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1 Software

1.1 Rstudio

• Make a folder on your computer where you want to keep files to use in Rstudio. Do NOT use
Danish characters æ, ø, å in the folder name (or anywhere in the path to the folder).

• Set the working directory to this folder: Session -> Set Working Directory -> Choose Directory
(shortcut: Ctrl+Shift+H).

• Make the change permanent by setting the default directory in: Tools -> Global Options -> Choose
Directory.

1.2 R extensions

• The functionality of R can be extended through libraries or packages (much like plugins in browsers
etc.). Some are installed by default in R and you just need to load them.

• To install a new package in Rstudio use the menu: Tools -> Install Packages
• You need to know the name of the package you want to install. You can also do it through a command:

install.packages("mosaic")

• When it is installed you can load it through the library command:

library(mosaic)

• This loads the mosaic package which has a lot of convenient functions for this course (we will get
back to that later). It also prints a lot of info about functions that have been changed by the mosaic
package, but you can safely ignore that.

1.3 R help

• You get help via ?<command>:
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?sum

• Use tab to make Rstudio guess what you have started typing.
• Search for help:

help.search("plot")

• You can find a cheat sheet with the R functions we use for this course here.

2 Data

2.1 Data example

We use data about pengiuns from the R package palmerpenguins

pingviner <- palmerpenguins::penguins
pingviner

## # A tibble: 344 x 8
## species island bill_length_mm bill_depth_mm flipp~ body~ sex year
## <fctr> <fctr> <dbl> <dbl> <int> <int> <fct> <int>
## 1 Adelie Torgersen 39.1 18.7 181 3750 male 2007
## 2 Adelie Torgersen 39.5 17.4 186 3800 fema~ 2007
## 3 Adelie Torgersen 40.3 18.0 195 3250 fema~ 2007
## 4 Adelie Torgersen NA NA NA NA <NA> 2007
## 5 Adelie Torgersen 36.7 19.3 193 3450 fema~ 2007
## 6 Adelie Torgersen 39.3 20.6 190 3650 male 2007
## 7 Adelie Torgersen 38.9 17.8 181 3625 fema~ 2007
## 8 Adelie Torgersen 39.2 19.6 195 4675 male 2007
## 9 Adelie Torgersen 34.1 18.1 193 3475 <NA> 2007
## 10 Adelie Torgersen 42.0 20.2 190 4250 <NA> 2007
## # ... with 334 more rows

• What is fundamentally different about the the variables (columns) species and body_mass_g?

2.2 Data types

2.2.1 Quantitative variables

• The measurements have numerical values.

• Quantative data often comes about in one of the following ways:

– Continuous variables: measurements of time, length, size, age, mass, etc.
– Discrete variables: counts of e.g. words in a text, hits on a webpage, number of arrivals to a

queue in one hour, etc.

• Measurements like this have a well-defined scale and in R they are stored as the type numeric.

• It is important to be able to distinguish between discrete count variables and continuous variables,
since this often determines how we describe the uncertainty of a measurement.
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• Are any of the measurements in our data set quantitative?

2.2.2 Categorical/qualitative variables

• The measurement is one of a set of given categories, e.g. sex (male/female), social status, satisfaction
score (low/medium/high), etc.

• The measurement is usually stored (which is also recommended) as a factor in R. The possible
categories are called levels. Example: the levels of the factor “sex” is male/female.

• Factors have two so-called scales:

– Nominal scale: There is no natural ordering of the factor levels, e.g. sex and hair color.
– Ordinal scale: There is a natural ordering of the factor levels, e.g. social status and satisfaction

score. A factor in R can have a so-called attribute assigned, which tells if it is ordinal.

• Are any of the measurements in our data set categorical/qualitative?

3 Graphics for quantitative variables

3.1 Scatterplot

• To study the relation between two quantitative variables a scatterplot is used:

gf_point(bill_length_mm ~ bill_depth_mm, color = ~ species, data = pingviner)
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• We could also draw the graph for each species:

gf_point(bill_length_mm ~ bill_depth_mm | species, color = ~ species, data = pingviner)
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• If we want a regression line along with the points we can do:

gf_point(bill_length_mm ~ bill_depth_mm, color = ~ species, data = pingviner) %>%
gf_lm()
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• A scatterplot is not very good for a single quantitative variable:

gf_point(1 ~ bill_length_mm, color = ~ species, data = pingviner)
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gf_point(species ~ bill_length_mm, color = ~ species, data = pingviner)
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3.2 Histogram

• For a single quantitative variable a histogram offers more details:

gf_histogram( ~ bill_length_mm, data = pingviner)
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• How to make a histogram for some variable x:

– Divide the interval from the minimum value of x to the maximum value of x in an appropriate
number of equal sized sub-intervals.

– Draw a box over each sub-interval with the height being proportional to the number of observations
in the sub-interval.

• Not great for comparing groups:

gf_histogram( ~ bill_length_mm, color = ~species, data = pingviner)
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3.3 Boxplot

Boxplot can be good for comparing groups (notice we put the values on the y-axis here as it is more
conventional for boxplots):

gf_boxplot(bill_length_mm ~ species, color = ~ species, data = pingviner)
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To understand the details of the boxplot we need to introduce percentiles/quantiles and in particular
quartiles which can be seen here:

Q <- quantile(bill_length_mm ~ species, data = pingviner, na.rm = TRUE)
Q

## species 0% 25% 50% 75% 100%
## 1 Adelie 32 37 39 41 46
## 2 Chinstrap 41 46 50 51 58
## 3 Gentoo 41 45 47 50 60

• 50-percentile is the median and it is a measure of the center of data.

• 0-percentile is the minimum value.

• 25-percentile is called the lower quartile (Q1). Median of lower 50% of data.

• 75-percentile is called the upper quartile (Q3). Median of upper 50% of data.

• 100-percentil is the maximum value.

• Interquartile Range (IQR): a measure of variability given by the difference of the upper and lower
quartiles:

• Details about how to find/calculate percentiles are postponed to later.
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3.3.1 How to draw a box plot

• Box:
– Calculate the median, lower and upper quartiles.
– Plot a line by the median and draw a box between the upper and lower quartiles.

• Whiskers:
– Calculate interquartile range and call it IQR.
– Calculate the following values:

∗ L = lower quartile - 1.5*IQR
∗ U = upper quartile + 1.5*IQR

– Draw a line from lower quartile to the smallest measurement, which is larger than L.
– Similarly, draw a line from upper quartile to the largest measurement which is smaller than U.

• Outliers: Measurements smaller than L or larger than U are drawn as circles.

Note: Whiskers are minimum and maximum of the observations that are not deemed to be outliers.
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4 Data wrangling

4.1 Selecting columns/variables

• To subset columns of data use select() (automatically loaded from dplyr package by mosaic):

# Assigning the data subset to an object
bill_data <- select(pingviner, bill_length_mm, bill_depth_mm,

species, sex, island, year)

# This particular subset can be written shorter by (overwriting the object):
bill_data <- select(pingviner, -flipper_length_mm, -body_mass_g)
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• Special role of first argument gives rise to this “pipe” (%>%) syntax:

bill_data <- pingviner %>% select(-flipper_length_mm, -body_mass_g)

• We read this as: first take the dataset pingviner and then select all columns except
flipper_length_mm and body_mass_g.

