```

- If we assume independence, then this is also a guess of the conditional distributions of Goals given Urban . Rural.
- The corresponding expected counts in the sample are then:

| \#\# | Goals |  |  | Popular |  | Sports |  | Sum |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \#\# | Urban.Rural | Grades |  |  |  |  |  |  |
| \#\# | Rural | 77.0 | (51.7\%) | 44.0 | (29.5\%) |  | 28.1 | (18.8\%) | 149.0 | (100\%) |
| \#\# | Suburban | 78.0 | (51.7\%) | 44.5 | (29.5\%) | 28.4 | (18.8\%) | 151.0 | (100\%) |
| \#\# | Urban | 92.0 | (51.7\%) | 52.5 | (29.5\%) | 33.5 | (18.8\%) | 178.0 | (100\%) |
| \#\# | Sum | 247.0 | (51.7\%) | 141.0 | (29.5\%) | 90.0 | (18.8\%) | 478.0 | (100\%) |

### 2.3 Calculation of expected table

```
pctexptab
## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 77.0(51.7%) 44.0 (29.5%) 28.1 (18.8%) 149.0 (100%)
## Suburban 78.0 (51.7%) 44.5 (29.5%) 28.4 (18.8%) 151.0 (100%)
## Urban 92.0(51.7%) 52.5 (29.5%) 33.5 (18.8%) 178.0 (100%)
## Sum 247.0(51.7%) 141.0(29.5%) 90.0 (18.8%) 478.0 (100%)
```

- We note that
- The relative frequency for a given column is columnTotal divided by tableTotal. For example Grades, which is $\frac{247}{478}=51.7 \%$.
- The expected value in a given cell in the table is then the cell's relative column frequency multiplied by the cell's rowTotal. For example Rural and Grades: $149 \times 51.7 \%=77.0$.
- This can be summarized to:
- The expected value in a cell is the product of the cell's rowTotal and columnTotal divided by tableTotal.


### 2.4 Chi-squared ( $\chi^{2}$ ) test statistic

- We have an observed table:

| tab |  |  |  |  |
| :--- | :--- | ---: | ---: | ---: |
|  |  |  |  |  |
|  |  |  |  |  |
| \#\# | Goals |  |  |  |
| \#\# | Urban.Rural | Grades | Popular | Sports |
| \#\# | Rural | 57 | 50 | 42 |
| \#\# | Suburban | 87 | 42 | 22 |
| \#\# | Urban | 103 | 49 | 26 |

- And an expected table, if $H_{0}$ is true:

| \#\# | Goals |  |  |  |  |
| :--- | :--- | ---: | ---: | ---: | :--- |
| \#\# | Urban.Rural | Grades | Popular | Sports | Sum |
| \#\# | Rural | 77.0 | 44.0 | 28.1 | 149.0 |
| \#\# | Suburban | 78.0 | 44.5 | 28.4 | 151.0 |
| \#\# | Urban | 92.0 | 52.5 | 33.5 | 178.0 |
| \#\# | Sum | 247.0 | 141.0 | 90.0 | 478.0 |

- If these tables are "far from each other", then we reject $H_{0}$. We want to measure the distance via the Chi-squared test statistic:
$-X^{2}=\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}$ : Sum over all cells in the table
- $f_{o}$ is the frequency in a cell in the observed table
- $f_{e}$ is the corresponding frequency in the expected table.
- We have:

$$
X_{o b s}^{2}=\frac{(57-77)^{2}}{77}+\ldots+\frac{(26-33.5)^{2}}{33.5}=18.8
$$

- Is this a large distance??


## $2.5 \quad \chi^{2}$-test template.

- We want to test the hypothesis $H_{0}$ of independence in a table with $r$ rows and $c$ columns:
- We take a sample and calculate $X_{o b s}^{2}$ - the observed value of the test statistic.
- p-value: Assume $H_{0}$ is true. What is then the chance of obtaining a larger $X^{2}$ than $X_{o b s}^{2}$, if we repeat the experiment?
- This can be approximated by the $\chi^{2}$-distribution with $d f=(r-1)(c-1)$ degrees of freedom.
- For Goals and Urban. Rural we have $r=c=3$, i.e. $d f=4$ and $X_{o b s}^{2}=18.8$, so the p-value is:

1 - pdist("chisq", 18.8, df = 4)

\#\# [1] 0.00086

- There is clearly a significant association between Goals and Urban.Rural.


### 2.6 The function chisq.test.

- All of the above calculations can be obtained by the function chisq.test.

