Intro and descriptive statistics The ASTA team

Contents

1	Soft	Software										
	1.1	Rstudio	1									
	1.2	${f R}$ extensions	1									
	1.3	${f R}$ help	2									
2	2 Data											
	2.1	Data example	2									
	2.2	Data types	3									
3	Graphics for quantitative variables											
	3.1	Scatterplot	3									
	3.2	Histogram	6									
4	nmaries of quantitative variables	7										
	4.1	Percentiles	7									
	4.2	Boxplot	8									
	4.3	Measures of center of data: Mean and median	9									
	4.4	Measures of variability of data: range, standard deviation and variance	10									

1 Software

1.1 Rstudio

- Make a folder on your computer where you want to keep files to use in **Rstudio**. **Do NOT use Danish characters æ**, **ø**, **å** in the folder name (or anywhere in the path to the folder).
- Set the working directory to this folder: Session -> Set Working Directory -> Choose Directory (shortcut: Ctrl+Shift+H).
- Make the change permanent by setting the default directory in: Tools -> Global Options -> Choose Directory.

1.2 R extensions

- The functionality of \mathbf{R} can be extended through libraries or packages (much like plugins in browsers etc.). Some are installed by default in \mathbf{R} and you just need to load them.
- To install a new package in **Rstudio** use the menu: Tools -> Install Packages
- You need to know the name of the package you want to install. You can also do it through a command:

install.packages("mosaic")

• When it is installed you can load it through the library command:

```
library(mosaic)
```

• This loads the mosaic package which has a lot of convenient functions for this course (we will get back to that later). It also prints a lot of info about functions that have been changed by the mosaic package, but you can safely ignore that.

1.3 R help

• You get help via ?<command>:

?sum

- Use tab to make Rstudio guess what you have started typing.
- Search for help:

help.search("plot")

• You can find a cheat sheet with the **R** functions we use for this course here.

2 Data

2.1 Data example

We use data about pengiuns from the R package palmerpenguins

```
pingviner <- palmerpenguins::penguins
pingviner</pre>
```

##	#	A tibble	: 344 x 8						
##		species	island	bill_length_mm	bill_depth_mm	flipp~	body~	sex	year
##		<fctr></fctr>	<fctr></fctr>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>	<fct></fct>	<int></int>
##	1	Adelie	Torgersen	39.1	18.7	181	3750	male	2007
##	2	Adelie	Torgersen	39.5	17.4	186	3800	fema~	2007
##	3	Adelie	Torgersen	40.3	18.0	195	3250	fema~	2007
##	4	Adelie	Torgersen	NA	NA	NA	NA	<na></na>	2007
##	5	Adelie	Torgersen	36.7	19.3	193	3450	fema~	2007
##	6	Adelie	Torgersen	39.3	20.6	190	3650	male	2007
##	7	Adelie	Torgersen	38.9	17.8	181	3625	fema~	2007
##	8	Adelie	Torgersen	39.2	19.6	195	4675	male	2007
##	9	Adelie	Torgersen	34.1	18.1	193	3475	<na></na>	2007
##	10	Adelie	Torgersen	42.0	20.2	190	4250	<na></na>	2007
##	#	with	334 more 1	rows					

• What is fundamentally different about the the variables (columns) species and body_mass_g?

2.2 Data types

2.2.1 Quantitative variables

- The measurements have numerical values.
- Quantative data often comes about in one of the following ways:
 - Continuous variables: measurements of time, length, size, age, mass, etc.
 - **Discrete variables**: counts of e.g. words in a text, hits on a webpage, number of arrivals to a queue in one hour, etc.
- Measurements like this have a well-defined scale and in **R** they are stored as the type **numeric**.
- It is important to be able to distinguish between discrete count variables and continuous variables, since this often determines how we describe the uncertainty of a measurement.
- Are any of the measurements in our data set quantitative?

2.2.2 Categorical/qualitative variables

- The measurement is one of a set of given categories, e.g. sex (male/female), social status, satisfaction score (low/medium/high), etc.
- The measurement is usually stored (which is also recommended) as a **factor** in **R**. The possible categories are called **levels**. Example: the levels of the factor "sex" is male/female.
- Factors have two so-called scales:
 - Nominal scale: There is no natural ordering of the factor levels, e.g. sex and hair color.
 - Ordinal scale: There is a natural ordering of the factor levels, e.g. social status and satisfaction score. A factor in R can have a so-called attribute assigned, which tells if it is ordinal.
- Are any of the measurements in our data set categorical/qualitative?

