Chi-square and ordinal tests

The ASTA team

Contents

1 Contingency tables 2
1.1 A contingency table 2
1.2 A conditional distribution 2
1.3 Independence 3
1.4 The Chi-squared test for independence 3
1.5 Calculation of expected table 3
1.6 Chi-squared $\left(\chi^{2}\right)$ test statistic 4
$1.7 \quad \chi^{2}$-test template. 5
1.8 The function chisq.test 5
1.9 The χ^{2}-distribution 6
1.10 Summary 7
1.11 Residual analysis 7
1.12 Residual analysis in R 8
1.13 Cramér's V 8
2 Ordinal variables 9
2.1 Association between ordinal variables 9
2.2 Gamma coefficient 9
2.3 Gamma coefficient 10
2.4 Example 10
3 Validation of data 11
3.1 Goodness of fit test 11
3.2 Example 11
3.3 Goodness of fit test 11
3.4 Example 11
3.5 Test in R 12

1 Contingency tables

1.1 A contingency table

- The dataset popularKids, we study the association between the factors Goals and Urban.Rural:
- Urban.Rural: The students were selected from urban, suburban, and rural schools.
- Goals: The students indicated whether good grades, athletic ability, or popularity was most important to them.
- In total 478 students from grades 4-6.
- Based on a sample we make a cross tabulation of the factors and we get a so-called contingency table (krydstabel).

```
popKids <- read.delim("https://asta.math.aau.dk/datasets?file=PopularKids.txt")
library(mosaic)
tab <- tally(~Urban.Rural + Goals, data = popKids, margins = TRUE)
tab
```

\#\#	Goals				
\#\#	Urban.Rural	Grades	Popular	Sports	Total
\#\#	Rural	57	50	42	149
\#\#	Suburban	87	42	22	151
\#\#	Urban	103	49	26	178
\#\#	Total	247	141	90	478

1.2 A conditional distribution

- Another representation of data is the probability distribution of Goals for each level of Urban.Rural, i.e. the sum in each row of the table is 1 (up to rounding):

\#\#	Goals				
\#\#	Urban.Rural	Grades	Popular	Sports	Sum
\#\#	Rural	0.383	0.336	0.282	1.000
\#\#	Suburban	0.576	0.278	0.146	1.000
\#\#	Urban	0.579	0.275	0.146	1.000
\#\#	Total	0.517	0.295	0.188	1.000

- Here we will talk about the conditional distribution of Goals given Urban. Rural.
- An important question could be:
- Are the goals of the kids different when they come from urban, suburban or rural areas? I.e. are the rows in the table significantly different?
- There is (almost) no difference between urban and suburban, but it looks like rural is different.

1.3 Independence

- Recall, that two factors are independent, when there is no difference between the population's distributions of one factor given the levels of the other factor.
- Otherwise the factors are said to be dependent.
- If we e.g. have the following conditional population distributions of Goals given Urban.Rural:

\#\#	Goals			
\#\#	Urban.Rural	Grades	Popular	Sports
\#\#	Rural	0.5	0.3	0.2
\#\#	Suburban	0.5	0.3	0.2
\#\#	Urban	0.5	0.3	0.2

- Then the factors Goals and Urban.Rural are independent.
- We take a sample and "measure" the factors F_{1} and F_{2}. E.g. Goals and Urban.Rural for a random child.
- The hypothesis of interest today is:

$$
H_{0}: F_{1} \text { and } F_{2} \text { are independent, } \quad H_{a}: F_{1} \text { and } F_{2} \text { are dependent. }
$$

1.4 The Chi-squared test for independence

- Our best guess of the distribution of Goals is the relative frequencies in the sample:

```
tab <- tally(~Urban.Rural + Goals, data = popKids)
n <- margin.table(tab)
pctGoals <- round(margin.table(tab, 2) / n, 3)
pctGoals
## Goals
## Grades Popular Sports
## 0.517 0.295 0.188
```

- If we assume independence, then this is also a guess of the conditional distributions of Goals given Urban.Rural.
- The corresponding expected counts in the sample are then:

```
## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 77.0(0.517) 44.0 (0.295) 28.1 (0.188) 149.0 (1.000)
## Suburban 78.0 (0.517) 44.5 (0.295) 28.4 (0.188) 151.0 (1.000)
## Urban 92.0(0.517) 52.5 (0.295) 33.5 (0.188) 178.0 (1.000)
## Sum 247.0(0.517) 141.0 (0.295) 90.0 (0.188) 478.0 (1.000)
```


