ASTA

The ASTA team

Contents

1	Cor	ntingency tables	2
	1.1	A contingency table	2
2	Ind	ependence	3
	2.1	Independence	3
	2.2	The Chi-squared test for independence	3
	2.3	Calculation of expected table	4
	2.4	Chi-squared (χ^2) test statistic	4
	2.5	χ^2 -test template	5
	2.6	The function chisq.test	6
3	$Th\epsilon$	e χ^2 -distribution	7
	3.1	The χ^2 -distribution	7
4	Agr	resti - Summary	8
	4.1	Summary	8
5	Star	ndardized residuals	8
	5.1	Residual analysis	8
	5.2	Residual analysis in R $\hfill \ldots$ $\hfill \ldots$ $\hfill \ldots$	9
6	Mo	dels for table data in R	9
	6.1	Example	9
	6.2	Model specification	10
	6.3	Model specification in ${f R}$	10
	6.4	Expected values and standardized residuals	11
7	Intr	roduction to logistic regression	12
	7.1	Binary response	12
	7.2	A linear model	12

8	\mathbf{Sim}	ple logistic regression	12
	8.1	Logistic model	12
	8.2	Logistic transformation	13
	8.3	Odds-ratio	13
	8.4	Simple logistic regression	14
	8.5	Example: Credit card data	14
	8.6	Example: Fitting the model	14
	8.7	Test of no effect	15
	8.8	Confidence interval for odds ratio	16
	8.9	Plot of model predictions against actual data	17
9	Mul	ltiple logistic regression	17
	9.1	Several numeric predictors	17
	9.2	Example	17
	9.3	Global test of no effects	18
	9.4	Example	18
	9.5	Test of influence of a given predictor	19
	9.6	Model selection by stepwise selection	19
	9.7	Prediction and classification	20

1 Contingency tables

1.1 A contingency table

- We return to the dataset popularKids, where we study association between 2 factors: Goals and Urban.Rural.
- Based on a sample we make a cross tabulation of the factors and we get a so-called **contingency table** (krydstabel).

```
popKids <- read.delim("https://asta.math.aau.dk/datasets?file=PopularKids.txt")
library(mosaic)
tab <- tally(~Urban.Rural + Goals, data = popKids, margins = TRUE)
tab</pre>
```

##	Goals							
##	Urban.Rural	Grades	Popular	Sports	Total			
##	Rural	57	50	42	149			
##	Suburban	87	42	22	151			
##	Urban	103	49	26	178			
##	Total	247	141	90	478			

1.1.1 A conditional distribution

• Another representation of data is the percent-wise distribution of Goals for each level of Urban.Rural, i.e. the sum in each row of the table is 100 (up to rounding):

```
tab <- tally(~Urban.Rural + Goals, data = popKids)
addmargins(round(100 * prop.table(tab, 1)),margin = 1:2)</pre>
```

##	Goals							
##	Urban.Rural	Grades	Popular	Sports	Sum			
##	Rural	38	34	28	100			
##	Suburban	58	28	15	101			
##	Urban	58	28	15	101			
##	Sum	154	90	58	302			

- Here we will talk about the conditional distribution of Goals given Urban.Rural.
- An important question could be:
 - Are the goals of the kids different when they come from urban, suburban or rural areas? I.e. are the rows in the table significantly different?
- There is (almost) no difference between urban and suburban, but it looks like rural is different.

2 Independence

2.1 Independence

- Recall, that two factors are **independent**, when there is no difference between the population's distributions of one factor given the levels of the other factor.
- Otherwise the factors are said to be **dependent**.
- If we e.g. have the following conditional population distributions of Goals given Urban.Rural:

##	Goals						
##	Urban.Rural	Grades	Popular	Sports			
##	Rural	500	300	200			
##	Suburban	500	300	200			
##	Urban	500	300	200			

- Then the factors Goals and Urban.Rural are independent.
- We take a sample and "measure" the factors F_1 and F_2 . E.g. Goals and Urban.Rural for a random child.
- The hypothesis of interest today is:

 $H_0: F_1$ and F_2 are independent, $H_a: F_1$ and F_2 are dependent.