• The resulting dataset doesn’t have flipper length and body mass:

names(bill_data)

## [1] "species" "island" "bill_length_mm" "bill_depth_mm"
## [5] "sex" "year"

4.2 Filtering rows/cases

• We use filter() to subset rows/cases. E.g. all penguins from Biscoe islands:

pingviner %>% filter(island == "Biscoe")

## # A tibble: 168 x 8
## species island bill_length_mm bill_depth_mm flipper~ body_~ sex year
## <fctr> <fctr> <dbl> <dbl> <int> <int> <fct> <int>
## 1 Adelie Biscoe 37.8 18.3 174 3400 fema~ 2007
## 2 Adelie Biscoe 37.7 18.7 180 3600 male 2007
## 3 Adelie Biscoe 35.9 19.2 189 3800 fema~ 2007
## 4 Adelie Biscoe 38.2 18.1 185 3950 male 2007
## 5 Adelie Biscoe 38.8 17.2 180 3800 male 2007
## 6 Adelie Biscoe 35.3 18.9 187 3800 fema~ 2007
## 7 Adelie Biscoe 40.6 18.6 183 3550 male 2007
## 8 Adelie Biscoe 40.5 17.9 187 3200 fema~ 2007
## 9 Adelie Biscoe 37.9 18.6 172 3150 fema~ 2007
## 10 Adelie Biscoe 40.5 18.9 180 3950 male 2007
## # ... with 158 more rows

• All male Gentoo penguins with over 220 mm flippers:

pingviner %>% filter(sex == "male") %>%
filter(species == "Gentoo") %>%
filter(flipper_length_mm>220)

## # A tibble: 34 x 8
## species island bill_length_mm bill_depth_mm flipper~ body_~ sex year
## <fctr> <fctr> <dbl> <dbl> <int> <int> <fct> <int>
## 1 Gentoo Biscoe 50.0 16.3 230 5700 male 2007
## 2 Gentoo Biscoe 49.2 15.2 221 6300 male 2007
## 3 Gentoo Biscoe 48.7 15.1 222 5350 male 2007
## 4 Gentoo Biscoe 47.3 15.3 222 5250 male 2007
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## 5 Gentoo Biscoe 59.6 17.0 230 6050 male 2007
## 6 Gentoo Biscoe 49.6 16.0 225 5700 male 2008
## 7 Gentoo Biscoe 50.5 15.9 222 5550 male 2008
## 8 Gentoo Biscoe 50.5 15.9 225 5400 male 2008
## 9 Gentoo Biscoe 50.1 15.0 225 5000 male 2008
## 10 Gentoo Biscoe 50.4 15.3 224 5550 male 2008
## # ... with 24 more rows

• This could also have been done with a single filter() command (output not shown):

pingviner %>% filter(sex == "male" & species == "Gentoo" & flipper_length_mm>220)

• All penguins of species Gentoo or Adelie:

pingviner %>% filter(species == "Gentoo" | species == "Adelie")

## # A tibble: 276 x 8
## species island bill_length_mm bill_depth_mm flipp~ body~ sex year
## <fctr> <fctr> <dbl> <dbl> <int> <int> <fct> <int>
## 1 Adelie Torgersen 39.1 18.7 181 3750 male 2007
## 2 Adelie Torgersen 39.5 17.4 186 3800 fema~ 2007
## 3 Adelie Torgersen 40.3 18.0 195 3250 fema~ 2007
## 4 Adelie Torgersen NA NA NA NA <NA> 2007
## 5 Adelie Torgersen 36.7 19.3 193 3450 fema~ 2007
## 6 Adelie Torgersen 39.3 20.6 190 3650 male 2007
## 7 Adelie Torgersen 38.9 17.8 181 3625 fema~ 2007
## 8 Adelie Torgersen 39.2 19.6 195 4675 male 2007
## 9 Adelie Torgersen 34.1 18.1 193 3475 <NA> 2007
## 10 Adelie Torgersen 42.0 20.2 190 4250 <NA> 2007
## # ... with 266 more rows

• This would be the same as penguins which are not Chinstrap (output not shown):

pingviner %>% filter(species != "Chinstrap")

4.3 Arranging rows/cases

• We use arrange() to arrange the order of the rows/cases:

pingviner %>% filter(sex == "female") %>% arrange(body_mass_g)

## # A tibble: 165 x 8
## species island bill_length_mm bill_de~ flipper~ body_~ sex year
## <fctr> <fctr> <dbl> <dbl> <int> <int> <fct> <int>
## 1 Chinstrap Dream 46.9 16.6 192 2700 fema~ 2008
## 2 Adelie Biscoe 36.5 16.6 181 2850 fema~ 2008
## 3 Adelie Biscoe 36.4 17.1 184 2850 fema~ 2008
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## 4 Adelie Biscoe 34.5 18.1 187 2900 fema~ 2008
## 5 Adelie Dream 33.1 16.1 178 2900 fema~ 2008
## 6 Adelie Torgersen 38.6 17.0 188 2900 fema~ 2009
## 7 Chinstrap Dream 43.2 16.6 187 2900 fema~ 2007
## 8 Adelie Biscoe 37.9 18.6 193 2925 fema~ 2009
## 9 Adelie Dream 37.0 16.9 185 3000 fema~ 2007
## 10 Adelie Dream 37.3 16.8 192 3000 fema~ 2009
## # ... with 155 more rows

• Use arrange(desc()) for descending values:

pingviner %>% filter(sex == "female") %>% arrange(desc(body_mass_g))

## # A tibble: 165 x 8
## species island bill_length_mm bill_depth_mm flipper~ body_~ sex year
## <fctr> <fctr> <dbl> <dbl> <int> <int> <fct> <int>
## 1 Gentoo Biscoe 46.5 14.8 217 5200 fema~ 2008
## 2 Gentoo Biscoe 45.2 14.8 212 5200 fema~ 2009
## 3 Gentoo Biscoe 49.1 14.8 220 5150 fema~ 2008
## 4 Gentoo Biscoe 44.9 13.3 213 5100 fema~ 2008
## 5 Gentoo Biscoe 45.1 14.5 207 5050 fema~ 2007
## 6 Gentoo Biscoe 45.1 14.5 215 5000 fema~ 2007
## 7 Gentoo Biscoe 42.9 13.1 215 5000 fema~ 2007
## 8 Gentoo Biscoe 50.5 15.2 216 5000 fema~ 2009
## 9 Gentoo Biscoe 47.2 15.5 215 4975 fema~ 2009
## 10 Gentoo Biscoe 42.6 13.7 213 4950 fema~ 2008
## # ... with 155 more rows