1.5 Calculation of expected table

```
pctexptab
## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 77.0(0.517) 44.0 (0.295) 28.1 (0.188) 149.0 (1.000)
## Suburban 78.0 (0.517) 44.5 (0.295) 28.4 (0.188) 151.0 (1.000)
## Urban 92.0(0.517) 52.5 (0.295) 33.5 (0.188) 178.0 (1.000)
## Sum 247.0(0.517) 141.0 (0.295) 90.0 (0.188) 478.0 (1.000)
```

- We note that
- The relative frequency for a given column is column total divided by table total. For example Grades, which is $\frac{247}{478}=0.517$.
- The expected value in a given cell in the table is then the cell's relative column frequency multiplied by the cell's row total. For example Rural and Grades: $149 \times 0.517=77.0$.
- This can be summarized to:
- The expected value in a cell is the product of the cell's row total and column total divided by the table total

1.6 Chi-squared $\left(\chi^{2}\right)$ test statistic

- We have an observed table:

tab				
\#\#				
\# Goals				
\#\#	Urban.Rural	Grades	Popular	Sports
\#\#	Rural	57	50	42
\#\#	Suburban	87	42	22
\#\#	Urban	103	49	26

- And an expected table, if H_{0} is true:

```
## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 77.0 44.0 28.1
## Suburban 78.0 44.5 28.4 151.0
## Urban 92.0 52.5 33.5 178.0
## Sum 247.0 141.0 90.0
```

- If these tables are "far from each other", then we reject H_{0}. We want to measure the distance via the Chi-squared test statistic:
$-X^{2}=\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}$: Sum over all cells in the table
- f_{o} is the frequency in a cell in the observed table
- f_{e} is the corresponding frequency in the expected table.
- We have:

$$
X_{o b s}^{2}=\frac{(57-77)^{2}}{77}+\ldots+\frac{(26-33.5)^{2}}{33.5}=18.8
$$

- Is this a large distance??

$1.7 \quad \chi^{2}$-test template.

- We want to test the hypothesis H_{0} of independence in a table with r rows and c columns:
- We take a sample and calculate $X_{\text {obs }}^{2}$ - the observed value of the test statistic.
- p-value: Assume H_{0} is true. What is then the chance of obtaining a larger X^{2} than $X_{o b s}^{2}$, if we repeat the experiment?
- This can be approximated by the χ^{2}-distribution with $d f=(r-1)(c-1)$ degrees of freedom.
- For Goals and Urban.Rural we have $r=c=3$, i.e. $d f=4$ and $X_{o b s}^{2}=18.8$, so the p -value is:

1 - pdist("chisq", 18.8, df = 4)

\#\# [1] 0.0008603303

- There is clearly a significant association between Goals and Urban.Rural.

1.8 The function chisq.test

- All of the above calculations can be obtained by the function chisq.test.

```
tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)
testStat
```

```
##
## Pearson's Chi-squared test
##
## data: tab
## X-squared = 18.828, df = 4, p-value = 0.0008497
testStat$expected
## Goals
## Urban.Rural Grades Popular Sports
## Rural 76.99372 43.95188 28.05439
## Suburban 78.02720 44.54184 28.43096
## Urban 91.97908 52.50628 33.51464
```

- The frequency data can also be put directly into a matrix.

```
data <- c(57, 87, 103, 50, 42, 49, 42, 22, 26)
tab <- matrix(data, nrow = 3, ncol = 3)
row.names(tab) <- c("Rural", "Suburban", "Urban")
colnames(tab) <- c("Grades", "Popular", "Sports")
tab
\begin{tabular}{lrrr} 
\#\# & Grades & Popular & Sports \\
\#\# Rural & 57 & 50 & 42 \\
\#\# Suburban & 87 & 42 & 22 \\
\#\# Urban & 103 & 49 & 26
\end{tabular}
chisq.test(tab)
```

\#\#
\#\# Pearson's Chi-squared test
\#\#
\#\# data: tab
\#\# X-squared $=18.828, \mathrm{df}=4, \mathrm{p}$-value $=0.0008497$

1.9 The χ^{2}-distribution

- The χ^{2}-distribution with $d f$ degrees of freedom:
- Is never negative. And $X^{2}=0$ only happens if $f_{e}=f_{o}$.
- Has mean $\mu=d f$
- Has standard deviation $\sigma=\sqrt{2 d f}$
- Is skewed to the right, but approaches a normal distribution when $d f$ grows.

1.10 Summary

- For the the Chi-squared statistic, X^{2}, to be appropriate we require that the expected values have to be $f_{e} \geq 5$.
- Now we can summarize the ingredients in the Chi-squared test for independence.

