Chi-square and ordinal tests

The ASTA team

Contents

1	Con	tingency tables	2
	1.1	A contingency table	2
	1.2	A conditional distribution	2
	1.3	Independence	3
	1.4	The Chi-squared test for independence	3
	1.5	Calculation of expected table	3
	1.6	Chi-squared (χ^2) test statistic	4
	1.7	χ^2 -test template	5
	1.8	The function chisq.test	5
	1.9	The χ^2 -distribution	6
	1.10	Summary	7
	1.11	Residual analysis	7
	1.12	Residual analysis in R	8
	1.13	Cramér's V	8
2	\mathbf{Ord}	inal variables	9
	2.1	Association between ordinal variables	9
	2.2	Gamma coefficient	9
	2.3	Gamma coefficient	10
	2.4	Example	10
3	Vali	dation of data	11
	3.1	Goodness of fit test	11
	3.2	Example	11
	3.3	Goodness of fit test	11
	3.4	Example	11
	3.5	Test in R	12

1 Contingency tables

1.1 A contingency table

- The dataset popularKids, we study the association between the factors Goals and Urban.Rural:
 - Urban.Rural: The students were selected from urban, suburban, and rural schools.
 - Goals: The students indicated whether good grades, athletic ability, or popularity was most important to them.
 - In total 478 students from grades 4-6.
- Based on a sample we make a cross tabulation of the factors and we get a so-called **contingency table** (krydstabel).

```
popKids <- read.delim("https://asta.math.aau.dk/datasets?file=PopularKids.txt")
library(mosaic)
tab <- tally(~Urban.Rural + Goals, data = popKids, margins = TRUE)
tab</pre>
```

##	(Goals			
##	Urban.Rural	Grades	Popular	Sports	Total
##	Rural	57	50	42	149
##	Suburban	87	42	22	151
##	Urban	103	49	26	178
##	Total	247	141	90	478

1.2 A conditional distribution

• Another representation of data is the probability distribution of Goals for each level of Urban.Rural, i.e. the sum in each row of the table is 1 (up to rounding):

##	Goals				
##	Urban.Rural	Grades	Popular	Sports	Sum
##	Rural	0.383	0.336	0.282	1.000
##	Suburban	0.576	0.278	0.146	1.000
##	Urban	0.579	0.275	0.146	1.000
##	Total	0.517	0.295	0.188	1.000

- Here we will talk about the conditional distribution of Goals given Urban.Rural.
- An important question could be:
 - Are the goals of the kids different when they come from urban, suburban or rural areas? I.e. are the rows in the table significantly different?
- There is (almost) no difference between urban and suburban, but it looks like rural is different.

1.3 Independence

- Recall, that two factors are **independent**, when there is no difference between the population's distributions of one factor given the levels of the other factor.
- Otherwise the factors are said to be dependent.
- If we e.g. have the following conditional population distributions of Goals given Urban.Rural:

##	(Goals		
##	Urban.Rural	Grades	Popular	Sports
##	Rural	0.5	0.3	0.2
##	Suburban	0.5	0.3	0.2
##	IIrhan	05	0.3	0 2

- Then the factors Goals and Urban.Rural are independent.
- We take a sample and "measure" the factors F_1 and F_2 . E.g. Goals and Urban.Rural for a random child.
- The hypothesis of interest today is:

 $H_0: F_1$ and F_2 are independent, $H_a: F_1$ and F_2 are dependent.

1.4 The Chi-squared test for independence

• Our best guess of the distribution of Goals is the relative frequencies in the sample:

```
tab <- tally(~Urban.Rural + Goals, data = popKids)
n <- margin.table(tab)
pctGoals <- round(margin.table(tab, 2) / n, 3)
pctGoals</pre>
```

Goals
Grades Popular Sports
0.517 0.295 0.188

- If we assume independence, then this is also a guess of the conditional distributions of Goals given Urban.Rural.
- The corresponding expected counts in the sample are then:

```
Goals
##
## Urban.Rural Grades
                               Popular
                                              Sports
                                                             \texttt{Sum}
##
      Rural
                 77.0 (0.517)
                               44.0 (0.295)
                                               28.1 (0.188) 149.0 (1.000)
                78.0 (0.517)
##
      Suburban
                                44.5 (0.295)
                                               28.4 (0.188) 151.0 (1.000)
##
      Urban
                 92.0 (0.517)
                               52.5 (0.295)
                                               33.5 (0.188) 178.0 (1.000)
                247.0 (0.517) 141.0 (0.295)
##
      Sum
                                               90.0 (0.188) 478.0 (1.000)
```

