Data collection and data wrangling

The ASTA team

Contents

1	Data 1					
	1.1	Data example	1			
2	Sun	nmaries and plots of qualitative variables	2			
	2.1	Tables of qualitative variables	2			
	2.2	Plots of qualitative variables	2			
3	Sun	nmaries of quantitative variables	5			
	3.1	Percentiles	5			
	3.2	Measures of center of data: Mean and median	6			
	3.3	Measures of variability of data: range, standard deviation and variance	6			
4	Tar	get population and random sampling	7			
	4.1	Population parameters	7			
	4.2	Aim of statistics	8			
	4.3	Random sampling schemes	8			
5	Bia	ses	8			
	5.1	Types of biases	8			
	5.2	Example of sample bias: United States presidential election, 1936	8			
	$5.2 \\ 5.3$		8 9			
	-	Example of sample bias: United States presidential election, 1936	-			

1 Data

1.1 Data example

We use data about pengiuns from the R package palmer penguins

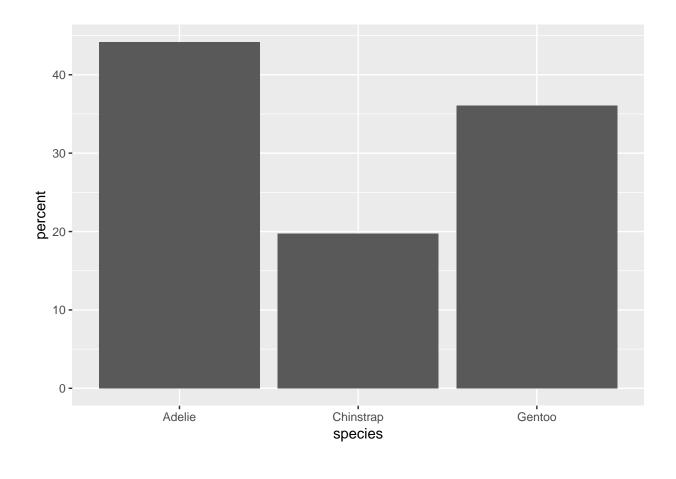
pingviner <- palmerpenguins::penguins
pingviner</pre>

## # A tibble: 344 x 8								
##	species	island	bill_length_mm	bill_depth_mm	flipp~	body~	sex	year
##	<fctr></fctr>	<fctr></fctr>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>	<fct></fct>	<int></int>
##	1 Adelie	Torgersen	39.1	18.7	181	3750	male	2007
##	2 Adelie	Torgersen	39.5	17.4	186	3800	fema~	2007
##	3 Adelie	Torgersen	40.3	18.0	195	3250	fema~	2007
##	4 Adelie	Torgersen	NA	NA	NA	NA	<na></na>	2007
##	5 Adelie	Torgersen	36.7	19.3	193	3450	fema~	2007
##	6 Adelie	Torgersen	39.3	20.6	190	3650	male	2007
##	7 Adelie	Torgersen	38.9	17.8	181	3625	fema~	2007
##	8 Adelie	Torgersen	39.2	19.6	195	4675	male	2007
##	9 Adelie	Torgersen	34.1	18.1	193	3475	<na></na>	2007
##	10 Adelie	Torgersen	42.0	20.2	190	4250	<na></na>	2007
##	# with	334 more 1	rows					

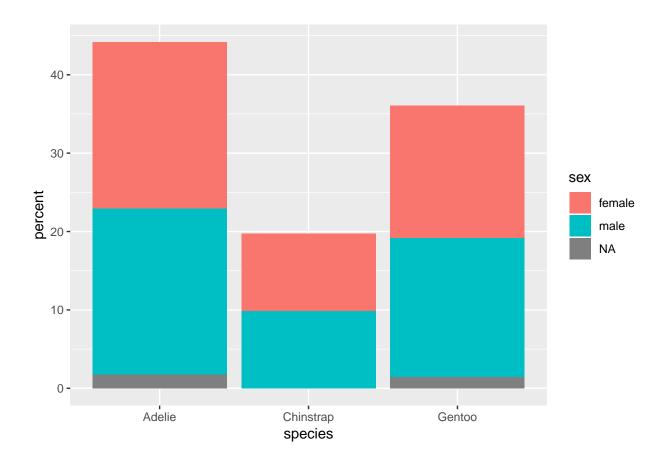
Summaries and plots of qualitative variables $\mathbf{2}$

