# Data collection and data wrangling 

The ASTA team

## Contents

1 Data ..... 1
1.1 Data example ..... 1
2 Summaries and plots of qualitative variables ..... 2
2.1 Tables of qualitative variables ..... 2
2.2 Plots of qualitative variables ..... 2
3 Target population and random sampling ..... 5
3.1 Population parameters ..... 5
3.2 Aim of statistics ..... 6
3.3 Random sampling schemes ..... 6
4 Biases ..... 6
4.1 Types of biases ..... 6
4.2 Example of sample bias: United States presidential election, 1936 ..... 6
4.3 Example of response bias: Wording matters ..... 7
4.4 Example of response bias: Order of questions matter ..... 7
4.5 Example of survivior bias: Bullet holes of honor ..... 8

## 1 Data

### 1.1 Data example

We use data about pengiuns from the R package palmerpenguins

```
pingviner <- palmerpenguins::penguins
pingviner
## # A tibble: 344 x 8
## species island bill_length_mm bill_depth_mm flipp~ body~ sex year
## <fctr> <fctr> <dbl> <dbl> <int> <int> <fct> <int>
## 1 Adelie Torgersen 39.1 18.7 181 3750 male 2007
## 2 Adelie Torgersen 39.5 17.4 186 3800 fema~ 2007
## 3 Adelie Torgersen 40.3 18.0 195 3250 fema~ 2007
## 4 Adelie Torgersen NA NA NA NA <NA> 2007
## 5 Adelie Torgersen 36.7 19.3 193 3450 fema~ 2007
## 6 Adelie Torgersen 39.3 20.6 190 3650 male 2007
```

| \#\# | 7 Adelie | Torgersen | 38.9 | 17.8 | 181 | 3625 | fema~ | 2007 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \#\# | 8 Adelie | Torgersen | 39.2 | 19.6 | 195 | 4675 | male | 2007 |
| \#\# 9 Adelie | Torgersen | 34.1 | 18.1 | 193 | 3475 | <NA> | 2007 |  |
| \#\# 10 Adelie | Torgersen | 42.0 | 20.2 | 190 | 4250 | <NA> | 2007 |  |
| \#\# \# ... with 334 more rows |  |  |  |  |  |  |  |  |

## 2 Summaries and plots of qualitative variables

### 2.1 Tables of qualitative variables

- The main function to make tables from a data frame of observations is tally() which tallies (counts up) the number of observations within a given category. E.g:
tally(~species, data = pingviner)

| \#\# | species |  |  |
| :--- | ---: | ---: | ---: |
| \#\# | Adelie Chinstrap | Gentoo |  |
| \#\# | 152 | 68 | 124 |

tally(species ~ island, data = pingviner)

| \#\# | island |  |  |  |
| :--- | :--- | ---: | ---: | ---: |
| \#\# | species | Biscoe | Dream | Torgersen |
| \#\# | Adelie | 44 | 56 | 52 |
| \#\# | Chinstrap | 0 | 68 | 0 |
| \#\# | Gentoo | 124 | 0 | 0 |

### 2.2 Plots of qualitative variables

- The main plotting functions for qualitative variables are gf_percents() and gf_bar(). E.g:

```
gf_percents(~species, data = pingviner)
```




```
gf_percents(~species, fill = ~sex, data = pingviner, position = position_dodge())
```



## 3 Target population and random sampling

### 3.1 Population parameters

- When the sample size grows, then e.g. the mean of the sample, $\bar{y}$, will stabilize around a fixed value, $\mu$, which is usually unknown. The value $\mu$ is called the population mean.
- Correspondingly, the standard deviation of the sample, $s$, will stabilize around a fixed value, $\sigma$, which is usually unknown. The value $\sigma$ is called the population standard deviation.
- Notation:
$-\mu(\mathrm{mu})$ denotes the population mean.
$-\sigma$ (sigma) denotes the population standard deviation.

| Population | Sample |
| :---: | :---: |
| $\mu$ | $\bar{y}$ |
| $\sigma$ | $s$ |

### 3.1.1 A word about terminology

- Standard deviation: a measure of variability of a population or a sample.
- Standard error: a measure of variability of an estimate. For example, a measure of variability of the sample mean.