1.5 Calculation of expected table

pctexptab

##	(Goals							
##	Urban.Rural	Grades	3	Popula	ar	Sports	3	Sum	
##	Rural	77.0	(0.517)	44.0	(0.295)	28.1	(0.188)	149.0	(1.000)
##	Suburban	78.0	(0.517)	44.5	(0.295)	28.4	(0.188)	151.0	(1.000)
##	Urban	92.0	(0.517)	52.5	(0.295)	33.5	(0.188)	178.0	(1.000)
##	Sum	247.0	(0.517)	141.0	(0.295)	90.0	(0.188)	478.0	(1.000)

- We note that
 - The relative frequency for a given column is **column total** divided by **table total**. For example Grades, which is $\frac{247}{478} = 0.517$.
 - The expected value in a given cell in the table is then the cell's relative column frequency multiplied by the cell's row total. For example Rural and Grades: $149 \times 0.517 = 77.0$.
- This can be summarized to:
 - The expected value in a cell is the product of the cell's row total and column total divided by the table total

1.6 Chi-squared (χ^2) test statistic

• We have an observed table:

tab

##	(
##	Urban.Rural	Grades	Popular	Sports
##	Rural	57	50	42
##	Suburban	87	42	22
##	Urban	103	49	26

• And an **expected table**, if H_0 is true:

##	(Goals			
##	Urban.Rural	Grades	Popular	Sports	Sum
##	Rural	77.0	44.0	28.1	149.0
##	Suburban	78.0	44.5	28.4	151.0
##	Urban	92.0	52.5	33.5	178.0
##	Sum	247.0	141.0	90.0	478.0

- If these tables are "far from each other", then we reject H_0 . We want to measure the distance via the Chi-squared test statistic:
 - $-X^2 = \sum \frac{(f_o f_e)^2}{f_e}$: Sum over all cells in the table

 $-f_o$ is the frequency in a cell in the observed table

- $-f_e$ is the corresponding frequency in the expected table.
- We have:

$$X_{obs}^2 = \frac{(57-77)^2}{77} + \ldots + \frac{(26-33.5)^2}{33.5} = 18.8$$

• Is this a large distance??

1.7 χ^2 -test template.

- We want to test the hypothesis H_0 of independence in a table with r rows and c columns:
 - We take a sample and calculate X^2_{obs} the observed value of the test statistic.
 - p-value: Assume H_0 is true. What is then the chance of obtaining a larger X^2 than X_{obs}^2 , if we repeat the experiment?
- This can be approximated by the χ^2 -distribution with df = (r-1)(c-1) degrees of freedom.
- For Goals and Urban.Rural we have r = c = 3, i.e. df = 4 and $X_{obs}^2 = 18.8$, so the p-value is:

1 - pdist("chisq", 18.8, df = 4)

• There is clearly a significant association between Goals and Urban.Rural.

1.8 The function chisq.test

• All of the above calculations can be obtained by the function chisq.test.

```
tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)
testStat</pre>
```

##
Pearson's Chi-squared test
##
data: tab
X-squared = 18.828, df = 4, p-value = 0.0008497

```
testStat$expected
```

Goals
Urban.Rural Grades Popular Sports
Rural 76.99372 43.95188 28.05439
Suburban 78.02720 44.54184 28.43096
Urban 91.97908 52.50628 33.51464

• The frequency data can also be put directly into a matrix.

```
data <- c(57, 87, 103, 50, 42, 49, 42, 22, 26)
tab <- matrix(data, nrow = 3, ncol = 3)
row.names(tab) <- c("Rural", "Suburban", "Urban")
colnames(tab) <- c("Grades", "Popular", "Sports")
tab</pre>
```

##		Grades	Popular	Sports
##	Rural	57	50	42
##	Suburban	87	42	22
##	Urban	103	49	26

```
chisq.test(tab)
```

```
##
## Pearson's Chi-squared test
##
## data: tab
## X-squared = 18.828, df = 4, p-value = 0.0008497
```

1.9 The χ^2 -distribution

• The χ^2 -distribution with df degrees of freedom:

- Is never negative. And $X^2 = 0$ only happens if $f_e = f_o$.
- Has mean $\mu = df$
- Has standard deviation $\sigma = \sqrt{2df}$
- Is skewed to the right, but approaches a normal distribution when df grows.

