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1 Contingency tables

1.1 A contingency table

• We return to the dataset popularKids, where we study association between 2 factors: Goals and
Urban.Rural.
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• Based on a sample we make a cross tabulation of the factors and we get a so-called contingency table
(krydstabel).

popKids <- read.delim("https://asta.math.aau.dk/datasets?file=PopularKids.txt")
library(mosaic)
tab <- tally(~Urban.Rural + Goals, data = popKids, margins = TRUE)
tab

## Goals
## Urban.Rural Grades Popular Sports Total
## Rural 57 50 42 149
## Suburban 87 42 22 151
## Urban 103 49 26 178
## Total 247 141 90 478

1.1.1 A conditional distribution

• Another representation of data is the percent-wise distribution of Goals for each level of Urban.Rural,
i.e. the sum in each row of the table is 100 (up to rounding):

tab <- tally(~Urban.Rural + Goals, data = popKids)
addmargins(round(100 * prop.table(tab, 1)),margin = 2)

## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 38 34 28 100
## Suburban 58 28 15 101
## Urban 58 28 15 101

• Here we will talk about the conditional distribution of Goals given Urban.Rural.
• An important question could be:

– Are the goals of the kids different when they come from urban, suburban or rural areas? I.e. are
the rows in the table significantly different?

• There is (almost) no difference between urban and suburban, but it looks like rural is different.

2 Independence

2.1 Independence

• Recall, that two factors are independent, when there is no difference between the population’s
distributions of one factor given the levels of the other factor.

• Otherwise the factors are said to be dependent.
• If we e.g. have the following conditional population distributions of Goals given Urban.Rural:

## Goals
## Urban.Rural Grades Popular Sports
## Rural 500 300 200
## Suburban 500 300 200
## Urban 500 300 200
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• Then the factors Goals and Urban.Rural are independent.
• We take a sample and “measure” the factors F1 and F2. E.g. Goals and Urban.Rural for a random

child.
• The hypothesis of interest today is:

H0 : F1 and F2 are independent, Ha : F1 and F2 are dependent.

2.2 The Chi-squared test for independence

• The relative frequencies in the sample gives an estimate of the unconditional distribution of Goals:

n <- margin.table(tab)
pctGoals <- round(100 * margin.table(tab, 2)/n, 1)
pctGoals

## Goals
## Grades Popular Sports
## 51.7 29.5 18.8

• If we assume independence, then this is also a guess of the conditional distributions of Goals given
Urban.Rural.

• The corresponding expected counts in the sample are then:

## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 77.0 (51.7%) 44.0 (29.5%) 28.1 (18.8%) 149.0 (100%)
## Suburban 78.0 (51.7%) 44.5 (29.5%) 28.4 (18.8%) 151.0 (100%)
## Urban 92.0 (51.7%) 52.5 (29.5%) 33.5 (18.8%) 178.0 (100%)
## Sum 247.0 (51.7%) 141.0 (29.5%) 90.0 (18.8%) 478.0 (100%)

2.3 Calculation of expected table

pctexptab

## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 77.0 (51.7%) 44.0 (29.5%) 28.1 (18.8%) 149.0 (100%)
## Suburban 78.0 (51.7%) 44.5 (29.5%) 28.4 (18.8%) 151.0 (100%)
## Urban 92.0 (51.7%) 52.5 (29.5%) 33.5 (18.8%) 178.0 (100%)
## Sum 247.0 (51.7%) 141.0 (29.5%) 90.0 (18.8%) 478.0 (100%)

• We note that

– The relative frequency for a given column is columnTotal divided by tableTotal. For example
Grades, which is 247

478 = 51.7%.
– The expected value in a given cell in the table is then the cell’s relative column frequency multiplied

by the cell’s rowTotal. For example Rural and Grades: 149× 51.7% = 77.0.

• This can be summarized to:

– The expected value in a cell is the product of the cell’s rowTotal and columnTotal divided by
tableTotal.
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2.4 Chi-squared (χ2) test statistic

• We have an observed table:

tab

## Goals
## Urban.Rural Grades Popular Sports
## Rural 57 50 42
## Suburban 87 42 22
## Urban 103 49 26

• And an expected table, if H0 is true:

## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 77.0 44.0 28.1 149.0
## Suburban 78.0 44.5 28.4 151.0
## Urban 92.0 52.5 33.5 178.0
## Sum 247.0 141.0 90.0 478.0

• If these tables are “far from each other”, then we reject H0. We want to measure the distance via the
Chi-squared test statistic:

– X2 =
∑ (fo−fe)2

fe
: Sum over all cells in the table

– fo is the frequency in a cell in the observed table
– fe is the corresponding frequency in the expected table.