5 Data

5.1 Data example

We use data about pengiuns from the R package palmerpenguins

pingviner <- palmerpenguins::penguins
pingviner

## # A tibble: 344 x 8
## species island bill_length_mm bill_depth_mm flipp~ body~ sex year
## <fctr> <fctr> <dbl> <dbl> <int> <int> <fct> <int>
## 1 Adelie Torgersen 39.1 18.7 181 3750 male 2007
## 2 Adelie Torgersen 39.5 17.4 186 3800 fema~ 2007
## 3 Adelie Torgersen 40.3 18.0 195 3250 fema~ 2007
## 4 Adelie Torgersen NA NA NA NA <NA> 2007
## 5 Adelie Torgersen 36.7 19.3 193 3450 fema~ 2007
## 6 Adelie Torgersen 39.3 20.6 190 3650 male 2007
## 7 Adelie Torgersen 38.9 17.8 181 3625 fema~ 2007
## 8 Adelie Torgersen 39.2 19.6 195 4675 male 2007
## 9 Adelie Torgersen 34.1 18.1 193 3475 <NA> 2007
## 10 Adelie Torgersen 42.0 20.2 190 4250 <NA> 2007
## # ... with 334 more rows
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6 Summaries and plots of qualitative variables

6.1 Tables of qualitative variables

• The main function to make tables from a data frame of observations is tally() which tallies (counts
up) the number of observations within a given category. E.g:

tally(~species, data = pingviner)

## species
## Adelie Chinstrap Gentoo
## 152 68 124

tally(species ~ island, data = pingviner)

## island
## species Biscoe Dream Torgersen
## Adelie 44 56 52
## Chinstrap 0 68 0
## Gentoo 124 0 0

6.2 Plots of qualitative variables

• The main plotting functions for qualitative variables are gf_percents() and gf_bar(). E.g:

gf_percents(~species, data = pingviner)
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gf_percents(~species, fill = ~sex, data = pingviner)

0

10

20

30

40

Adelie Chinstrap Gentoo

species

pe
rc

en
t

sex

female

male

NA

gf_percents(~species, fill = ~sex, data = pingviner, position = position_dodge())
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7 Summaries of quantitative variables

7.1 Percentiles

• The pth percentile is a value such that about p% of the sample lies below or at this value and about
(100− p)% of the sample lies above it.

• To calculate a percentile, first sort data in increasing order. For the bill_length_mm of Gentoo
penguins it is:

y(1) = 40.9, y(2) = 41.7, y(3) = 42, . . . , y(n) = 59.6.

Here the number of observations is n = 123 (omitting any NAs).

• Find the 5th percentile (i. e. p = 5):

– The observation number corresponding to the 5-percentile is N = 123·5
100 = 6.15.

– So the 5-percentile lies between the observations with observation number k = 6 and k + 1 = 7.
That is, its value lies somewhere in the interval between y6 = 42.8 and y7 = 42.9.

– One of several methods for estimating the 5-percentile from the value of N is defined as:

y(k) + (N − k)(y(k+1) − y(k))

which in this case states

y6 + (6.15− 6)(y7 − y6) = 42.8 + 0.15 · (42.9− 42.8) = 42.81
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7.2 Measures of center of data: Mean and median

• A number of numerical summaries can be retrieved using the favstats command:

favstats(bill_length_mm ~ species, data = pingviner)

## species min Q1 median Q3 max mean sd n missing
## 1 Adelie 32 37 39 41 46 39 2.7 151 1
## 2 Chinstrap 41 46 50 51 58 49 3.3 68 0
## 3 Gentoo 41 45 47 50 60 48 3.1 123 1

• The observed values of bill_length_mm are y1 = 46.1, y2 = 50, . . . , yn = 49.9, where there are a total
of n = 123 values (omitting any NAs). As previously defined this constitutes a sample.

• mean = 48 is the average of the sample, which is calculated by

ȳ = 1
n

n∑
i=1

yi.

We may also call ȳ the (empirical) mean or the sample mean. It is calculated using mean() in R.
• median = 47 is the 50-percentile, i.e. the value that splits the sample in 2 groups of equal size. It is

calculated using median() in R.
• An important property of themean and themedian is that they have the same unit as the observations

(e.g. millimeter).

7.3 Measures of variability of data: range, standard deviation and variance

• The range is the difference of the largest and smallest observation (range() in R).
• The (empirical) variance (var() in R) is the average of the squared deviations from the mean:

s2 = 1
n− 1

n∑
i=1

(yi − ȳ)2.

• sd = standard deviation = s =
√
s2 (sd() in R).

• Note: If the observations are measured in mm, the variance has unit mm2 which is hard to interpret.
The standard deviation on the other hand has the same unit as the observations.

• The standard deviation describes how much data varies around the (empirical) mean.
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7.3.1 The empirical rule

y − 3s y − 2s y − s y y + s y + 2s y + 3s

About 68% of measurements

About 95% of measurements

All or nearly all measurements

If the histogram of the sample looks like a bell shaped curve, then

• about 68% of the observations lie between ȳ − s and ȳ + s.
• about 95% of the observations lie between ȳ − 2s and ȳ + 2s.
• All or almost all (99.7%) of the observations lie between ȳ − 3s and ȳ + 3s.

8 Target population and random sampling

8.1 Population parameters

• When the sample size grows, then e.g. the mean of the sample, y, will stabilize around a fixed value, µ,
which is usually unknown. The value µ is called the population mean.

• Correspondingly, the standard deviation of the sample, s, will stabilize around a fixed value, σ, which
is usually unknown. The value σ is called the population standard deviation.

• Notation:

– µ (mu) denotes the population mean.
– σ (sigma) denotes the population standard deviation.

Population Sample
µ y
σ s

8.1.1 A word about terminology

• Standard deviation: a measure of variability of a population or a sample.
• Standard error: a measure of variability of an estimate. For example, a measure of variability of the

sample mean.
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8.2 Aim of statistics

• Statistics is all about “saying something” about a population.
• Typically, this is done by taking a random sample from the population.
• The sample is then analysed and a statement about the population can be made.
• The process of making conclusions about a population from analysing a sample is called statistical

inference.

8.3 Random sampling schemes

Possible strategies for obtaining a random sample from the target population are explained in Agresti section
2.4:

• Simple sampling: each possible sample of equal size equally probable
• Systematic sampling
• Stratified sampling
• Cluster sampling
• Multistage sampling
• . . .

9 Biases

9.1 Types of biases

Agresti section 2.3:

• Sampling/selection bias

– Probability sampling: each sample of size n has same probability of being sampled
∗ Still problems: undercoverage, groups not represented (inmates, homeless, hospitalized, . . . )

– Non-probability sampling: probability of sample not possible to determine
∗ E.g. volunteer sampling

• Response bias

– E.g. poorly worded, confusing or even order of questions
– Lying if think socially unacceptable

• Non-response bias

– Non-response rate high; systematic in non-responses (age, health, believes)

9.2 Example of sample bias: United States presidential election, 1936

(Based on Agresti, this and this.)