2.2 The Chi-squared test for independence

• Our best guess of the distribution of Goals is the relative frequencies in the sample:

```
n <- margin.table(tab)
pctGoals <- round(100 * margin.table(tab, 2)/n, 1)
pctGoals</pre>
```

```
## Goals
## Grades Popular Sports
## 51.7 29.5 18.8
```

- If we assume independence, then this is also a guess of the conditional distributions of Goals given Urban.Rural.
- The corresponding expected counts in the sample are then:

##	(Goals							
##	Urban.Rural	Grades	3	Popula	ar	Sports	3	Sum	
##	Rural	77.0	(51.7%)	44.0	(29.5%)	28.1	(18.8%)	149.0	(100%)
##	Suburban	78.0	(51.7%)	44.5	(29.5%)	28.4	(18.8%)	151.0	(100%)
##	Urban	92.0	(51.7%)	52.5	(29.5%)	33.5	(18.8%)	178.0	(100%)
##	Sum	247.0	(51.7%)	141.0	(29.5%)	90.0	(18.8%)	478.0	(100%)

2.3 Calculation of expected table

pctexptab

##	(Goals							
##	Urban.Rural	Grades	5	Popula	ar	Sports	3	Sum	
##	Rural	77.0	(51.7%)	44.0	(29.5%)	28.1	(18.8%)	149.0	(100%)
##	Suburban	78.0	(51.7%)	44.5	(29.5%)	28.4	(18.8%)	151.0	(100%)
##	Urban	92.0	(51.7%)	52.5	(29.5%)	33.5	(18.8%)	178.0	(100%)
##	Sum	247.0	(51.7%)	141.0	(29.5%)	90.0	(18.8%)	478.0	(100%)

- We note that
 - The relative frequency for a given column is columnTotal divided by tableTotal. For example Grades, which is $\frac{247}{478} = 51.7\%$.
 - The expected value in a given cell in the table is then the cell's relative column frequency multiplied by the cell's rowTotal. For example Rural and Grades: $149 \times 51.7\% = 77.0$.
- This can be summarized to:
 - The expected value in a cell is the product of the cell's rowTotal and columnTotal divided by tableTotal.

2.4 Chi-squared (χ^2) test statistic

• We have an observed table:

tab

##	Goals						
##	Urban.Rural	Grades	Popular	Sports			
##	Rural	57	50	42			
##	Suburban	87	42	22			
##	Urban	103	49	26			

• And an **expected table**, if H_0 is true:

##	(Goals			
##	Urban.Rural	Grades	Popular	Sports	Sum
##	Rural	77.0	44.0	28.1	149.0
##	Suburban	78.0	44.5	28.4	151.0
##	Urban	92.0	52.5	33.5	178.0
##	Sum	247.0	141.0	90.0	478.0

- If these tables are "far from each other", then we reject H_0 . We want to measure the distance via the Chi-squared test statistic:
 - $-X^2 = \sum \frac{(f_o f_e)^2}{f_e}$: Sum over all cells in the table f_o is the frequency in a cell in the observed table f_e is the corresponding frequency in the expected table.
- We have:

$$X_{obs}^2 = \frac{(57 - 77)^2}{77} + \ldots + \frac{(26 - 33.5)^2}{33.5} = 18.8$$

• Is this a large distance??

χ^2 -test template. $\mathbf{2.5}$

- We want to test the hypothesis H_0 of independence in a table with r rows and c columns:

 - We take a sample and calculate X_{obs}^2 the observed value of the test statistic. p-value: Assume H_0 is true. What is then the chance of obtaining a larger X^2 than X_{obs}^2 , if we repeat the experiment?
- This can be approximated by the χ²-distribution with df = (r 1)(c 1) degrees of freedom.
 For Goals and Urban.Rural we have r = c = 3, i.e. df = 4 and X²_{obs} = 18.8, so the p-value is:

1 - pdist("chisq", 18.8, df = 4)


```
## [1] 0.0008603303
```

• There is clearly a significant association between Goals and Urban.Rural.