1.10 Summary

- For the the Chi-squared statistic, X^2 , to be appropriate we require that the expected values have to be $f_e \ge 5$.
- Now we can summarize the ingredients in the Chi-squared test for independence.

TABLE 8.5: The Five Parts of the Chi-Squared Test of Independence

- 1. Assumptions: Two categorical variables, random sampling, $f_e \ge 5$ in all cells
- 2. Hypotheses: H_0 : Statistical independence of variables H_a : Statistical dependence of variables

3. Test statistic: χ² = ∑ (f_o - f_e)²/f_e, where f_e = (Row total)(Column total) Total sample size
4. P-value: P = right-tail probability above observed χ² value, for chi-squared distribution with df = (r - 1)(c - 1)
5. Conclusion: Report P-value If decision needed, reject H₀ at α-level if P ≤ α

1.11 Residual analysis

- If we reject the hypothesis of independence it can be of interest to identify the significant deviations.
- In a given cell in the table, $f_o f_e$ is the deviation between data and the expected values under the null hypothesis.
- We assume that $f_e \geq 5$.
- If H_0 is true, then the standard error of $f_o f_e$ is given by

 $se = \sqrt{f_e(1 - row proportion)(1 - column proportion))}$

• The corresponding *z*-score

$$z = \frac{f_o - f_e}{se}$$

should in 95% of the cells be between ± 2 . Values above 3 or below -3 should not appear.

- In popKids table cell Rural and Grade we got $f_e = 77.0$ and $f_o = 57$. Here column proportion = 0.517 and row proportion = 149/478 = 0.312.
- We can then calculate

$$z = \frac{57 - 77}{\sqrt{77(1 - 0.517)(1 - 0.312)}} = -3.95$$

- Compared to the null hypothesis there are way too few rural kids who find grades important.
- In summary: The standardized residuals allow for cell-by-cell $(f_e \text{ vs } f_o)$ comparision.

1.12 Residual analysis in R

• In R we can extract the standardized residuals from the output of chisq.test:

```
tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)
testStat$stdres</pre>
```

##	(Goals		
##	Urban.Rural	Grades	Popular	Sports
##	Rural	-3.9508449	1.3096235	3.5225004
##	Suburban	1.7666608	-0.5484075	-1.6185210
##	Urban	2.0865780	-0.7274327	-1.8186224

1.13 Cramér's V

• To measure the strength of the association, the Swedish mathematician Harald Cramér developed a measure which is estimated by

$$V = \sqrt{\frac{X^2}{n \cdot \min(r-1, c-1)}}$$

where r and c are the number of columns and rows in the contingency table and n is the sample size.

- Property:
 - Cramér's V lies between 0(no association) and 1(complete association)
- In the situation with the factors Goals and Urban.Rural from the dataset popularKids we get

$$V = \sqrt{\frac{X^2}{n \cdot \min(r - 1, c - 1)}} = \sqrt{\frac{18.8}{479 \cdot \min(3 - 1, 3 - 1)}} = 0.14$$

which indicates a weak (but significant) association.

• The function CramerV in the package DescTools gives you the value and a confidence interval

library(DescTools)

```
##
## Attaching package: 'DescTools'
## The following object is masked from 'package:mosaic':
##
MAD
CramerV(tab, conf = 0.95, type = "perc")
```

Cramer V lwr.ci upr.ci
0.14033592 0.06014641 0.19419139

2 Ordinal variables

2.1 Association between ordinal variables

- For a random sample of black males the General Social Survey in 1996 asked two questions:
 - Q1: What is your yearly income (income)?
 - Q2: How satisfied are you with your job (satisfaction)?
- Both measurements are on an ordinal scale.

	VeryD	LittleD	ModerateS	VeryS
$< 15 \mathrm{k}$	1	3	10	6
15-25k	2	3	10	7
25-40k	1	6	14	12
> 40k	0	1	9	11

- We might do a chi-square test to see whether Q1 and Q2 are associated, but the test does not exploit the ordinality.
- We shall consider a test that incorporates ordinality.