• Current president: Franklin D. Roosevelt
• Election: Franklin D. Roosevelt vs Alfred Landon (Republican governor of Kansas)
• Literary Digest: magazine with history of accurately predicting winner of past 5 presidential elections
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9.2.1 Results

• Literary Digest poll: Landon: 57%; Roosevelt: 43%
• Actual results: Landon: 38%; Roosevelt: 62%
• Sampling error: 57%-38% = 19%

– Practically all of the sampling error was the result of sample bias
– Poll size of > 2 mio. individuals participated – extremely large poll

9.2.2 Problems (biases)

• Mailing list of about 10 mio. names was created

– Based on every telephone directory, lists of magasine subscribers, rosters of clubs and associations,
and other sources

– Each one of 10 mio. received a mock ballot and asked to return the marked ballot to the magazine

• “respondents who returned their questionnaires represented only that subset of the population with a
relatively intense interest in the subject at hand, and as such constitute in no sense a random sample
. . . it seems clear that the minority of anti-Roosevelt voters felt more strongly about the election than
did the pro-Roosevelt majority” (The American Statistician, 1976)

• Biases:

– Sample bias
∗ List generated towards middle- and upper-class voters (e.g. 1936 and telephones)
∗ Many unemployed (club memberships and magazine subscribers)

– Non-response bias
∗ Only responses from 2.3/2.4 mio out of 10 million people

9.3 Example of response bias: Wording matters

New York Times/CBS News poll on attitude to increased fuel taxes

• “Are you in favour of a new gasoline tax?” - 12% said yes.
• “Are you in favour of a new gasoline tax to decrease US dependency on foreign oil?” - 55% said yes.
• “Do you think a new gas tax would help to reduce global warming?” - 59% said yes.

9.4 Example of response bias: Order of questions matter

US study during cold war asked two questions:

1 “Do you think that US should let Russian newspaper reporters come here and sent back whatever they
want?”

2 “Do you think that Russia should let American newspaper reporters come in and sent back whatever they
want?”

The percentage of yes to question 1 was 36%, if it was asked first and 73%, when it was asked last.
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9.5 Example of survivior bias: Bullet holes of honor

(Based on this.)

• World War II
• Royal Air Force (RAF), UK

– Lost many planes to German anti-aircraft fire

• Armor up!

– Where?
– Count up all the bullet holes in planes that returned from missions

∗ Put extra armor in the areas that attracted the most fire

• Hungarian-born mathematician Abraham Wald:

– If a plane makes it back safely with a bunch of bullet holes in its wings: holes in the wings aren’t
very dangerous

∗ Survivorship bias
– Armor up the areas that (on average) don’t have any bullet holes

∗ They never make it back, apparently dangerous

Section of plane Bullet holes per square foot
Engine 1.11
Fuselage 1.73
Fuel system 1.55
Rest of the plane 1.80

(See also this xkcd)

10 Probability of events

10.1 The concept of probability

• Experiment: Measure the waiting times in a queue where we note 1, if it exceeds 2 minutes and 0
otherwise.

• The experiment is carried out n times with results y1, y2, . . . , yn. There is random variation in the
outcome, i.e. sometimes we get a 1 other times a 0.

• Empirical probability of exceeding 2 minutes:

pn =
∑n
i=1 yi
n

.

• Theoretical probability of exceeding 2 minutes:

π = lim
n→∞

pn.

• We try to make inference about π based on a sample, e.g. “Is π > 0.1?” (“do more than 10% of the
customers experience a waiting time in excess of 2 minutes?”).

• Statistical inference is concerned with such questions when we only have a finite sample.
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10.2 Actual experiment

• On February 23, 2017, a group of students were asked how long time (in minutes) they waited in line
last time they went to the canteen at AAU’s Copenhagen campus:

y_canteen <- c(2, 5, 1, 6, 1, 1, 1, 1, 3, 4, 1, 2, 1, 2, 2, 2, 4, 2, 2, 5, 20, 2, 1, 1, 1, 1)
x_canteen <- ifelse(y_canteen > 2, 1, 0)
x_canteen

## [1] 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0

• Empirical probability of waiting more than 2 minutes:

p_canteen <- sum(x_canteen) / length(x_canteen)
p_canteen

## [1] 0.27

• Question: Is the population probability π > 1/3?
• Notice: One student said he had waited for 20 minutes (we doubt that; he was trying to make himself

interesting. Could consider ignoring that observation).

10.3 Another experiment

• John Kerrich, a South African mathematician, was visiting Copenhagen when World War II broke out.
Two days before he was scheduled to fly to England, the Germans invaded Denmark. Kerrich spent the
rest of the war interned at a camp in Hald Ege near Viborg, Jutland, and to pass the time he carried
out a series of experiments in probability theory. In one, he tossed a coin 10,000 times. His results are
shown in the following graph.

• Below, x is a vector with the first 2,000 outcomes of John Kerrich’s experiment (0 = tail, 1 = head):

head(x, 10)

## [1] 0 0 0 1 1 1 0 1 0 0

• Plot of the empirical probability pn of getting a head against the number of tosses n:
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10.4 Definitions

• Sample space: All possible outcomes of the experiment.
• Event: A subset of the sample space.

We conduct the experiment n times. Let #(A) denote how many times we observe the event A.

• Empirical probability of the event A:

pn(A) = #(A)
n

.

• Theoretical probability of the event A:

P (A) = lim
n→∞

pn(A)

• We always have 0 ≤ P (A) ≤ 1.

• Examples:

– Example 1 Tossing a coin once. The sample space is S = {H, T}. E = {H} is an event.
– Example 2 Tossing a die. The sample space is S = {1, 2, 3, 4, 5, 6}. E = {2, 4, 6} is an event,

which can be described in words as the number is even.
– Example 3 Tossing a coin twice. The sample space is S = {HH, HT, TH, TT}. E = {HH, HT}

is an event, which can be described in words as the first toss results in a Heads.
– Example 4 Tossing a die twice. The sample space is S = {(i, j) : i, j = 1, 2, . . . , 6}, which

contains 36 outcomes. The sum of the results of the two tosses is equal to 10 is an event.
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10.5 Theoretical probabilites of two events

• If the two events A and B are disjoint (non-overlapping) then

– #(A and B) = 0 implying that P (A and B) = 0.
– #(A or B) = #(A) + #(B) implying that P (A or B) = P (A) + P (B).

A BA B

• If the two events A and B are not disjoint then the more general formula is

P (A or B) = P (A) + P (B)− P (A and B).

A BA B

10.6 Conditional probability

• Say we consider two events A and B. Then the conditional probability of A given (or conditional
on) the event B is written P (A | B) and is defined by

P (A | B) = P (A and B)
P (B) .

• The above probability can be understood as: “how probable A is if we know that B has happened”.

10.6.1 Example with magazine data:
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magAds <- read.delim("https://asta.math.aau.dk/datasets?file=magazineAds.txt")

# Create two new factors 'words' and 'education':
magAds$words <- cut(magAds$WDS, breaks = c(31, 72, 146, 230), include.lowest = TRUE)
magAds$education <- factor(magAds$GROUP, levels = c(1, 2, 3), labels = c("high", "medium", "low"))

library(mosaic)
tab <- tally( ~ words + education, data = magAds)
tab

## education
## words high medium low
## [31,72] 4 6 5
## (72,146] 5 6 8
## (146,230] 9 6 5

• The event A={words=(146,230]} (the ad is a “difficult” text) has empirical probability

pn(A) = 9 + 6 + 5
54 = 20

54 ≈ 37%.

• Say we only are interested in the probability of a “difficult” text (event A) for high education magazines,
i.e. conditioning on the event B = {education=high}. Then the empirical conditional probability can
be calculated from the table:

pn(A | B) = 9
4 + 5 + 9 = 9

18 = 0.5 = 50%.