2.6 The function chisq.test.

• All of the above calculations can be obtained by the function chisq.test.

```
tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)
testStat</pre>
```

```
##
## Pearson's Chi-squared test
##
## data: tab
## X-squared = 18.828, df = 4, p-value = 0.0008497
```

```
testStat$expected
```

Goals
Urban.Rural Grades Popular Sports
Rural 76.99372 43.95188 28.05439
Suburban 78.02720 44.54184 28.43096
Urban 91.97908 52.50628 33.51464

• The frequency data can also be put directly into a matrix.

```
data <- c(57, 87, 103, 50, 42, 49, 42, 22, 26)
tab <- matrix(data, nrow = 3, ncol = 3)
row.names(tab) <- c("Rural", "Suburban", "Urban")
colnames(tab) <- c("Grades", "Popular", "Sports")
tab
## Grades Popular Sports</pre>
```

Rural 57 50 42 ## Suburban 87 42 22 ## Urban 103 49 26

```
chisq.test(tab)
```

```
##
## Pearson's Chi-squared test
##
## data: tab
## X-squared = 18.828, df = 4, p-value = 0.0008497
```

3 The χ^2 -distribution

3.1 The χ^2 -distribution

- The χ^2 -distribution with df degrees of freedom:
 - Is never negative. And $X^2 = 0$ only happens if $f_e = f_o$.
 - Has mean $\mu = df$
 - Has standard deviation $\sigma = \sqrt{2df}$
 - Is skewed to the right, but approaches a normal distribution when df grows.

4 Agresti - Summary

4.1 Summary

- For the Chi-squared statistic, X^2 , to be appropriate we require that the expected values have to be $f_e \geq 5$.
- Now we can summarize the ingredients in the Chi-squared test for independence.

TABLE 8.5: The Five Parts of the Chi-Squared Test of Independence

- 1. Assumptions: Two categorical variables, random sampling, $f_e \ge 5$ in all cells
- 2. Hypotheses: H_0 : Statistical independence of variables
 - H_a : Statistical dependence of variables
- 3. Test statistic: $\chi^2 = \sum \frac{(f_o f_e)^2}{f_e}$, where $f_e = \frac{(\text{Row total})(\text{Column total})}{\text{Total sample size}}$ 4. *P*-value: *P* = right-tail probability above observed χ^2 value, for chi-squared distribution with df = (r - 1)(c - 1)5. Conclusion: Report *P*-value
 - If decision needed, reject H_0 at α -level if $P \leq \alpha$

5 Standardized residuals

5.1 Residual analysis

- If we reject the hypothesis of independence it can be of interest to identify the significant deviations.
- In a given cell in the table, $f_o f_e$ is the deviation between data and the expected values under the null hypothesis.
- We assume that $f_e \geq 5$.
- If H_0 is true, then the standard error of $f_o f_e$ is given by

$$se = \sqrt{f_e(1 - \text{rowProportion})(1 - \text{columnProportion})}$$

• The corresponding *z*-score

$$z = \frac{f_o - f_e}{se}$$

should in 95% of the cells be between ± 2 . Values above 3 or below -3 should not appear.

- In popKids table cell Rural and Grade we got $f_e = 77.0$ and $f_o = 57$. Here columnProportion= 51.7% and rowProportion= 149/478 = 31.2%.
- We can then calculate

$$z = \frac{57 - 77}{\sqrt{77(1 - 0.517)(1 - 0.312)}} = -3.95$$

- Compared to the null hypothesis there are way too few rural kids who find grades important.
- In summary: The standardized residuals allow for cell-by-cell $(f_e \text{ vs } f_o)$ comparision.

5.2 Residual analysis in R

• In R we can extract the standardized residuals from the output of chisq.test:

```
tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)
testStat$stdres</pre>
```

Goals
Urban.Rural Grades Popular Sports
Rural -3.9508449 1.3096235 3.5225004
Suburban 1.7666608 -0.5484075 -1.6185210
Urban 2.0865780 -0.7274327 -1.8186224

6 Models for table data in R

6.1 Example

• We will study the dataset HairEyeColor.

```
HairEyeColor <- read.delim("https://asta.math.aau.dk/datasets?file=HairEyeColor.txt")
head(HairEyeColor)</pre>
```

Hair Eye Sex Freq 32 ## 1 Black Brown Male ## 2 Brown Brown Male 53 ## 3 Red Brown Male 10 ## 4 Blond Brown Male 3 ## 5 Black Blue Male 11 ## 6 Brown Blue Male 50

- Data is organized such that the variable Freq gives the frequency of each combination of the factors Hair, Eye and Sex.
- For example: 32 observations are men with black hair and brown eyes.
- We are interested in the association between eye color and hair color ignoring the sex
- We aggregate data, so we have a table with frequencies for each combination of Hair and Eye.

```
HairEye <- aggregate(Freq ~ Eye + Hair, FUN = sum, data = HairEyeColor)
HairEye
```