TABLE 8.5: The Five Parts of the Chi-Squared Test of Independence

1. Assumptions: Two categorical variables, random sampling, $f_{e} \geq 5$ in all cells
2. Hypotheses: H_{0} : Statistical independence of variables
H_{a} : Statistical dependence of variables
3. Test statistic: $\chi^{2}=\Sigma \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}$, where $f_{e}=\frac{(\text { Row total })(\text { Column total })}{\text { Total sample size }}$
4. P-value: $P=$ right-tail probability above observed χ^{2} value,
for chi-squared distribution with $d f=(r-1)(c-1)$
5. Conclusion: Report P-value

If decision needed, reject H_{0} at α-level if $P \leq \alpha$

1.11 Residual analysis

- If we reject the hypothesis of independence it can be of interest to identify the significant deviations.
- In a given cell in the table, $f_{o}-f_{e}$ is the deviation between data and the expected values under the null hypothesis.
- We assume that $f_{e} \geq 5$.
- If H_{0} is true, then the standard error of $f_{o}-f_{e}$ is given by

$$
s e=\sqrt{f_{e}(1-\text { row proportion })(1-\text { column proportion })}
$$

- The corresponding z-score

$$
z=\frac{f_{o}-f_{e}}{s e}
$$

should in 95% of the cells be between ± 2. Values above 3 or below -3 should not appear.

- In popKids table cell Rural and Grade we got $f_{e}=77.0$ and $f_{o}=57$. Here column proportion $=0.517$ and row proportion $=149 / 478=0.312$.
- We can then calculate

$$
z=\frac{57-77}{\sqrt{77(1-0.517)(1-0.312)}}=-3.95
$$

- Compared to the null hypothesis there are way too few rural kids who find grades important.
- In summary: The standardized residuals allow for cell-by-cell $\left(f_{e}\right.$ vs $\left.f_{o}\right)$ comparision.

1.12 Residual analysis in R

- In R we can extract the standardized residuals from the output of chisq.test:

```
tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)
testStat$stdres
```

\#\#	Goals			
\#\#	Urban.Rural	Grades	Popular	Sports
\#\#	Rural	-3.9508449	1.3096235	3.5225004
\#\#	Suburban	1.7666608	-0.5484075	-1.6185210
\#\#	Urban	2.0865780	-0.7274327	-1.8186224

1.13 Cramér's V

- To measure the strength of the association, the Swedish mathematician Harald Cramér developed a measure which is estimated by

$$
V=\sqrt{\frac{X^{2}}{n \cdot \min (r-1, c-1)}}
$$

where r and c are the number of columns and rows in the contingency table and n is the sample size.

- Property:

- Cramér's V lies between 0(no association) and 1(complete association)
- In the situation with the factors Goals and Urban.Rural from the dataset popularKids we get

$$
V=\sqrt{\frac{X^{2}}{n \cdot \min (r-1, c-1)}}=\sqrt{\frac{18.8}{479 \cdot \min (3-1,3-1)}}=0.14
$$

which indicates a weak (but significant) association.

- The function CramerV in the package DescTools gives you the value and a confidence interval

```
library(DescTools)
```

```
##
## Attaching package: 'DescTools'
```

\#\# The following object is masked from 'package:mosaic':
\#\#
\#\# MAD
CramerV(tab, conf = 0.95, type = "perc")

```
## Cramer V lwr.ci upr.ci
```

\#\# 0.140335920 .060146410 .19419139

2 Ordinal variables

2.1 Association between ordinal variables

- For a random sample of black males the General Social Survey in 1996 asked two questions:
- Q1: What is your yearly income (income)?
- Q2: How satisfied are you with your job (satisfaction)?
- Both measurements are on an ordinal scale.

	VeryD	LittleD	ModerateS	VeryS
$\mathbf{< ~ 1 5 k}$	1	3	10	6
$\mathbf{1 5 - 2 5 k}$	2	3	10	7
$\mathbf{2 5 - 4 0 k}$	1	6	14	12
$\mathbf{> 4 0 k}$	0	1	9	11

- We might do a chi-square test to see whether Q1 and Q2 are associated, but the test does not exploit the ordinality.
- We shall consider a test that incorporates ordinality.