• The conditional probability of A given B may theoretically be expressed as

P (A | B) = P (words = (146, 230] | education = high)

= P (words = (146, 230] and education = high)
P (education = high) ,

which translated to empirical probabilities (substituting P with pn) will give

pn(A | B) = pn(words = (146, 230] and education = high)
pn(education = high)

=
9

54
4+5+9

54

= 9
4 + 5 + 9

= 50%

as calculated above.
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10.7 Conditional probability and independence

• If information about B does not change the probability of A we talk about independence, i.e. A is
independent of B if

P (A | B) = P (A) ⇔ P (A and B) = P (A)P (B)

The last relation is symmetric in A and B, and we simply say that A and B are independent events.
• In general the events A1, A2, ..., Ak are independent if

P (A1 and A2 and ... and Ak) = P (A1)P (A2) · · ·P (Ak).

10.7.1 Magazine data revisited

• Recall the empirical probabilities calculated above:

pn(A) = 37% and pn(A | B) = 50%.

• These indicate (we cannot say for sure as we only consider a finite sample - we will later see how to test
for this) that the theoretical probability

P (A) 6= P (A | B)

and hence that knowledge about B (high education level) may convey information about the probability
of A (the ad containing a “difficult” text).

10.8 Discrete distribution

10.8.1 Example: Magazine data

# Table with the percentage of ads in each combination of the levels of 'words' and 'education'
tab <- tally( ~ words + education, data = magAds, format = "percent")
round(tab, 2) # Round digits

## education
## words high medium low
## [31,72] 7.4 11.1 9.3
## (72,146] 9.3 11.1 14.8
## (146,230] 16.7 11.1 9.3

• The 9 disjoint events above (corresponding to combinations of words and education) make up the
whole sample space for the two variables. The empirical probabilities of each event is given in the table.

10.8.2 General discrete distribution

• In general:
– Let A1, A2, . . . , Ak be a subdivision of the sample space into pairwise disjoint events.
– The probabilities P (A1), P (A2), ..., P (Ak) are called a discrete distribution and satisfy

k∑
i=1

P (Ai) = 1.
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10.8.3 Example: 3 coin tosses

• Random/stochastic variable: A function Y that translates an outcome of the experiment into a
number.

• Possible outcomes in an experiment with 3 coin tosses:

– 0 heads (TTT)
– 1 head (HTT, THT, TTH)
– 2 heads (HHT, HTH, THH)
– 3 heads (HHH)

• The above events are disjoint and make up the whole sample space.
• Let Y be the number of heads in the experiment: Y (TTT ) = 0, Y (HTT ) = 1, . . .
• Assume that each outcome is equally likely, i.e. probability 1/8 for each event. Then,

– P (no heads) = P (Y = 0) = P (TTT ) = 1/8.
– P (one head) = P (Y = 1) = P (HTT or THT or TTH) = P (HTT ) +P (THT ) +P (TTH) = 3/8.
– Similarly for 2 or 3 heads.

• So, the distribution of Y is

Number of heads, Y 0 1 2 3
Probability 1/8 3/8 3/8 1/8

11 Distribution of general random variables

11.1 Probability distribution

• We are conducting an experiment where we make a quantitative measurement Y (a random variable),
e.g. the number of words in an ad or the waiting time in a queue.

• In advance there are many possible outcomes of the experiment, i.e. Y ’s value has an uncertainty, which
we quantify by the probability distribution of Y .

• For any interval (a, b), the distribution states the probability of observing a value of the random variable
Y in this interval:

P (a < Y < b), −∞ < a < b <∞.

• Y is discrete if we can enumerate all the possible values of Y , e.g. the number of words in an ad.
• Y is continuous if Y can take any value in a interval, e.g. a measurement of waiting time in a queue.

11.1.1 Sample

We conduct an experiment n times, where the outcome of the ith experiment corresponds to a measurement
of a random variable Yi, where we assume

• The experiments are independent
• The variables Y1, . . . , Yn have the same distribution

11.2 Population parameters

• When the sample size grows, then e.g. the mean of the sample, y, will stabilize around a fixed value, µ,
which is usually unknown. The value µ is called the population mean.
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• Correspondingly, the standard deviation of the sample, s, will stabilize around a fixed value, σ, which
is usually unknown. The value σ is called the population standard deviation.

• Notation:

– µ (mu) denotes the population mean.
– σ (sigma) denotes the population standard deviation.

Population Sample
µ y
σ s

11.2.1 Distribution of a discrete random variable

• Possible values for Y : {y1, y2, . . . , yk}.
• The distribution of Y is the probabilities of each possible value: pi = P (Y = yi), i = 1, 2, . . . , k.
• The distribution satisfies:

∑k
i=1 pi = 1.

11.3 Expected value (mean) for a discrete distribution

• The expected value or (population) mean of Y is

µ =
k∑
i=1

yipi

• An important property of the expected value is that it has the same unit as the observations (e.g. meter).

11.3.1 Example: number of heads in 3 coin flips

• Recall the distribution of Y (number of heads):

| y (number of heads) | 0 | 1 | 2 | 3 |
|———————|—–|—–|—–|—–|
| P (Y = y) | 1/8 | 3/8 | 3/8 | 1/8 |

• Then the expected value is

µ = 01
8 + 13

8 + 23
8 + 31

8 = 1.5.

Note that the expected value is not a possible outcome of the experiment itself.
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11.4 Variance and standard deviation for a discrete distribution

• The (population) variance of Y is

σ2 =
k∑
i=1

(yi − µ)2pi

• The (population) standard deviation is σ =
√
σ2.

• Note: If the observations have unit meter, the variance has unit meter2 which is hard to interpret.
The standard deviation on the other hand has the same unit as the observations (e.g. meter).

11.4.1 Example: number of heads in 3 coin flips

The distribution of the random variable ‘number of heads in 3 coin flops’ has variance

σ2 = (0− 1.5)2 1
8 + (1− 1.5)2 3

8 + (2− 1.5)2 3
8 + (3− 1.5)2 1

8 = 0.75.

and standard deviation
σ =
√
σ2 =

√
0.75 = 0.866.

11.5 The binomial distribution

• The binomial distribution is a discrete distribution
• The distribution occurs when we conduct a success/failure experiment n times with probability π for

success. If Y denotes the number of successes it can be shown that

pY (y) = P (Y = y) =
(
n

y

)
πy(1− π)n−y,

where
(
n
y

)
= n!

y!(n−y)! and m! is the product of the first m integers.
• Expected value: µ = nπ.
• Variance: σ2 = nπ(1− π).
• Standard deviation: σ =

√
nπ(1− π).

# The binomial distribution with n = 10 and pi = 0.35:
plotDist("binom", size = 10, prob = 0.35, xlim = c(-0.5, 10.5),

ylab = "Probability", xlab = "Number of successes", main = "binom(n = 10, prob = 0.35)")
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binom(n = 10, prob = 0.35)
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11.6 Distribution of a continuous random variable

• The distribution of a continuous random variable Y is characterized by the so-called probability density
function fY .

a b
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• The area under the graph of the probability density function between a and b is equal to the probability
of an observation in this interval.