Eye Hair Freq Blue Black ## 1 20 ## 2 Brown Black 68 ## 3 Green Black 5 ## 4 Hazel Black 15 Blue Blond ## 5 94 ## 6 Brown Blond 7 ## 7 Green Blond 16 ## 8 Hazel Blond 10 Blue Brown ## 9 84

##	10	${\tt Brown}$	Brown	119
##	11	${\tt Green}$	Brown	29
##	12	Hazel	Brown	54
##	13	Blue	Red	17
##	14	Brown	Red	26
##	15	${\tt Green}$	Red	14
##	16	Hazel	Red	14

6.2 Model specification

- We can write down a model for (the logarithm of) the expected frequencies by using dummy variables z_{e1}, z_{e2}, z_{e3} and z_{h1}, z_{h2}, z_{h3}
- To denote the different levels of Eye and Hair (the reference level has all dummy variables equal to 0):

 $\log(f_e) = \alpha + \beta_{e1} z_{e1} + \beta_{e2} z_{e2} + \beta_{e3} z_{e3} + \beta_{h1} z_{h1} + \beta_{h2} z_{h2} + \beta_{h3} z_{h3}.$

- Note that we haven't included an interaction term, which is this case implies, that we assume independence between Eye and Hair in the model.
- Since our response variable now is a count it is no longer a linear model (lm) as we have been used to (linear regression).
- Instead it is a so-called generalized linear model and the relevant R command is glm.

6.3 Model specification in R

model <- glm(Freq ~ Hair + Eye, family = poisson, data = HairEye)</pre>

• The argument family = poisson ensures that R knows that data should be interpreted as discrete counts and not a continuous variable.

```
summary(model)
```

```
##
## Call:
## glm(formula = Freq ~ Hair + Eye, family = poisson, data = HairEye)
##
## Deviance Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
##
  -7.326 -2.065 -0.212
                            1.235
                                     6.172
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.66926
                           0.11055
                                    33.191 < 2e-16 ***
## HairBlond
                0.16206
                           0.13089
                                      1.238
                                            0.21569
## HairBrown
                0.97386
                           0.11294
                                      8.623
                                            < 2e-16 ***
## HairRed
                           0.15279
                                    -2.745
               -0.41945
                                            0.00604 **
## EyeBrown
                0.02299
                           0.09590
                                      0.240
                                            0.81054
## EyeGreen
               -1.21175
                           0.14239
                                    -8.510 < 2e-16 ***
## EyeHazel
               -0.83804
                                   -6.752 1.46e-11 ***
                           0.12411
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
##
##
(Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 453.31 on 15 degrees of freedom
## Residual deviance: 146.44 on 9 degrees of freedom
## AIC: 241.04
##
## Number of Fisher Scoring iterations: 5
```

• A value of $X^2 = 146.44$ with df = 9 shows that there is very clear significance and we reject the null hypothesis of independence between hair and eye color.

[1] 0

6.4 Expected values and standardized residuals

- We also want to look at expected values and standardized (studentized) residuals.
- The null hypothesis predicts $e^{3.67+0.02} = 40.1$ with brown eyes and black hair, but we have observed 68.
- This is significantly too many, since the standardized residual is 5.86.
- The null hypothesis predicts 47.2 with brown eyes and blond hair, but we have seen 7. This is significantly too few, since the standardized residual is -9.42.

```
HairEye$fitted <- fitted(model)
HairEye$resid <- rstudent(model)
HairEye</pre>
```

##		Eye	Hair	Freq	fitted	resid
##	1	Blue	Black	20	39.22	-4.492
##	2	Brown	Black	68	40.14	5.856
##	3	Green	Black	5	11.68	-2.508
##	4	Hazel	Black	15	16.97	-0.583
##	5	Blue	${\tt Blond}$	94	46.12	9.368
##	6	Brown	${\tt Blond}$	7	47.20	-9.423
##	7	${\tt Green}$	${\tt Blond}$	16	13.73	0.719
##	8	Hazel	Blond	10	19.95	-2.936
##	9	Blue	Brown	84	103.87	-3.437
##	10	Brown	Brown	119	106.28	2.151
##	11	Green	Brown	29	30.92	-0.511
##	12	Hazel	Brown	54	44.93	2.023
##	13	Blue	Red	17	25.79	-2.399
##	14	Brown	Red	26	26.39	-0.101
##	15	Green	Red	14	7.68	2.368
##	16	Hazel	Red	14	11.15	0.961