```
tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)
testStat
##
## Pearson's Chi-squared test
##
## data: tab
## X-squared = 20, df = 4, p-value = 8e-04
testStat$expected
```

| \#\# | Goals |  |  |  |
| :--- | :---: | ---: | ---: | ---: |
| \#\# | Urban.Rural | Grades | Popular | Sports |
| \#\# | Rural | 77 | 44.0 | 28.1 |
| \#\# | Suburban | 78 | 44.5 | 28.4 |
| \#\# | Urban | 92 | 52.5 | 33.5 |

- The frequency data can also be put directly into a matrix.

```
data <- c(57, 87, 103, 50, 42, 49, 42, 22, 26)
tab <- matrix(data, nrow = 3, ncol = 3)
row.names(tab) <- c("Rural", "Suburban", "Urban")
colnames(tab) <- c("Grades", "Popular", "Sports")
tab
```

| \#\# | Grades | Popular | Sports |
| :--- | ---: | ---: | ---: |
| \#\# Rural | 57 | 50 | 42 |
| \#\# Suburban | 87 | 42 | 22 |
| \#\# Urban | 103 | 49 | 26 |

chisq.test(tab)
\#\#
\#\# Pearson's Chi-squared test
\#\#
\#\# data: tab
\#\# X-squared $=20, \mathrm{df}=4, \mathrm{p}$-value $=8 \mathrm{e}-04$

## 3 The $\chi^{2}$-distribution

### 3.1 The $\chi^{2}$-distribution

- The $\chi^{2}$-distribution with $d f$ degrees of freedom:
- Is never negative.
- Has mean $\mu=d f$
- Has standard deviation $\sigma=\sqrt{2 d f}$
- Is skewed to the right, but approaches a normal distribution when $d f$ grows.



## 4 Agresti - Summary

### 4.1 Summary

- For the the Chi-squared statistic, $X^{2}$, to be appropriate we require that the expected values have to be $f_{e} \geq 5$.
- Now we can summarize the ingredients in the Chi-squared test for independence.
table 8.5: The Five Parts of the Chi-Squared Test of Independence

1. Assumptions: Two categorical variables, random sampling, $f_{e} \geq 5$ in all cells
2. Hypotheses: $H_{0}$ : Statistical independence of variables

$$
H_{a}: \text { Statistical dependence of variables }
$$

3. Test statistic: $\chi^{2}=\Sigma \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}$, where $f_{e}=\frac{(\text { Row total })(\text { Column total })}{\text { Total sample size }}$
4. $P$-value: $P=$ right-tail probability above observed $\chi^{2}$ value, for chi-squared distribution with $d f=(r-1)(c-1)$
5. Conclusion: Report $P$-value

If decision needed, reject $H_{0}$ at $\alpha$-level if $P \leq \alpha$

## 5 Standardized residuals

### 5.1 Residual analysis

- If we reject the hypothesis of independence it can be of interest to identify the significant deviations.
- In a given cell in the table, $f_{o}-f_{e}$ is the deviation between data and the expected values under the null hypothesis.
- We assume that $f_{e} \geq 5$.
- If $H_{0}$ is true, then the standard error of $f_{o}-f_{e}$ is given by

$$
s e=\sqrt{f_{e}(1-\text { rowProportion })(1-\text { columnProportion })}
$$

- The corresponding $z$-score

$$
z=\frac{f_{o}-f_{e}}{s e}
$$

should in $95 \%$ of the cells be between $\pm 2$. Values above 3 or below -3 should not appear.

- In popKids table cell Rural and Grade we got $f_{e}=77.0$ and $f_{o}=57$. Here columnProportion $=51.7 \%$ and rowProportion $=149 / 478=31.2 \%$.
- We can then calculate

$$
z=\frac{57-77}{\sqrt{77(1-0.517)(1-0.312)}}=-3.95
$$

- Compared to the null hypothesis there are way too few rural kids who find grades important.
- In summary: The standardized residuals allow for cell-by-cell ( $f_{e}$ vs $f_{o}$ ) comparision.


### 5.2 Residual analysis in $R$

- In $R$ we can extract the standardized residuals from the output of chisq.test:

```
tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)
testStat$stdres
```

| \#\# | Goals |  |  |  |
| :--- | :--- | ---: | ---: | ---: |
| \#\# | Urban.Rural | Grades | Popular | Sports |
| \#\# | Rural | -3.951 | 1.310 | 3.523 |
| \#\# | Suburban | 1.767 | -0.548 | -1.619 |
| \#\# | Urban | 2.087 | -0.727 | -1.819 |

### 5.3 Why not just use two-way ANOVA ?

- number of persons in different categories are not normally distributed
- variance typically larger the larger expected frequency
- underlying data are discrete (for each person, which column and row category does person belong to)
- these discrete variables are naturally modelled in terms of probabilies for different categories
- therefore hypothesis of independence becomes natural null hypothesis
- it is possible to model table frequencies as dependent variable using a regression model but then we need the framework of generalized linear models (see last slides)

Contingency table:

- counts of how many individuals fall within different categories for two (or more) categorical variables

Two-way ANOVA:

- a number of individuals/objects/... available for each combination of two categorical variables
- next a continuous variable is measured for each individual or object (this becomes the response variable)


## 6 Models for table data in R

### 6.1 Example

- We will study the dataset HairEyeColor.

```
HairEyeColor <- read.delim("https://asta.math.aau.dk/datasets?file=HairEyeColor.txt")
head(HairEyeColor)
```

| \#\# | Hair | Eye | Sex | Freq |
| :--- | ---: | ---: | ---: | ---: |
| \#\# | 1 | Black | Brown Male | 32 |
| \#\# 2 | Brown Brown Male | 53 |  |  |
| \#\# | 3 | Red Brown Male | 10 |  |
| \#\# 4 | Blond Brown Male | 3 |  |  |
| \#\# | 5 | Black | Blue Male | 11 |
| \#\# 6 | Brown | Blue Male | 50 |  |

- Data is organized such that the variable Freq gives the frequency of each combination of the factors Hair, Eye and Sex.
- For example: 32 observations are men with black hair and brown eyes.
- We are interested in the association between eye color and hair color ignoring the sex
- We aggregate data, so we have a table with frequencies for each combination of Hair and Eye.

```
HairEye <- aggregate(Freq ~ Eye + Hair, FUN = sum, data = HairEyeColor)
HairEye
```

\#\# Eye Hair Freq
\#\# 1 Blue Black 20
\#\# 2 Brown Black 68
\#\# 3 Green Black 5
\#\# 4 Hazel Black 15
\#\# 5 Blue Blond 94
\#\# 6 Brown Blond 7
\#\# 7 Green Blond 16
\#\# 8 Hazel Blond 10
\#\# 9 Blue Brown 84
\#\# 10 Brown Brown 119
\#\# 11 Green Brown 29
\#\# 12 Hazel Brown 54
\#\# 13 Blue Red 17
\#\# 14 Brown Red 26
\#\# 15 Green Red 14
\#\# 16 Hazel Red 14

### 6.2 Model specification

- We can write down a model for (the logarithm of) the expected frequencies by using dummy variables $z_{e 1}, z_{e 2}, z_{e 3}$ and $z_{h 1}, z_{h 2}, z_{h 3}$
- To denote the different levels of Eye and Hair (the reference level has all dummy variables equal to 0):

$$
\log \left(f_{e}\right)=\alpha+\beta_{e 1} z_{e 1}+\beta_{e 2} z_{e 2}+\beta_{e 3} z_{e 3}+\beta_{h 1} z_{h 1}+\beta_{h 2} z_{h 2}+\beta_{h 3} z_{h 3}
$$

- Note that we haven't included an interaction term, which is this case implies, that we assume independence between Eye and Hair in the model.
- Since our response variable now is a count it is no longer a linear model (lm) as we have been used to (linear regression).
- Instead it is a so-called generalized linear model and the relevant R command is glm.


### 6.3 Model specification in R

```
model <- glm(Freq ~ Hair + Eye, family = poisson, data = HairEye)
```

- The argument family = poisson ensures that $R$ knows that data should be interpreted as discrete counts and not a continuous variable.