• fY (y) ≥ 0 for all real numbers y.
• The area under the graph for fY is equal to 1.
• For example the uniform distribution from A to B:

fY (y) =
{

1
B−A A ≤ y ≤ B
0 otherwise

A B

0

1
B − A

11.7 Density function

11.7.1 Increasing number of observations

• Another way to think about the density is in terms of the histogram.
• If we draw a histogram for a sample where the area of each box corresponds to the relative frequency of

each interval, then the total area will be 1.
• When the number of observations (sample size) increase we can make a finer interval division and get a

more smooth histogram.
• We can imagine an infinite number of observations, which would produce a nice smooth curve, where

the area below the curve is 1. A function derived this way is also what we call the probability density
function.

34



Histogram of 50 obs.

y

D
en

si
ty

6 8 10 12 14

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

y = 10 s = 1.6

Histogram of 500 obs.

y
D

en
si

ty
4 6 8 10 12 14 16

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

y = 10 s = 2

5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Histogram of population

y

D
en

si
ty

µ = 10 σ = 2
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11.8 Normal distribution

• The normal distribution is a continuous distribution determined by two parameters:

– µ: the mean (expected value), which determines where the distribution is centered.
– σ: the standard deviation, which determines the spread of the distribution about the mean.

• The distribution has a bell-shaped probability density function:

fY (y;µ, σ) = 1√
2πσ2

exp
(
− 1

2σ2 (y − µ)2
)

• When a random variable Y follows a normal distribution with mean µ and standard deviation σ, then
we write Y ∼ norm(µ, σ).
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• We call norm(0, 1) the standard normal distribution.

11.8.1 Reach of the normal distribution

Density of the normal distribution

µ − 3σ µ − 2σ µ − σ µ µ + σ µ + 2σ µ + 3σ

68%

95%
99.7%

mean µ and standard deviation σ
Interpretation of standard deviation:

• ≈ 68% of the population is within 1 standard deviation of the mean.
• ≈ 95% of the population is within 2 standard deviations of the mean.
• ≈ 99.7% of the population is within 3 standard deviations of the mean.

11.8.2 Normal z-score

• If Y ∼ norm(µ, σ) then the corresponding so-called z-score is

Z = Y − µ
σ

= observation− mean
standard deviation

• I.e. Z counts the number of standard deviations that the observation lies away from the mean, where a
negative value tells that we are below the mean.

• We have that Z ∼ norm(0, 1), i.e. Z has zero mean and standard deviation one.
• This implies that

– Z lies between −1 and 1 with probability 68%
– Z lies between −2 and 2 with probability 95%
– Z lies between −3 and 3 with probability 99.7%

• It also implies that:
– The probability of Y being between µ − zσ and µ + zσ is equal to the probability of Z being

between −z and z.
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11.8.3 Calculating probabilities in the standard normal distribution

• The function pdist always outputs the area to the left of the z-value (quantile/percentile) we give as
input (variable q in the function), i.e. it outputs the probability of getting a value less than z. The first
argument of pdist denotes the distribution we are considering.

# For a standard normal distribution the probability of getting a value less than 1 is:
left_prob <- pdist("norm", q = 1, mean = 0, sd = 1)

0.0

0.1

0.2

0.3

0.4

−2 0 2

de
ns

ity

probability

A:0.841

B:0.159

left_prob

## [1] 0.84

So q=1 corresponds to the 0.84-percentile/quantile for the standard normal distribution

• Here there is a conflict between R and the textbook, since the book always considers right tail
probabilities. Since the total area is 1 and we have the left probability we easily get the right
probability:

right_prob <- 1 - left_prob
right_prob

## [1] 0.16

• For z = 1 we have a right probability of p = 0.1587, so the probability of an observation between −1
and 1 is equal to 1− 2 · 0.1587 = 0.6826 = 68.26% due to symmetry.
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11.8.4 Calculating z-values (quantiles) in the standard normal distribution

• If we have a probability and want to find the corresponding z-value we again need to decide on left/right
probability. The default in R is to find the left probability, so if we want the z-value with e.g. 0.5%
probability to the left we get:

left_z <- qdist("norm", p = 0.005, mean = 0, sd = 1, xlim = c(-4, 4))
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## [1] -2.6

• However, in all the formulas in the course we follow the textbook and consider z-values for a given right
probability. E.g. with 0.5% probability to the right we get:

right_z <- qdist("norm", p = 1-0.005, mean = 0, sd = 1, xlim = c(-4, 4))
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• Thus, the probability of an observation between −2.576 and 2.576 equals 1− 2 · 0.005 = 99%.

11.8.5 Example

The Stanford-Binet Intelligence Scale is calibrated to be approximately normal with mean 100 and standard
deviation 16.
What is the 99-percentile of IQ scores?

• The corresponding z-score is Z = IQ−100
16 , which means that IQ = 16Z + 100.

• The 99-percentile of z-scores has the value 2.326 (can be calculated using qdist).
• Then, the 99-percentile of IQ scores is:

IQ = 16 · 2.326 + 100 = 137.2.

• So we expect that one out of hundred has an IQ exceeding 137.

12 Distribution of sample statistic

12.1 Estimates and their variability

We are given a sample y1, y2, . . . , yn.
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• The sample mean ȳ is the most common estimate of the population mean µ.
• The sample standard deviation, s, is the most common estimate of the population standard deviation σ.

We notice that there is an uncertainty (from sample to sample) connected to these statistics and therefore we
are interested in describing their distribution.

12.2 Distribution of sample mean

• We are given a sample y1, y2, . . . , yn from a population with mean µ and standard deviation σ.
• The sample mean

ȳ = 1
n

(y1 + y2 + . . .+ yn)

then has a distribution where

– the distribution has mean µ,
– the distribution has standard deviation σ√

n
(also called the standard error), and

– when n grows, the distribution approaches a normal distribution. This result is called the central
limit theorem.

12.2.1 Central limit theorem

• The points above can be summarized as

ȳ ≈ norm(µ, σ√
n

)

that is, based on the sample y1, . . . , yn of size n the sample mean ȳ is approximately normally distributed
with mean µ and standard error σ√

n
.

• When our sample is sufficiently large (such that the above approximation is good) this allows us to
make the following observations:

– We are 95% certain that ȳ lies in the interval from µ− 2 σ√
n
to µ+ 2 σ√

n
.

– We are almost completely certain that ȳ lies in the interval from µ− 3 σ√
n
to µ+ 3 σ√

n
.

• This is not useful when µ is unknown, but let us rephrase the first statement to:

– We are 95% certain that µ lies in the interval from ȳ− 2 σ√
n
to ȳ+ 2 σ√

n
, i.e. we are directly talking

about the uncertainty of determining µ.
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12.2.2 Illustration of CLT

0

n = 1

0

n = 2

0

n = 5

n = 30

x

y

x

y

x

y
y

x
y

x

y

x

y
y

x

y

x

y

x

y
y

x

y

x

y

x

y
y

• Four different population distibutions (n=1) of y and corresponding sampling distributions of ȳ for
different sample sizes. As n increases the sampling distributions become narrower and more bell-shaped.

12.2.3 Example

• Body Mass Index (BMI) of people in Northern Jutland (2010) has mean µ = 25.8 kg/m2 and standard
deviation 4.8 kg/m2.