2.1Tables of qualitative variables

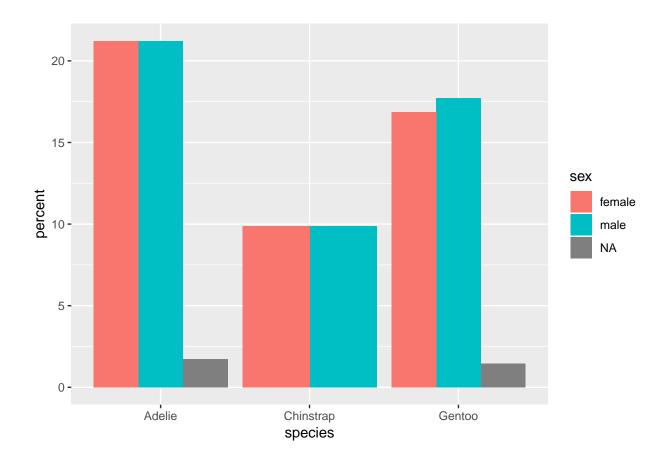
• The main function to make tables from a data frame of observations is tally() which tallies (counts up) the number of observations within a given category. E.g.:


tally(~species, data = pingviner)

species ## Adelie Chinstrap Gentoo ## 152 68 124 tally(species ~ island, data = pingviner) ## island ## species Biscoe Dream Torgersen ## Adelie 44 56 52 0 ## Chinstrap 0 68 ## Gentoo 124 0 0


2.2Plots of qualitative variables

• The main plotting functions for qualitative variables are gf_percents() and gf_bar(). E.g:


```
gf_percents(~species, data = pingviner)
```


gf_percents(~species, fill = ~sex, data = pingviner)

gf_percents(~species, fill = ~sex, data = pingviner, position = position_dodge())

Summaries of quantitative variables 3

3.1Percentiles

- The *p*th percentile is a value such that about p% of the sample lies below or at this value and about (100 - p)% of the sample lies above it.
- To calculate a percentile, first sort data in increasing order. For the bill_length_mm of Gentoo penguins it is:

$$y_{(1)} = 40.9, y_{(2)} = 41.7, y_{(3)} = 42, \dots, y_{(n)} = 59.6$$

Here the number of observations is n = 123 (omitting any NAs).

- Find the 5th percentile (i. e. p = 5):

 - The observation number corresponding to the 5-percentile is $N = \frac{123 \cdot 5}{100} = 6.15$. So the 5-percentile lies between the observations with observation number k = 6 and k + 1 = 7. That is, its value lies somewhere in the interval between $y_6 = 42.8$ and $y_7 = 42.9$.
 - One of several methods for estimating the 5-percentile from the value of N is defined as:

$$y_{(k)} + (N-k)(y_{(k+1)} - y_{(k)})$$

which in this case states

$$y_6 + (6.15 - 6)(y_7 - y_6) = 42.8 + 0.15 \cdot (42.9 - 42.8) = 42.81$$

3.2 Measures of center of data: Mean and median

• A number of numerical summaries can be retrieved using the favstats command:

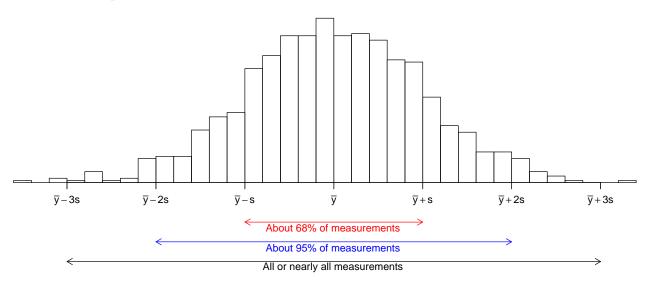
favstats(bill_length_mm ~ species, data = pingviner)

##		species	min	Q1	median	QЗ	max	mean	sd	n	missing
##	1	Adelie	32	37	39	41	46	39	2.7	151	1
##	2	Chinstrap	41	46	50	51	58	49	3.3	68	0
##	3	Gentoo	41	45	47	50	60	48	3.1	123	1

- The observed values of bill_length_mm are $y_1 = 46.1$, $y_2 = 50, \ldots, y_n = 49.9$, where there are a total of n = 123 values (omitting any NAs). As previously defined this constitutes a sample.
- mean = 48 is the average of the sample, which is calculated by

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i.$$

- We may also call \bar{y} the (empirical) mean or the sample mean. It is calculated using mean() in R. • median = 47 is the 50-percentile, i.e. the value that splits the sample in 2 groups of equal size. It is calculated using median() in R.
- An important property of the **mean** and the **median** is that they have the same unit as the observations (e.g. millimeter).


3.3 Measures of variability of data: range, standard deviation and variance

- The range is the difference of the largest and smallest observation (range() in **R**).
- The (empirical) variance (var() in R) is the average of the squared deviations from the mean:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}.$$

- sd = standard deviation = $s = \sqrt{s^2}$ (sd() in R).
- Note: If the observations are measured in mm, the **variance** has unit mm² which is hard to interpret. The **standard deviation** on the other hand has the same unit as the observations.
- The standard deviation describes how much data varies around the (empirical) mean.

3.3.1 The empirical rule

If the histogram of the sample looks like a bell shaped curve, then

- about 68% of the observations lie between $\bar{y} s$ and $\bar{y} + s$.
- about 95% of the observations lie between $\bar{y} 2s$ and $\bar{y} + 2s$.
- All or almost all (99.7%) of the observations lie between $\bar{y} 3s$ and $\bar{y} + 3s$.