7 Introduction to logistic regression

7.1 Binary response

- We consider a binary response y with outcome 1 or 0. This might be a code indicating whether a person is able or unable to perform a given task.
- Furthermore, we are given an explanatory variable x, which is numeric, e.g. age.
- We shall study models for

 $P(y = 1 \mid x)$

i.e. the probability that a person of age x is able to complete the task.

• We shall see methods for determining whether or not age actually influences the probability, i.e. is y independent of x?

7.2 A linear model

$$P(y=1 \mid x) = \alpha + \beta x$$

is simple, but often inappropiate. If β is positive and x sufficiently large, then the probability exceeds 1.

8 Simple logistic regression

8.1 Logistic model

Instead we consider the **odds** that the person is able to complete the task

$$\texttt{Ddds}(y = 1 \,|\, x) = \frac{P(y = 1 \,|\, x)}{P(y = 0 \,|\, x)} = \frac{P(y = 1 \,|\, x)}{1 - P(y = 1 \,|\, x)}$$

which can have any positive value.

The logistic model is defined as:

$$\texttt{logit}(P(y=1 \mid x)) = \log(\texttt{Odds}(y=1 \mid x)) = \alpha + \beta x$$

The function $logit(p) = log(\frac{p}{1-p})$ - i.e. log of odds - is termed the logistic transformation.

Remark that log odds can be any number, where zero corresponds to P(y = 1 | x) = 0.5. Solving $\alpha + \beta x = 0$ shows that at age $x_0 = -\alpha/\beta$ you have fifty-fifty chance of solving the task.

8.2 Logistic transformation

• The function logit() (remember to load mosaic first) can be used to calculate the logistic transformation:

p <- seq(0.1, 0.9, by = 0.2)
p
[1] 0.1 0.3 0.5 0.7 0.9
l <- logit(p)
l</pre>

```
## [1] -2.197 -0.847 0.000 0.847 2.197
```

• The inverse logistic transformation ilogit() applied to the transformed values can recover the original probabilities:

ilogit(1)

[1] 0.1 0.3 0.5 0.7 0.9

8.3 Odds-ratio

Interpretation of β :

What happens to odds, if we increase age by 1 year?

Consider the so-called **odds-ratio**:

$$\frac{\operatorname{Odds}(y=1 \mid x+1)}{\operatorname{Odds}(y=1 \mid x)} = \frac{\exp(\alpha + \beta(x+1))}{\exp(\alpha + \beta x)} = \exp(\beta)$$

where we see, that $\exp(\beta)$ equals the odds for age x + 1 relative to odds at age x.

This means that when age increase by 1 year, then the relative change in odds is given by $100(\exp(\beta) - 1)\%$.

Х

Examples of logistic curves. The black curve has a positive β -value (=10), whereas the red has a negative β (=-3).

In addition we note that:

- Increasing the absolute value of β yields a steeper curve.
- When $P(y = 1 | x) = \frac{1}{2}$ then logit is zero, i.e. $\alpha + \beta x = 0$.

This means that at age $x = -\frac{\alpha}{\beta}$ you have 50% chance to perform the task.

8.5 Example: Credit card data

We shall investigate if income is a good predictor of whether or not you have a credit card.

• Data structure: For each level of income, we let n denote the number of persons with that income, and credit how many of these that carries a credit card.

creInc <- read.csv("https://asta.math.aau.dk/datasets?file=income-credit.csv")</pre>

head(creInc)

##		Income	n	credit
##	1	12	1	0
##	2	13	1	0
##	3	14	8	2
##	4	15	14	2
##	5	16	9	0
##	6	17	8	2

8.6 Example: Fitting the model

modelFit <- glm(cbind(credit,n-credit) ~ Income, data = creInc, family = binomial)</pre>

- cbind gives a matrix with two column vectors: credit and n-credit, where the latter is the vector counting the number of persons without a credit card.
- The response has the form cbind(credit,n-credit).
- We need to use the function glm (generalized linear model).
- The argument family=binomial tells the function that the data has binomial variation. Leaving out this argument will lead R to believe that data follows a normal distribution as with lm.
- The function coef extracts the coefficients (estimates of parameters) from the model summary:

coef(summary(modelFit))