• We have:
X2

obs = (57− 77)2

77 + . . .+ (26− 33.5)2

33.5 = 18.8

• Is this a large distance??

2.5 χ2-test template.

• We want to test the hypothesis H0 of independence in a table with r rows and c columns:

– We take a sample and calculate X2
obs - the observed value of the test statistic.

– p-value: Assume H0 is true. What is then the chance of obtaining a larger X2 than X2
obs, if we

repeat the experiment?

• This can be approximated by the χ2-distribution with df = (r − 1)(c− 1) degrees of freedom.
• For Goals and Urban.Rural we have r = c = 3, i.e. df = 4 and X2

obs = 18.8, so the p-value is:

1 - pdist("chisq", 18.8, df = 4)
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• There is clearly a significant association between Goals and Urban.Rural.

2.6 The function chisq.test.

• All of the above calculations can be obtained by the function chisq.test.

tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)
testStat

##
## Pearson's Chi-squared test
##
## data: tab
## X-squared = 20, df = 4, p-value = 8e-04

testStat$expected

## Goals
## Urban.Rural Grades Popular Sports
## Rural 77 44.0 28.1
## Suburban 78 44.5 28.4
## Urban 92 52.5 33.5
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• The frequency data can also be put directly into a matrix.

data <- c(57, 87, 103, 50, 42, 49, 42, 22, 26)
tab <- matrix(data, nrow = 3, ncol = 3)
row.names(tab) <- c("Rural", "Suburban", "Urban")
colnames(tab) <- c("Grades", "Popular", "Sports")
tab

## Grades Popular Sports
## Rural 57 50 42
## Suburban 87 42 22
## Urban 103 49 26

chisq.test(tab)

##
## Pearson's Chi-squared test
##
## data: tab
## X-squared = 20, df = 4, p-value = 8e-04

3 The χ2-distribution

3.1 The χ2-distribution

• The χ2-distribution with df degrees of freedom:
– Is never negative.
– Has mean µ = df
– Has standard deviation σ =

√
2df

– Is skewed to the right, but approaches a normal distribution when df grows.
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4 Agresti - Summary

4.1 Summary

• For the the Chi-squared statistic, X2, to be appropriate we require that the expected values have to be
fe ≥ 5.

• Now we can summarize the ingredients in the Chi-squared test for independence.

5 Standardized residuals

5.1 Residual analysis

• If we reject the hypothesis of independence it can be of interest to identify the significant deviations.
• In a given cell in the table, fo − fe is the deviation between data and the expected values under the

null hypothesis.
• We assume that fe ≥ 5.
• If H0 is true, then the standard error of fo − fe is given by

se =
√
fe(1− rowProportion)(1− columnProportion)

• The corresponding z-score
z = fo − fe

se

should in 95% of the cells be between ±2. Values above 3 or below -3 should not appear.
• In popKids table cell Rural and Grade we got fe = 77.0 and fo = 57. Here columnProportion= 51.7%

and rowProportion= 149/478 = 31.2%.
• We can then calculate

z = 57− 77√
77(1− 0.517)(1− 0.312)

= −3.95

.
• Compared to the null hypothesis there are way too few rural kids who find grades important.
• In summary: The standardized residuals allow for cell-by-cell (fe vs fo) comparision.
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5.2 Residual analysis in R

• In R we can extract the standardized residuals from the output of chisq.test:

tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)
testStat$stdres

## Goals
## Urban.Rural Grades Popular Sports
## Rural -3.951 1.310 3.523
## Suburban 1.767 -0.548 -1.619
## Urban 2.087 -0.727 -1.819

5.3 Why not just use two-way ANOVA ?

• number of persons in different categories are not normally distributed
• variance typically larger the larger expected frequency
• underlying data are discrete (for each person, which column and row category does person belong to)
• these discrete variables are naturally modelled in terms of probabilies for different categories
• therefore hypothesis of independence becomes natural null hypothesis
• it is possible to model table frequencies as dependent variable using a regression model but then we

need the framework of generalized linear models (see last slides)

Contingency table:

• counts of how many individuals fall within different categories for two (or more) categorical variables

Two-way ANOVA:

• a number of individuals/objects/. . . available for each combination of two categorical variables
• next a continuous variable is measured for each individual or object (this becomes the response variable)

6 Models for table data in R

6.1 Example

• We will study the dataset HairEyeColor.