4 Target population and random sampling

4.1 Population parameters

- When the sample size grows, then e.g. the mean of the sample, \overline{y} , will stabilize around a fixed value, μ , which is usually unknown. The value μ is called the **population mean**.
- Correspondingly, the standard deviation of the sample, s, will stabilize around a fixed value, σ , which is usually unknown. The value σ is called the **population standard deviation**.
- Notation:
 - $-\mu$ (mu) denotes the population mean.
 - σ (sigma) denotes the population standard deviation.

Population	Sample
μ	\overline{y}
σ	s

4.1.1 A word about terminology

- Standard deviation: a measure of variability of a population or a sample.
- **Standard error**: a measure of variability of an estimate. For example, a measure of variability of the sample mean.

4.2 Aim of statistics

- Statistics is all about "saying something" about a population.
- Typically, this is done by taking a random sample from the population.
- The sample is then analysed and a statement about the population can be made.
- The process of making conclusions about a population from analysing a sample is called **statistical inference**.

4.3 Random sampling schemes

Possible strategies for obtaining a random sample from the target population are explained in Agresti section 2.4:

- Simple sampling: each possible sample of equal size equally probable
- Systematic sampling
- Stratified sampling
- Cluster sampling
- Multistage sampling
- ...

5 Biases

5.1 Types of biases

Agresti section 2.3:

- Sampling/selection bias
 - Probability sampling: each sample of size n has same probability of being sampled
 - * Still problems: undercoverage, groups not represented (inmates, homeless, hospitalized, ...)
 - Non-probability sampling: probability of sample not possible to determine
 - * E.g. volunteer sampling
- Response bias
 - E.g. poorly worded, confusing or even order of questions
 - Lying if think socially unacceptable
- Non-response bias
 - Non-response rate high; systematic in non-responses (age, health, believes)

5.2 Example of sample bias: United States presidential election, 1936

(Based on Agresti, this and this.)

- Current president: Franklin D. Roosevelt
- Election: Franklin D. Roosevelt vs Alfred Landon (Republican governor of Kansas)
- Literary Digest: magazine with history of accurately predicting winner of past 5 presidential elections

5.2.1 Results

- Literary Digest poll: Landon: 57%; Roosevelt: 43%
- Actual results: Landon: 38%; Roosevelt: 62%
- Sampling error: 57%-38% = 19%
 - Practically all of the sampling error was the result of sample bias
 - Poll size of >2 mio. individuals participated extremely large poll

5.2.2 Problems (biases)

- Mailing list of about 10 mio. names was created
 - Based on every telephone directory, lists of magasine subscribers, rosters of clubs and associations, and other sources
 - Each one of 10 mio. received a mock ballot and asked to return the marked ballot to the magazine
- "respondents who returned their questionnaires represented only that subset of the population with a relatively intense interest in the subject at hand, and as such constitute in no sense a random sample ... it seems clear that the minority of anti-Roosevelt voters felt more strongly about the election than

did the pro-Roosevelt majority" (The American Statistician, 1976)

- Biases:
 - Sample bias
 - * List generated towards middle- and upper-class voters (e.g. 1936 and telephones)
 - * Many unemployed (club memberships and magazine subscribers)
 - Non-response bias
 - * Only responses from 2.3/2.4 mio out of 10 million people

5.3 Example of response bias: Wording matters

New York Times/CBS News poll on attitude to increased fuel taxes

- "Are you in favour of a new gasoline tax?" 12% said yes.
- "Are you in favour of a new gasoline tax to decrease US dependency on foreign oil?" 55% said yes.
- "Do you think a new gas tax would help to reduce global warming?" 59% said yes.

5.4 Example of response bias: Order of questions matter

US study during cold war asked two questions:

1 "Do you think that US should let Russian newspaper reporters come here and sent back whatever they want?"

2 "Do you think that Russia should let American newspaper reporters come in and sent back whatever they want?"

The percentage of yes to question 1 was 36%, if it was asked first and 73%, when it was asked last.

5.5 Example of survivior bias: Bullet holes of honor

(Based on this.)

- World War II
- Royal Air Force (RAF), UK
 - Lost many planes to German anti-aircraft fire
- Armor up!
 - Where?
 - Count up all the bullet holes in planes that returned from missions
 - * Put extra armor in the areas that attracted the most fire
- Hungarian-born mathematician Abraham Wald:
 - If a plane makes it back safely with a bunch of bullet holes in its wings: holes in the wings aren't very dangerous
 - * Survivorship bias
 - Armor up the areas that (on average) don't have any bullet holes
 - * They never make it back, apparently dangerous

Section of plane	Bullet holes per square foot
Engine	1.11
Fuselage	1.73
Fuel system	1.55
Rest of the plane	1.80

(See also this xkcd)