##		Estimate	Std.	Error	z	value	Pr(z)
##	(Intercept)	-3.518	(0.7103		-4.95	7.33e-07
##	Income	0.105	(0.0262		4.03	5.58e-05

8.7 Test of no effect

coef(summary(modelFit))

##		Estimate	Std.	Error	z	value	Pr(> z)
##	(Intercept)	-3.518	C	.7103		-4.95	7.33e-07
##	Income	0.105	C	.0262		4.03	5.58e-05

Our model for dependence of odds of having a credit card related to income(x) is

 $logit(x) = \alpha + \beta x$

The hypothesis of no relation between income and ability to obtain a credit card corresponds to

 $H_0: \quad \beta = 0$

with the alternative $\beta \neq 0$. Inspecting the summary reveals that $\hat{\beta} = 0.1054$ is more than 4 standard errors away from zero.

With a z-score equal to 4.03 we get the tail probability

ptail <- 2*(1-pdist("norm",4.03,xlim=c(-5,5)))</pre>

[1] 5.58e-05

Which is very significant - as reflected by the p-value.

8.8 Confidence interval for odds ratio

From the summary:

- $\hat{\beta} = 0.10541$ and hence $\exp(\hat{\beta}) 1 = 0.11$. If income increases by 1000 euro, then odds increases by 11%.
- Standard error on $\hat{\beta}$ is 0.02616 and hence a 95% confidence interval for log-odds ratio is $\hat{\beta} \pm 1.96 \times 0.02616 = (0.054; 0, 157).$
- Corresponding interval for odds ratio: $\exp((0.054; 0, 157)) = (1.056; 1.170)$,

i.e. the increase in odds is - with confidence 95% - between 5.6% and 17%.

8.9 Plot of model predictions against actual data

- Tendency is fairly clear and very significant.
- Due to low sample size at some income levels, the deviations are quite large.

9 Multiple logistic regression

9.1 Several numeric predictors

We generalize the model to the case, where we have k predictors x_1, x_2, \ldots, x_k . Where some might be dummies for a factor.

$$logit(P(y=1 | x_1, x_2, \dots, x_k)) = \alpha + \beta_1 x_1 + \dots + \beta_k x_k$$

Interpretation of β -values is unaltered: If we fix x_2, \ldots, x_k and increase x_1 by one unit, then the relative change in odds is given by $\exp(\beta_1) - 1$.

9.2 Example

Wisconsin Breast Cancer Database covers 683 observations of 10 variables in relation to examining tumors in the breast.

- Nine clinical variables with a score between 0 and 10.
- The binary variable Class with levels benign/malignant.
- By default **R** orders the levels lexicografically and chooses the first level as reference (y = 0). Hence benign is reference, and we model odds of malignant.

We shall work with only 4 of the predictors, where two of these have been discretized.

BC <- read.table("https://asta.math.aau.dk/datasets?file=BC0.dat",header=TRUE)
head(BC)</pre>

##		nuclei	cromatin	Size.low	Size.medium	Shape.low	Class
##	1	1	3	TRUE	FALSE	TRUE	benign
##	2	10	3	FALSE	TRUE	FALSE	benign
##	3	2	3	TRUE	FALSE	TRUE	benign
##	4	4	3	FALSE	FALSE	FALSE	benign
##	5	1	3	TRUE	FALSE	TRUE	benign
##	6	10	9	FALSE	FALSE	FALSE	malignant

9.3 Global test of no effects

First we fit the model mainEffects with main effect of all predictors - remember the notaion \sim . for all predictors. Then we fit the model noEffects with no predictors.

```
mainEffects <- glm(Class~., data=BC, family=binomial)
noEffects <- glm(Class~1, data=BC, family=binomial)</pre>
```

First we want to test, whether there is any effect of the predictors, i.e the nul hypothesis