2.2 Gamma coefficient

- Consider a pair of respondents, where respondent 1 is below respondent 2 in relation to Q1.
- If respondent 1 is also below respondent 2 in relation to Q2 then the pair is concordant.
- If respondent 1 is above respondent 2 in relation to Q2 then the pair is disconcordant.
- Let:
$C=$ the number of concordant pairs in our sample.
$D=$ the number of disconcordant pairs in our sample.
- We define the estimated gamma coefficient

$$
\hat{\gamma}=\frac{C-D}{C+D}=\underbrace{\frac{C}{C+D}}_{\text {concordant prop. }}-\underbrace{\frac{D}{C+D}}_{\text {discordant prop. }}
$$

2.3 Gamma coefficient

- Properties:
- Gamma lies between - 1 og 1
- The sign tells whether the association is positive or negative
- Large absolute values correspond to strong association
- The standard error $s e(\hat{\gamma})$ on $\hat{\gamma}$ is complicated to calculate, so we leave that to software.
- We can now determine a 95% confidence interval:

$$
\hat{\gamma} \pm 1.96 \operatorname{se}(\hat{\gamma})
$$

and if zero is contained in the interval, then there is no significant association, when we perform a test with a 5% significance level.

2.4 Example

- First, we need to install the package vcdExtra, which has the function GKgamma for calculating gamma. It also has the dataset on job satisfaction and income built-in:

```
library(vcdExtra)
JobSat
\begin{tabular}{lcrrrr} 
\#\# & \multicolumn{4}{c}{ satisfaction } \\
\#\# & income & VeryD & LittleD & ModerateS & VeryS \\
\#\# & \(<15 \mathrm{k}\) & 1 & 3 & 10 & 6 \\
\#\# & \(15-25 \mathrm{k}\) & 2 & 3 & 10 & 7 \\
\#\# & \(25-40 \mathrm{k}\) & 1 & 6 & 14 & 12 \\
\#\# & \(>40 \mathrm{k}\) & 0 & 1 & 9 & 11
\end{tabular}
GKgamma(JobSat, level = 0.90)
## gamma : 0.221
## std. error : 0.117
## CI : 0.028 0.414
```

- A positive association. Marginally significant at the 10% level, but not so at the 5% level.

3 Validation of data

3.1 Goodness of fit test

- You have collected a sample and want to know, whether the sample is representative for people living in Hirtshals.
- E.g. whether the distribution of gender, age, or profession in the sample do not differ significantly from the distribution in Hirtshals.
- Actually, you know how to do that for binary variables like gender, but not if you e.g. have 6 agegroups.

3.2 Example

- As an example we look at k groups, where data from Hjørring kommune tells us the distribution in Hirtshals is given by the vector

$$
\pi=\left(\pi_{1}, \ldots, \pi_{k}\right)
$$

where π_{i} is the proportion which belongs to group number $i, i=1,2 \ldots, k$ in Hirtshals.

- Consider the sample represented by the vector:

$$
O=\left(O_{1}, \ldots, O_{k}\right)
$$

where O_{i} is the observed number of individuals in group number $i, i=1,2, \ldots, k$.

- The total number of individuals:

$$
n=\sum_{i=1}^{k} O_{i}
$$

- The expected number of individuals in each group, if we have a sample from Hirtshals:

$$
E_{i}=n \pi_{i}, i=1,2, \ldots, k
$$

3.3 Goodness of fit test

- We will use the following measure to see how far away the observed is from the expected:

$$
X^{2}=\sum_{i=1}^{k} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

- If this is large we reject the hypothesis that the sample has the same distribution as Hirtshals. The reference distribution is the χ^{2} with $k-1$ degrees of freedom.

3.4 Example

- Assume we have four groups and that the true distribution is given by:

```
k <- 4
pi_vector <- c(0.3, 0.2, 0.25, 0.25)
```

- Assume that we have the following sample:

```
O_vector <- c(74, 72, 40, 61)
```

- Expected number of individuals in each group:

```
n <- sum(0_vector)
E_vector <- n * pi_vector
E_vector
```

\#\# [1] 74.1049 .4061 .7561 .75

- X^{2} statistic:

```
Xsq \(=\operatorname{sum}\left(\left(O_{-} \text {vector }-E_{\text {_ }} \text { vector }\right)^{\wedge} 2 / E\right.\) vector \()\)
Xsq
```

\#\# [1] 18.00945

- p-value:

```
p_value <- 1 - pchisq(Xsq, df = \(k-1\) )
```

p_value
\#\# [1] 0.0004378808

3.5 Test in R

```
Xsq_test <- chisq.test(0_vector, p = pi_vector)
Xsq_test
##
## Chi-squared test for given probabilities
##
## data: O_vector
## X-squared = 18.009, df = 3, p-value = 0.0004379
```

- As the hypothesis is rejected, we look at the standardized residuals (z-scores):

```
Xsq_test$stdres
```

\#\# [1] $-0.013884873 .59500891-3.19602486$-0.11020775

- We conclude that group 1 and 4 is close to true distribution in Hirtshals, but in groups 2 og 3 we have a significant mismatch.