• A random sample of n = 100 costumers at a burger bar had an average BMI given by ȳ = 27.2.
• If “burger bar” has “no influence” on BMI (and the sample is representative of the population/people

in Northern Jutland), then
ȳ ≈ norm(µ, σ√

n
) = norm(25.8, 0.48).

• For the actual sample this gives the observed z-score

zobs = 27.2− 25.8
0.48 = 2.92

• Recalling that the z-score is (here approximately) standard normal, the probability of getting a higher
z-score is:

1 - pdist("norm", mean = 0, sd = 1, q = 2.92, xlim = c(-4, 4))
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• Thus, it is highly unlikely to get a random sample with such a high z-score. This indicates that
costumers at the burger bar has a mean BMI, which is higher than the population mean.

13 Point and interval estimates

13.1 Point and interval estimates

• We want to study hypotheses for population parameters, e.g. the mean µ and the standard deviation σ.

– If µ is e.g. the mean waiting time in a queue, then it might be relevant to investigate whether it
exceeds 2 minutes.

• Based on a sample we make a point estimate which is a guess of the parameter value.

– For instance we have used ȳ as an estimate of µ and s as an estimate of σ.

• We often want to supplement the point estimate with an interval estimate (also called a confidence
interval). This is an interval around the point estimate, in which we are confident (to a certain degree)
that the population parameter is located.

• The parameter estimate can then be used to investigate our hypothesis.

13.2 Point estimators: Bias

• If we want to estimate the population mean µ we have several possibilities e.g.

– the sample mean ȳ
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– the average yT of the sample upper and lower quartiles

• Advantage of yT : Very large/small observations have little effect, i.e. it has practically no effect if there
are a few errors in the data set.

• Disadvantage of yT : If the distribution of the population is skewed, i.e. asymmetrical, then yT is biased,
meaning that in the long run this estimator systematically over or under estimates the value of µ.

• Generally we prefer that an estimator is unbiased, i.e. its distribution is centered around the true
parameter value.

• Recall that for a sample from a population with mean µ, the sample mean ȳ also has mean µ. That is,
ȳ is an unbiased estimate of the population mean µ.

13.3 Point estimators: Consistency

• From previous lectures we know that the standard error of ȳ is σ√
n
,

– i.e. the standard error decrease when the sample size increase.

• In general an estimator with this property is callled consistent.
• yT is also a consistent estimator, but has a variance that is greater than ȳ.

13.4 Point estimators: Efficiency

• Since the variance of yT is greater than the variance of ȳ, ȳ is preferred.
• In general we prefer the estimator with the smallest possible variance.

– This estimator is said to be efficient.

• ȳ is an efficient estimator.

13.5 Notation

• The symbol ˆ above a parameter is often used to denote a (point) estimate of the parameter. We have
looked at an

– estimate of the population mean: µ̂ = ȳ
– estimate of the population standard deviation: σ̂ = s

• When we observe a 0/1 variable, which e.g. is used to denote yes/no or male/female, then we will use
the notation

π = P (Y = 1)

for the proportion of the population with the property Y = 1.
• The estimate π̂ = (y1 + y2 + . . .+ yn)/n is the relative frequency of the property Y = 1 in the sample.

13.6 Confidence Interval

• The general definition of a confidence interval for a population parameter is as follows:

– A confidence interval for a parameter is constructed as an interval, where we expect the
parameter to be.

– The probability that this construction yields an interval which includes the parameter is called the
confidence level and it is typically chosen to be 95%.

– (1-confidence level) is called the error probability (in this case 1− 0.95 = 0.05, i.e. 5%).

• In practice the interval is often constructed as a symmetric interval around a point estimate:
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– point estimate±margin of error
– Rule of thumb: With a margin of error of 2 times the standard error you get a confidence interval,

where the confidence level is approximately 95%.
– I.e: point estimate ± 2 x standard error has confidence level of approximately 95%.

13.7 Confidence interval for proportion

• Consider a population with a distribution where the probability of having a given characteristic is π
and the probability of not having it is 1− π.

• When no/yes to the characteristic is denoted 0/1, i.e. y is 0 or 1, the distribution of y have a standard
deviation of:

σ =
√
π(1− π).

That is, the standard deviation is not a “free” parameter for a 0/1 variable as it is directly linked to
the probability π.

• With a sample size of n the standard error of π̂ will be (since π̂ =
∑n

i=1
yi

n ):

σπ̂ = σ√
n

=
√
π(1− π)

n
.

• We do not know π but we insert the estimate and get the estimated standard error of π̂:

se =
√
π̂(1− π̂)

n
.

• The rule of thumb gives that the interval

π̂ ± 2
√
π̂(1− π̂)

n

has confidence level of approximately 95%. I.e., before the data is known the random interval given by
the formula above has approximately 95% probability of covering the true value π.

13.7.1 Example: Point and interval estimate for proportion

• Now we will have a look at a data set concerning votes in Chile. Information about the data can be
found here.

Chile <- read.delim("https://asta.math.aau.dk/datasets?file=Chile.txt")

• We focus on the variable sex, i.e. the gender distribution in the sample.

library(mosaic)
tally( ~ sex, data = Chile)

## sex
## F M
## 1379 1321
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tally( ~ sex, data = Chile, format = "prop")

## sex
## F M
## 0.51 0.49

• Unknown population proportion of females (F), π.
• Estimate of π: π̂ = 1379

1379+1321 = 0.5107

• Rule of thumb : π̂ ± 2 × se = 0.5107 ± 2
√

0.5107(1−0.5107)
1379+1321 = (0.49, 0.53) is an approximate 95%

confidence interval for π.

13.7.2 Example: Confidence intervals for proportion in R

• R automatically calculates the confidence interval for the proportion of females when we do a so-called
hypothesis test (we will get back to that later):

prop.test( ~ sex, data = Chile, correct = FALSE)

##
## 1-sample proportions test without continuity correction
##
## data: Chile$sex [with success = F]
## X-squared = 1, df = 1, p-value = 0.3
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
## 0.49 0.53
## sample estimates:
## p
## 0.51

• The argument correct = FALSE is needed to make R use the “normal” formulas as on the slides and in
the book. When correct = TRUE (the default) a mathematical correction which you have not learned
about is applied and slightly different results are obtained.

13.8 General confidence intervals for proportion

• Based on the central limit theorem we have:

π̂ ≈ N

(
π,

√
π(1− π)

n

)

if nπ̂ and n(1− π̂) both are at least 15.
• To construct a confidence interval with (approximate) confidence level 1− α:

1) Find the socalled critical value zcrit for which the upper tail probability in the standard normal
distribution is α/2.
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2) Calculate se =
√

π̂(1−π̂)
n

3) Then π̂ ± zcrit × se is a confidence interval with confidence level 1− α.

13.8.1 Example: Chile data

Compute for the Chile data set the 99% and 95%-confidence intervals for the probability that a person is
female:

• For a 99%-confidence level we have α = 1% and

1) zcrit=qdist("norm", 1 - 0.01/2)=2.576.
2) We know that π̂ = 0.5107 and n = 2700, so se =

√
π̂(1−π̂)

n = 0.0096.
3) Thereby, a 99%-confidence interval is: π̂ ± zcrit × se = (0.4859, 0.5355).