HairEyeColor <- read.delim("https://asta.math.aau.dk/datasets?file=HairEyeColor.txt")
head(HairEyeColor)

## Hair Eye Sex Freq
## 1 Black Brown Male 32
## 2 Brown Brown Male 53
## 3 Red Brown Male 10
## 4 Blond Brown Male 3
## 5 Black Blue Male 11
## 6 Brown Blue Male 50
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• Data is organized such that the variable Freq gives the frequency of each combination of the factors
Hair, Eye and Sex.

• For example: 32 observations are men with black hair and brown eyes.
• We are interested in the association between eye color and hair color ignoring the sex
• We aggregate data, so we have a table with frequencies for each combination of Hair and Eye.

HairEye <- aggregate(Freq ~ Eye + Hair, FUN = sum, data = HairEyeColor)
HairEye

## Eye Hair Freq
## 1 Blue Black 20
## 2 Brown Black 68
## 3 Green Black 5
## 4 Hazel Black 15
## 5 Blue Blond 94
## 6 Brown Blond 7
## 7 Green Blond 16
## 8 Hazel Blond 10
## 9 Blue Brown 84
## 10 Brown Brown 119
## 11 Green Brown 29
## 12 Hazel Brown 54
## 13 Blue Red 17
## 14 Brown Red 26
## 15 Green Red 14
## 16 Hazel Red 14

6.2 Model specification

• We can write down a model for (the logarithm of) the expected frequencies by using dummy variables
ze1, ze2, ze3 and zh1, zh2, zh3

• To denote the different levels of Eye and Hair (the reference level has all dummy variables equal to 0):

log(fe) = α+ βe1ze1 + βe2ze2 + βe3ze3 + βh1zh1 + βh2zh2 + βh3zh3.

• Note that we haven’t included an interaction term, which is this case implies, that we assume indepen-
dence between Eye and Hair in the model.

• Since our response variable now is a count it is no longer a linear model (lm) as we have been used to
(linear regression).

• Instead it is a so-called generalized linear model and the relevant R command is glm.

6.3 Model specification in R

model <- glm(Freq ~ Hair + Eye, family = poisson, data = HairEye)

• The argument family = poisson ensures that R knows that data should be interpreted as discrete
counts and not a continuous variable.
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summary(model)

##
## Call:
## glm(formula = Freq ~ Hair + Eye, family = poisson, data = HairEye)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -7.326 -2.065 -0.212 1.235 6.172
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.6693 0.1105 33.19 < 2e-16 ***
## HairBlond 0.1621 0.1309 1.24 0.216
## HairBrown 0.9739 0.1129 8.62 < 2e-16 ***
## HairRed -0.4195 0.1528 -2.75 0.006 **
## EyeBrown 0.0230 0.0959 0.24 0.811
## EyeGreen -1.2118 0.1424 -8.51 < 2e-16 ***
## EyeHazel -0.8380 0.1241 -6.75 1.5e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 453.31 on 15 degrees of freedom
## Residual deviance: 146.44 on 9 degrees of freedom
## AIC: 241
##
## Number of Fisher Scoring iterations: 5

• A value of X2 = 146.44 with df = 9 shows that there is very clear significance and we reject the null
hypothesis of independence between hair and eye color.

1 - pdist("chisq", 146.44, df = 9)
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6.4 Expected values and standardized residuals

• We also want to look at expected values and standardized (studentized) residuals.
• The null hypothesis predicts e3.67+0.02 = 40.1 with brown eyes and black hair, but we have observed 68.
• This is significantly too many, since the standardized residual is 5.86.
• The null hypothesis predicts 47.2 with brown eyes and blond hair, but we have seen 7. This is

significantly too few, since the standardized residual is -9.42.

HairEye$fitted <- fitted(model)
HairEye$resid <- rstudent(model)
HairEye

## Eye Hair Freq fitted resid
## 1 Blue Black 20 39.22 -4.492
## 2 Brown Black 68 40.14 5.856
## 3 Green Black 5 11.68 -2.508
## 4 Hazel Black 15 16.97 -0.583
## 5 Blue Blond 94 46.12 9.368
## 6 Brown Blond 7 47.20 -9.423
## 7 Green Blond 16 13.73 0.719
## 8 Hazel Blond 10 19.95 -2.936
## 9 Blue Brown 84 103.87 -3.437
## 10 Brown Brown 119 106.28 2.151
## 11 Green Brown 29 30.92 -0.511
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## 12 Hazel Brown 54 44.93 2.023
## 13 Blue Red 17 25.79 -2.399
## 14 Brown Red 26 26.39 -0.101
## 15 Green Red 14 7.68 2.368
## 16 Hazel Red 14 11.15 0.961
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