 $H_0: \quad \beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = 0$

9.4 Example

Similarly to 1m we can use the function anova to compare mainEffects and noEffects. Only difference is that we need to tell the function that the test is a chi-square test and not an F-test.

```
anova(noEffects, mainEffects, test="Chisq")
```

```
## Analysis of Deviance Table
##
## Model 1: Class ~ 1
## Model 2: Class ~ nuclei + cromatin + Size.low + Size.medium + Shape.low
    Resid. Df Resid. Dev Df Deviance Pr(>Chi)
##
## 1
           682
                      884
## 2
           677
                                  749
                                        <2e-16 ***
                      135 5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

mainEffects is a much better model.

The test statistic is the Deviance (749.29), which should be small.

It is evaluated in a chi-square with 5 (the number of parameters equal to zero under the nul hypothesis) degrees of freedom.

The 95%-critical value for the $\chi^2(5)$ distribution is 11.07 and the p-value is in practice zero.

9.5 Test of influence of a given predictor

```
round(coef(summary(mainEffects)),4)
```

##		Estimate	Std. Error	z value	Pr(z)
##	(Intercept)	-0.709	0.8570	-0.827	0.4080
##	nuclei	0.440	0.0823	5.348	0.0000
##	cromatin	0.506	0.1444	3.503	0.0005
##	Size.lowTRUE	-3.615	0.8081	-4.474	0.0000
##	Size.mediumTRUE	-2.377	0.7188	-3.307	0.0009
##	Shape.lowTRUE	-2.149	0.6054	-3.550	0.0004

For each predictor p can we test the hypothesis:

$$H_0: \quad \beta_p = 0$$

- Looking at the z-values, there is a clear effect of all 5 predictors. Which of course is also supported by the p-values.
- Is it relevant to include interactions?

9.6 Model selection by stepwise selection

We extend the model to BIG including interactions. And then perform a so-called stepwise selection:

```
BIG <- glm(Class~.^2, data=BC, family=binomial)
final <- step(BIG, k=log(dim(BC)[1]), trace=0)
round(coef(summary(final)), 4)</pre>
```

##		Estimate	Std. Error	z value	Pr(z)
##	(Intercept)	0.0337	0.9025	0.0373	0.9702
##	nuclei	0.3015	0.0837	3.6038	0.0003
##	cromatin	0.4456	0.1441	3.0930	0.0020
##	Size.lowTRUE	-5.4213	1.1359	-4.7729	0.0000
##	Size.mediumTRUE	-2.2948	0.6895	-3.3282	0.0009
##	Shape.lowTRUE	-2.2488	0.6485	-3.4676	0.0005
##	<pre>nuclei:Size.lowTRUE</pre>	0.5690	0.2356	2.4149	0.0157

• step: Stepwise removal of "insignificant" predictors from BIG (our model including all interactions).

- Choise of k=log(dim(BC)[1]) corresponds to the so-called BIC (Bayesian Information Criterion), which we shall not treat in detail. Just note that when k increases, we gradually obtain a simpler model, i.e. the number of predictors decrease.
- If trace=1, you will see all steps in the iterative process.
- We end up with a model including one interaction.

9.7 Prediction and classification

```
BC$pred <- round(predict(final,type="response"),3)</pre>
```

- We add the column **pred** to our dataframe BC.
- pred is the final model's estimate of the probability of malignant.

head(BC[,c("Class","pred")])

Class pred
1 benign 0.004
2 benign 0.890
3 benign 0.010
4 benign 0.929
5 benign 0.004
6 malignant 0.999

Not good for patients 2 and 4.

We may classify by round(BC\$pred):

- 0 to denote benign
- 1 to denote malignant

tally(~ Class + round(pred), data = BC)

round(pred)
Class 0 1
benign 432 12
malignant 11 228

23 patients are misclassified.

sort(BC\$pred[BC\$Class=="malignant"])[1:5]

[1] 0.084 0.092 0.107 0.123 0.179

There is a malignant woman with a predicted probability of malignancy, which is only 8.4%.

If we assign all women with predicted probability of malignancy above 5% to further investigation, then we catch all malignant.

tally(~ Class + I(pred>.05), data = BC)
I(pred > 0.05)
Class TRUE FALSE
benign 39 405
malignant 239 0

The expense is that the number of false positive increases from 12 to 39.

```
tally(~ Class + I(pred>.1), data = BC)
## I(pred > 0.1)
## Class TRUE FALSE
## benign 26 418
## malignant 237 2
```

• If we instead set the alarm to 10%, then the number of false positives decreases from 39 to 26.

• But at the expense of 2 false negative.