```
summary(model)
```

```
##
## Call:
## glm(formula = Freq ~ Hair + Eye, family = poisson, data = HairEye)
##
## Deviance Residuals:
\begin{tabular}{lrrrrr} 
\#\# & Min & \(1 Q\) & Median & 3Q & Max \\
\#\# & -7.326 & -2.065 & -0.212 & 1.235 & 6.172
\end{tabular}
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.6693 0.1105 33.19 < 2e-16 ***
## HairBlond 0.1621 0.1309 1.24 0.216
## HairBrown 0.9739 0.1129 8.62 < 2e-16 ***
## HairRed -0.4195 0.1528 -2.75 0.006 **
## EyeBrown 0.0230 0.0959 0.24 0.811
## EyeGreen -1.2118 0.1424 -8.51 < 2e-16 ***
## EyeHazel -0.8380 0.1241 -6.75 1.5e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 453.31 on 15 degrees of freedom
## Residual deviance: 146.44 on 9 degrees of freedom
## AIC: 241
##
## Number of Fisher Scoring iterations: 5
```

- A value of $X^{2}=146.44$ with $d f=9$ shows that there is very clear significance and we reject the null hypothesis of independence between hair and eye color.

```
1 - pdist("chisq", 146.44, df = 9)
```


\#\# [1] 0

### 6.4 Expected values and standardized residuals

- We also want to look at expected values and standardized (studentized) residuals.
- The null hypothesis predicts $e^{3.67+0.02}=40.1$ with brown eyes and black hair, but we have observed 68 .
- This is significantly too many, since the standardized residual is 5.86.
- The null hypothesis predicts 47.2 with brown eyes and blond hair, but we have seen 7 . This is significantly too few, since the standardized residual is -9.42 .

```
HairEye$fitted <- fitted(model)
HairEye$resid <- rstudent(model)
HairEye
```

| \#\# | Eye Hair | Freq | fitted | resid |
| :--- | ---: | ---: | ---: | ---: |
| \#\# 1 | Blue Black | 20 | 39.22 | -4.492 |
| \#\# 2 | Brown Black | 68 | 40.14 | 5.856 |
| \#\# 3 | Green Black | 5 | 11.68 | -2.508 |
| \#\# 4 | Hazel Black | 15 | 16.97 | -0.583 |
| \#\# 5 | Blue Blond | 94 | 46.12 | 9.368 |
| \#\# 6 | Brown Blond | 7 | 47.20 | -9.423 |
| \#\# 7 | Green Blond | 16 | 13.73 | 0.719 |
| \#\# 8 | Hazel Blond | 10 | 19.95 | -2.936 |
| \#\# 9 | Blue Brown | 84 | 103.87 | -3.437 |
| \#\# 10 | Brown Brown | 119 | 106.28 | 2.151 |
| \#\# 11 | Green Brown | 29 | 30.92 | -0.511 |

$\left.\begin{array}{llrrrr}\text { \#\# } & 12 & \text { Hazel } & \text { Brown } & 54 & 44.93 \\ \text { \#\# } & \text { 13 } & \text { Blue } & \text { Red } & 17 & 25.79 \\ \text { \#\# } & \text { 14 } & \text { Brown } & \text { Red } & 26 & 26.39 \\ \text { \#\# } & -0.101 \\ \text { \#\# } & \text { 15 } & \text { Green } & \text { Red } & 14 & 7.68 \\ \text { \#\# } & 16 & \text { Hazel } & \text { Red } & 14 & 11.15\end{array}\right) 0.961$