3 Graphics for quantitative variables

3.1 Scatterplot

• To study the relation between two quantitative variables a scatterplot is used:

gf_point(bill_length_mm ~ bill_depth_mm, color = ~ species, data = pingviner)

• We could also draw the graph for each species:

gf_point(bill_length_mm ~ bill_depth_mm | species, color = ~ species, data = pingviner)

• If we want a regression line along with the points we can do:

gf_point(bill_length_mm ~ bill_depth_mm, color = ~ species, data = pingviner) %>%
gf_lm()

3.2 Histogram

• For a single quantitative variable a histogram offers more details:

gf_histogram(~ bill_length_mm, data = pingviner)

- How to make a histogram for some variable x:
 - Divide the interval from the minimum value of x to the maximum value of x in an appropriate number of equal sized sub-intervals.
 - Draw a box over each sub-interval with the height being proportional to the number of observations in the sub-interval.

4 Summaries of quantitative variables

4.1 Percentiles

• The *p*th percentile is a value such that at least p% of the sample lies below or at this value and at least (100 - p)% of the sample lies above or at the value.

```
Q <- quantile(bill_length_mm ~ species, data = pingviner, na.rm = TRUE)
Q</pre>
```

species 0% 25% 50% 75% 100% ## 1 Adelie 32 37 39 41 46 51 58 ## 2 Chinstrap 41 46 50 ## 3 45 Gentoo 41 47 50 60

• 50-percentile is the **median** and it is a measure of the center of data as the number of data points below the median is the samme as the number above the median.

- 0-percentile is the **minimum** value.
- 25-percentile is called the lower quartile (Q1). Median of lower 50% of data.
- 75-percentile is called the upper quartile (Q3). Median of upper 50% of data.
- 100-percentil is the **maximum** value.
- Interquartile Range (IQR): a measure of variability given by the difference of the upper and lower quartiles.

4.2 Boxplot

Boxplot can be good for comparing groups (notice we put the values on the y-axis here as it is more conventional for boxplots):

```
gf_boxplot(bill_length_mm ~ species, color = ~ species, data = pingviner)
```


4.2.1 How to draw a box plot

- Box:
 - Calculate the median, lower and upper quartiles.
 - Plot a line by the median and draw a box between the upper and lower quartiles.
- Whiskers:
 - Calculate interquartile range and call it IQR.

- Calculate the following values:
 - * L = lower quartile 1.5*IQR
 - * U = upper quartile + 1.5*IQR
- Draw a line from lower quartile to the smallest measurement, which is larger than L.
- Similarly, draw a line from upper quartile to the largest measurement which is smaller than U.
- Outliers: Measurements smaller than L or larger than U are drawn as circles.

Note: Whiskers are minimum and maximum of the observations that are not deemed to be outliers.

Gentoo bill length

4.3 Measures of center of data: Mean and median

• A number of numerical summaries can be retrieved using the favstats command:

favstats(bill_length_mm ~ species, data = pingviner)

species min Q1 median Q3 max mean n missing sd ## 1 Adelie 32 37 39 41 46 39 2.7 151 1 ## 2 Chinstrap 49 3.3 68 0 41 46 50 51 58 ## 3 Gentoo 41 45 47 50 60 48 3.1 123 1

• The observed values of bill_length_mm are $y_1 = 46.1$, $y_2 = 50, \ldots, y_n = 49.9$, where there are a total of n = 123 values.

As previously defined this constitutes a **sample**.

• mean = 48 is the **average** of the sample, which is calculated by

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i.$$

We may also call \bar{y} the (empirical) mean or the sample mean. It is calculated using mean() in **R**.

- median = 47 is calculated using median() in \mathbf{R} .
- An important property of the **mean** and the **median** is that they have the same unit as the observations (e.g. millimeter).

4.4 Measures of variability of data: range, standard deviation and variance

- The **range** is the difference of the largest and smallest observation (**range**() in **R**).
- The (empirical) variance (var() in R) is the average of the squared deviations from the mean:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}$$

- sd = standard deviation = $s = \sqrt{s^2}$ (sd() in R).
- Note: If the observations are measured in mm, the **variance** has unit mm² which is hard to interpret. The **standard deviation** on the other hand has the same unit as the observations.
- The standard deviation describes how much data varies around the (empirical) mean.

4.4.1 The empirical rule

If the histogram of the sample looks like a bell shaped curve, then

- about 68% of the observations lie between $\bar{y} s$ and $\bar{y} + s$.
- about 95% of the observations lie between $\bar{y} 2s$ and $\bar{y} + 2s$.
- All or almost all (99.7%) of the observations lie between $\bar{y} 3s$ and $\bar{y} + 3s$.