### 3.2 Aim of statistics

- Statistics is all about "saying something" about a population.
- Typically, this is done by taking a random sample from the population.
- The sample is then analysed and a statement about the population can be made.
- The process of making conclusions about a population from analysing a sample is called statistical inference.


### 3.3 Random sampling schemes

Possible strategies for obtaining a random sample from the target population are explained in Agresti section 2.4:

- Simple sampling: each possible sample of equal size equally probable
- Systematic sampling
- Stratified sampling
- Cluster sampling
- Multistage sampling
- ...


## 4 Biases

### 4.1 Types of biases

Agresti section 2.3:

- Sampling/selection bias
- Probability sampling: each sample of size $n$ has same probability of being sampled
* Still problems: undercoverage, groups not represented (inmates, homeless, hospitalized, ...)
- Non-probability sampling: probability of sample not possible to determine
* E.g. volunteer sampling
- Response bias
- E.g. poorly worded, confusing or even order of questions
- Lying if think socially unacceptable
- Non-response bias
- Non-response rate high; systematic in non-responses (age, health, believes)


### 4.2 Example of sample bias: United States presidential election, 1936

(Based on Agresti, this and this.)

- Current president: Franklin D. Roosevelt
- Election: Franklin D. Roosevelt vs Alfred Landon (Republican governor of Kansas)
- Literary Digest: magazine with history of accurately predicting winner of past 5 presidential elections


### 4.2.1 Results

- Literary Digest poll: Landon: 57\%; Roosevelt: $43 \%$
- Actual results: Landon: 38\%; Roosevelt: $62 \%$
- Sampling error: $57 \%-38 \%=19 \%$
- Practically all of the sampling error was the result of sample bias
- Poll size of $>2$ mio. individuals participated - extremely large poll


### 4.2.2 Problems (biases)

- Mailing list of about 10 mio. names was created
- Based on every telephone directory, lists of magasine subscribers, rosters of clubs and associations, and other sources
- Each one of 10 mio. received a mock ballot and asked to return the marked ballot to the magazine
- "respondents who returned their questionnaires represented only that subset of the population with a relatively intense interest in the subject at hand, and as such constitute in no sense a random sample ... it seems clear that the minority of anti-Roosevelt voters felt more strongly about the election than did the pro-Roosevelt majority" (The American Statistician, 1976)
- Biases:
- Sample bias
* List generated towards middle- and upper-class voters (e.g. 1936 and telephones)
* Many unemployed (club memberships and magazine subscribers)
- Non-response bias
* Only responses from 2.3/2.4 mio out of 10 million people


### 4.3 Example of response bias: Wording matters

New York Times/CBS News poll on attitude to increased fuel taxes

- "Are you in favour of a new gasoline tax?" - $12 \%$ said yes.
- "Are you in favour of a new gasoline tax to decrease US dependency on foreign oil?" - $55 \%$ said yes.
- "Do you think a new gas tax would help to reduce global warming?" - $59 \%$ said yes.


### 4.4 Example of response bias: Order of questions matter

US study during cold war asked two questions:
1 "Do you think that US should let Russian newspaper reporters come here and sent back whatever they want?"

2 "Do you think that Russia should let American newspaper reporters come in and sent back whatever they want?"

The percentage of yes to question 1 was $36 \%$, if it was asked first and $73 \%$, when it was asked last.

### 4.5 Example of survivior bias: Bullet holes of honor

(Based on this.)

- World War II
- Royal Air Force (RAF), UK
- Lost many planes to German anti-aircraft fire
- Armor up!
- Where?
- Count up all the bullet holes in planes that returned from missions
* Put extra armor in the areas that attracted the most fire
- Hungarian-born mathematician Abraham Wald:
- If a plane makes it back safely with a bunch of bullet holes in its wings: holes in the wings aren't very dangerous
* Survivorship bias
- Armor up the areas that (on average) don't have any bullet holes
* They never make it back, apparently dangerous

| Section of plane | Bullet holes per square foot |
| :--- | :---: |
| Engine | 1.11 |
| Fuselage | 1.73 |
| Fuel system | 1.55 |
| Rest of the plane | 1.80 |

(See also this xkcd)

