Help

?
??
example()
apropos()
help.search()

Packages

In order to use functionalities from a certain package, we need to first install and then load the package:

```
# install package (do once):
install.packages("")
```

load package (do once in every script):
require(); library()

Formula syntax

Most of the functions that we need for this course uses a formula syntax:

goal(y ~ x | z, data = mydata, ...)

where **goal** may be a function for plotting, calculating numerical summaries or making inference.

For plots:

- y is y-axis variable
- $\bullet~\mathbf{x}$ is x-axis variable
- z a conditioning variable (separate panels).

For other things:

'y ~ x | z' can usually be read 'y is modeled by (or depends on) x differently for each z'.

Numerical summaries

These functions from the ${\sf mosaic}{\operatorname{-package}}$ uses a formula syntax.

<pre>favstats() tally()</pre>		min/max, tabulate		etc.
<pre>mean()</pre>	#	LUOULULE		
<pre>median()</pre>				
sd()	#	standard	deviatio	n
<pre>cor()</pre>	#	correlati	on	

General graphics

gf_boxplot()
gf_point() # scatter plot
gf_histogram()
gf_bar() # bar graph

mplot(HELPrct)# different plots
splom() # matrix of scatter plots

Distributions

plotDist() # plot theoretical distribution pdist() # find prob. from percentile qdist() # find percentile from prob.

Hypothesis tests

t.test()	#	t-test
<pre>binom.test()</pre>	#	binomial (exact) test
<pre>prop.test()</pre>	#	approximate test
fisher.test()	#	Fisher's exact test
<pre>cor.test()</pre>	#	correlation test
chisq.test()	#	chi-square test

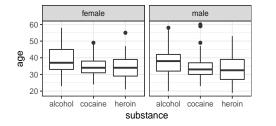
Linear regression

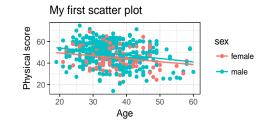
model <- lm()	#	fit linear model
<pre>summary(model)</pre>	#	model fit summary
<pre>coef(model)</pre>	#	estimated parameters
<pre>confint(model)</pre>	#	CI for estimates
anova(model)	#	F-tests, etc.
drop1(model)		
<pre>rstudent(model)</pre>	#	Studentized residuals
<pre>fitted(model)</pre>	#	fitted values
<pre>plotModel(model)</pre>	#	plot regression lines

model <- glm() # generalized linear model</pre>

Data

Load data: read.file(); read.delim(); read.csv()


# Data information				
<pre>nrow(); ncol()</pre>	# data dimensions			
head()	<i># extract first part of data</i>			
tail()	# extract last part of data			
colnames()	# column names			
rownames()	# row names			
<pre>summary()</pre>				


# Alter/create	data:
<pre>subset()</pre>	# subset data by condition
factor()	<i># create grouping variable</i>
relevel()	<i># change reference level</i>
cut()	<i># cut numeric into intervals</i>
round()	# rounding numbers
c ()	<i># concatenate numerics</i>
seq()	<i># create sequence</i>
with()	
aggregate()	
	<i># sum table entries</i>

The following are examples of how some of the functions work (based on mosaic's built-in data set, HELPrct). We assume mosaic is already loaded. In some chunks only the code and not the output is shown (to see the output, copy-paste the code chunk of interest into your console).

```
# Create a contingency table for 'sex' and
# 'substance':
tally(sex ~ substance, data = HELPrct)
        substance
         alcohol cocaine heroin
sex
  female
              36
                      41
                             30
  male
             141
                     111
                             94
# Calculate mean 'age' for men and women:
mean(age ~ sex, data = HELPrct)
female male
36.25 35.47
# 'favstats' can be used to retrieve different
# summaries of the data (here for 'age'
# separated by sex) :
favstats(age ~ sex, data = HELPrct)
     sex min Q1 median Q3 max mean
                                         sd
1 female 21 31
                    35 40.5 58 36.25 7.585
2
   male 19 30
                    35 40.0 60 35.47 7.750
    n missing
1 107
            0
2 346
            0
```

Boxplot of 'age' for each substance with # different panels for men and women: gf_boxplot(age ~ substance | sex, data = HELPrct)

Note: gf_point creates the scatter plot, gf_lm adds regression lines and gf_labs adds a title and change axis labels.

Use an exact binomial test to test whether # the proportion of women is 50 %: binom.test(~sex, p = 0.5, data = HELPrct)

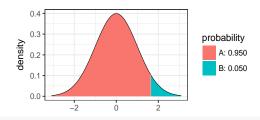
Use a t-test to test whether the mean age of # men and women are the same: t.test(age ~ sex, data = HELPrct)

Use a chi-square test to test for # independence between 'homeless' and 'sex': tab <- tally(homeless ~ sex, data = HELPrct) chisq.test(tab)

Use an approximate test to see whether the # proportion of homeless is the same for men # and women:

prop.test(homeless ~ sex, data = HELPrct)

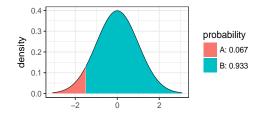
```
# Investigate whether we may drop 'age' as an
# explanotary variable for 'pcs', when
# 'substance' is in the linear model too:
mod1 <- lm(pcs ~ age + substance, data = HELPrct)
mod2 <- lm(pcs ~ substance, data = HELPrct)
anova(mod1, mod2)
```


Analysis of Variance Table

```
Model 1: pcs ~ age + substance
Model 2: pcs ~ substance
Res.Df RSS Df Sum of Sq F Pr(>F)
1 449 47517
2 450 50139 -1 -2623 24.8 9.2e-07
```

Illustration of how the functions pdist and qdist works:

```
# Calculate the 95th percentile for the
# standard normal distribution (i.e., mean = 0
# and standard deviation = 1):
qdist("norm", p = 0.95, mean = 0, sd = 1)
```


[1] 1.645

Calculate the probability of getting a value
less than -1.5 for the standard normal
distribution:

```
pdist("norm", q = -1.5, mean = 0, sd = 1)
```

[1] 0.06681