• For a 95%-confidence level we have α = 5% and

1) zcrit=qdist("norm", 1 - 0.05/2)=1.96.
2) Again, π̂ = 0.5107 and n = 2700 and so se = 0.0096.
3) Thereby, we find as 95%-confidence interval π̂ ± zcrit × se = (0.4918, 0.5295) (as the result of

prop.test).

13.9 Confidence Interval for mean - normally distributed sample

• When it is reasonable to assume that the population distribution is normal we have the exact result

ȳ ∼ norm(µ, σ√
n

),

i.e. ȳ± zcrit × σ√
n
is not only an approximate but rather an exact confidence interval for the population

mean, µ.
• In practice we do not know σ and instead we are forced to apply the sample standard deviation s to

find the estimated standard error se = s√
n
.

• This extra uncertainty, however, implies that an exact confidence interval for the population mean µ
cannot be constructed using the z-score.

• Luckily, an exact interval can still be constructed by using the so-called t-score, which apart from the
confidence level depends on the degrees of freedom, which are df = n− 1. That is the confidence
interval now takes the form

ȳ ± tcrit × se.

13.10 t-distribution and t-score

• Calculation of t-score is based on the t-distribution, which is very similar to the standard normal
z-distribution:

– it is symmetric around zero and bell shaped, but

– it has “heavier” tails and thereby
– a slightly larger standard deviation than the standard normal distribution.
– Further, the t-distribution’s standard deviation decays as a function of its degrees of freedom,

which we denote df .
– and when df grows the t-distribution approaches the standard normal distribution.
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The expression of the density function is of slightly complicated form and will not be stated here, instead the
t-distribution is plotted below for df = 1, 2, 10 and ∞.
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13.11 Calculation of t-score in R

qdist("t", p = 1 - 0.025, df = 4)
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## [1] 2.8

• We seek the quantile (i.e. value on the x-axis) such that we have a given right tail probability. This is
the critical t-score associated with our desired level of confidence.

• To get e.g. the t-score corresponding to a right tail probability of 2.5 % we have to look up the 97.5 %
quantile using qdist with p = 1 - 0.025 since qdist looks at the area to the left hand side.

• The degrees of freedom are determined by the sample size; in this example we just used df = 4 for
illustration.

• As the t-score giving a right probability of 2.5 % is 2.776 and the t-distribution is symmetric around 0,
we have that an observation falls between -2.776 and 2.776 with probability 1 - 2 · 0.025 = 95 % for a
t-distribution with 4 degrees of freedom.

13.12 Example: Confidence interval for mean

• We return to the dataset Ericksen and want to construct a 95% confidence interval for the population
mean µ of the variable crime.

Ericksen <- read.delim("https://asta.math.aau.dk/datasets?file=Ericksen.txt")
stats <- favstats( ~ crime, data = Ericksen)
stats

## min Q1 median Q3 max mean sd n missing
## 25 48 55 73 143 63 25 66 0

qdist("t", 1 - 0.025, df = 66 - 1, plot = FALSE)

## [1] 2

• I.e. we have

– ȳ = 63.06
– s = 24.89
– n = 66
– df = n− 1 = 65
– tcrit = 2.

• The confidence interval is ȳ ± tcrit s√
n

= (56.94, 69.18)
• All these calculations can be done automatically by R:

t.test( ~ crime, data = Ericksen, conf.level = 0.95)

##
## One Sample t-test
##
## data: crime
## t = 20, df = 60, p-value <2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 57 69
## sample estimates:
## mean of x
## 63
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13.13 Example: Plotting several confidence intervals in R

• We shall look at a built-in R dataset chickwts.
• ?chickwts yields a page with the following information

An experiment was conducted to measure and compare the effectiveness of various feed supplements
on the growth rate of chickens. Newly hatched chicks were randomly allocated into six groups,
and each group was given a different feed supplement. Their weights in grams after six weeks are
given along with feed types.

• chickwts is a data frame with 71 observations on 2 variables:

– weight: a numeric variable giving the chick weight.
– feed: a factor giving the feed type.

• Calculate a confidence interval for the mean weight for each feed separately; the confidence interval is
from lower to upper given by mean±tscore * se:

cwei <- favstats( weight ~ feed, data = chickwts)
se <- cwei$sd / sqrt(cwei$n) # Standard errors
tscore <- qdist("t", p = .975, df = cwei$n - 1, plot = FALSE) # t-scores for 2.5% right tail probability
cwei$lower <- cwei$mean - tscore * se
cwei$upper <- cwei$mean + tscore * se
cwei[, c("feed", "mean", "lower", "upper")]

## feed mean lower upper
## 1 casein 324 283 365
## 2 horsebean 160 133 188
## 3 linseed 219 186 252
## 4 meatmeal 277 233 321
## 5 soybean 246 215 278
## 6 sunflower 329 298 360

• We can plot the confidence intervals as horizontal line segments using gf_errorbarh:

gf_errorbarh(feed ~ lower + upper, data = cwei) %>%
gf_point(feed ~ mean)
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14 Determining sample size

14.1 Sample size for proportion

• The confidence interval is of the form point estimate±estimated margin of error.
• When we estimate a proportion the margin of error is

M = zcrit

√
π(1− π)

n
,

where the critical z-score, zcrit, is determined by the specified confidence level.
• Imagine that we want to plan an experiment, where we want to achieve a certain margin of error
M (and thus a specific width of the associated confidence interval).

• If we solve the equation above we see:
– If we choose sample size n = π(1 − π)( zcrit

M )2, then we obtain an estimate of π with margin of
error M .

• If we do not have a good guess for the value of π we can use the worst case value π = 50%. The
corresponding sample size n = ( zcrit

2M )2 ensures that we obtain an estimate with a margin of error, which
is at the most M .

14.1.1 Example

• Let us choose zcrit = 1.96, i.e the confidence level is 95%.
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• How many voters should we ask to get a margin of error, which equals 1%?
• Worst case is π = 0.5, yielding:

n = π(1− π)
(zcrit
M

)2
= 1

4

(
1.96
0.01

)2
= 9604.

• If we are interested in the proportion of voters that vote for “socialdemokratiet” a good guess is π = 0.23,
yielding

n = π(1− π)
(zcrit
M

)2
= 0.23(1− 0.23)

(
1.96
0.01

)2
= 6804.

• If we instead are interested in “liberal alliance” a good guess is π = 0.05, yielding

n = π(1− π)
(zcrit
M

)2
= 0.05(1− 0.05)

(
1.96
0.01

)2
= 1825.

14.2 Sample size for mean

• The confidence interval is of the form point estimate±estimated margin of error.
• When we estimate a mean the margin of error is

M = zcrit
σ√
n
,

where the critical z-score, zcrit, is determined by the specified confidence level.
• Imagine that we want to plan an experiment, where we want to achieve a certain margin of error
M .

• If we solve the equation above we see:

– If we choose sample size n = ( zcritσ
M )2, then we obtain an estimate with margin of error M .

• Problem: We usually do not know σ. Possible solutions:

– Based on similar studies conducted previously, we make a qualified guess at σ.
– Based on a pilot study a value of σ is estimated.
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