2.2 Gamma coefficient

- Consider a pair of respondents, where **respondent 1** is below **respondent 2** in relation to Q1.
 - If **respondent 1** is also below **respondent 2** in relation to Q2 then the pair is *concordant*.
 - If **respondent 1** is above **respondent 2** in relation to Q2 then the pair is *disconcordant*.
- Let:

C = the number of concordant pairs in our sample.

D = the number of disconcordant pairs in our sample.

• We define the estimated gamma coefficient

$$\hat{\gamma} = \frac{C - D}{C + D} = \underbrace{\frac{C}{C + D}}_{concordant \ prop.} - \underbrace{\frac{D}{C + D}}_{discordant \ prop.}$$

2.3 Gamma coefficient

- Properties:
 - Gamma lies between -1 og 1
 - The sign tells whether the association is positive or negative
 - Large absolute values correspond to strong association
- The standard error $se(\hat{\gamma})$ on $\hat{\gamma}$ is complicated to calculate, so we leave that to software.
- We can now determine a 95% confidence interval:

$$\hat{\gamma} \pm 1.96 se(\hat{\gamma})$$

and if zero is contained in the interval, then there is no significant association, when we perform a test with a 5% significance level.

2.4 Example

• First, we need to install the package vcdExtra, which has the function GKgamma for calculating gamma. It also has the dataset on job satisfaction and income built-in:

```
library(vcdExtra)
JobSat
```

CI

```
##
           satisfaction
##
             VeryD LittleD ModerateS VeryS
  income
                                    10
                                           6
##
     < 15k
                 1
                          3
                 2
                                           7
##
     15-25k
                          3
                                    10
##
     25-40k
                 1
                          6
                                    14
                                          12
##
     > 40k
                 0
                          1
                                     9
                                          11
GKgamma(JobSat, level = 0.90)
## gamma
                 : 0.221
## std. error
                 : 0.117
```

: 0.028 0.414

• A positive association. Marginally significant at the 10% level, but not so at the 5% level.

3 Validation of data

3.1 Goodness of fit test

- You have collected a sample and want to know, whether the sample is representative for people living in Hirtshals.
- E.g. whether the distribution of gender, age, or profession in the sample do not differ significantly from the distribution in Hirtshals.
- Actually, you know how to do that for binary variables like gender, but not if you e.g. have 6 agegroups.

3.2 Example

• As an example we look at k groups, where data from Hjørring kommune tells us the distribution in Hirtshals is given by the vector

$$\pi = (\pi_1, \ldots, \pi_k),$$

where π_i is the proportion which belongs to group number i, i = 1, 2..., k in Hirtshals.

• Consider the sample represented by the vector:

$$O = (O_1, \ldots, O_k),$$

where O_i is the observed number of individuals in group number i, i = 1, 2, ..., k.

• The total number of individuals:

$$n = \sum_{i=1}^{k} O_i.$$

• The expected number of individuals in each group, if we have a sample from Hirtshals:

$$E_i = n\pi_i, \ i = 1, 2, \dots, k$$

3.3 Goodness of fit test

• We will use the following measure to see how far away the observed is from the expected:

$$X^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

• If this is large we reject the hypothesis that the sample has the same distribution as Hirtshals. The reference distribution is the χ^2 with k-1 degrees of freedom.

3.4 Example

• Assume we have four groups and that the true distribution is given by:

k <- 4 pi_vector <- c(0.3, 0.2, 0.25, 0.25)

• Assume that we have the following sample:

```
O_vector <- c(74, 72, 40, 61)
```

• Expected number of individuals in each group:

```
n <- sum(0_vector)
E_vector <- n * pi_vector
E_vector</pre>
```

[1] 74.10 49.40 61.75 61.75

• X^2 statistic:

Xsq = sum((0_vector - E_vector)^2 / E_vector)
Xsq

[1] 18.00945

• *p*-value:

```
p_value <- 1 - pchisq(Xsq, df = k-1)
p_value</pre>
```

[1] 0.0004378808

3.5 Test in R

Xsq_test <- chisq.test(0_vector, p = pi_vector)
Xsq_test</pre>

##
Chi-squared test for given probabilities
##
data: O_vector
X-squared = 18.009, df = 3, p-value = 0.0004379

• As the hypothesis is rejected, we look at the standardized residuals (z-scores):

Xsq_test\$stdres

[1] -0.01388487 3.59500891 -3.19602486 -0.11020775

• We conclude that group 1 and 4 is close to true distribution in Hirtshals, but in groups 2 og 3 we have a significant mismatch.