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1 Contingency tables

1.1 A contingency table

• We return to the dataset popularKids, where we study association between 2 factors: Goals and
Urban.Rural.

• Based on a sample we make a cross tabulation of the factors and we get a so-called contingency table
(krydstabel).

popKids <- read.delim("https://asta.math.aau.dk/datasets?file=PopularKids.txt")
library(mosaic)
tab <- tally(~Urban.Rural + Goals, data = popKids, margins = TRUE)
tab

## Goals
## Urban.Rural Grades Popular Sports Total
## Rural 57 50 42 149
## Suburban 87 42 22 151
## Urban 103 49 26 178
## Total 247 141 90 478
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1.1.1 A conditional distribution

• Another representation of data is the percent-wise distribution of Goals for each level of Urban.Rural,
i.e. the sum in each row of the table is 100 (up to rounding):

tab <- tally(~Urban.Rural + Goals, data = popKids)
addmargins(round(100 * prop.table(tab, 1)),margin = 1:2)

## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 38 34 28 100
## Suburban 58 28 15 101
## Urban 58 28 15 101
## Sum 154 90 58 302

• Here we will talk about the conditional distribution of Goals given Urban.Rural.
• An important question could be:

– Are the goals of the kids different when they come from urban, suburban or rural areas? I.e. are
the rows in the table significantly different?

• There is (almost) no difference between urban and suburban, but it looks like rural is different.

2 Independence

2.1 Independence

• Recall, that two factors are independent, when there is no difference between the population’s
distributions of one factor given the levels of the other factor.

• Otherwise the factors are said to be dependent.
• If we e.g. have the following conditional population distributions of Goals given Urban.Rural:

## Goals
## Urban.Rural Grades Popular Sports
## Rural 500 300 200
## Suburban 500 300 200
## Urban 500 300 200

• Then the factors Goals and Urban.Rural are independent.
• We take a sample and “measure” the factors F1 and F2. E.g. Goals and Urban.Rural for a random

child.
• The hypothesis of interest today is:

H0 : F1 and F2 are independent, Ha : F1 and F2 are dependent.

2.2 The Chi-squared test for independence

• Our best guess of the distribution of Goals is the relative frequencies in the sample:
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n <- margin.table(tab)
pctGoals <- round(100 * margin.table(tab, 2)/n, 1)
pctGoals

## Goals
## Grades Popular Sports
## 51.7 29.5 18.8

• If we assume independence, then this is also a guess of the conditional distributions of Goals given
Urban.Rural.

• The corresponding expected counts in the sample are then:

## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 77.0 (51.7%) 44.0 (29.5%) 28.1 (18.8%) 149.0 (100%)
## Suburban 78.0 (51.7%) 44.5 (29.5%) 28.4 (18.8%) 151.0 (100%)
## Urban 92.0 (51.7%) 52.5 (29.5%) 33.5 (18.8%) 178.0 (100%)
## Sum 247.0 (51.7%) 141.0 (29.5%) 90.0 (18.8%) 478.0 (100%)

2.3 Calculation of expected table

pctexptab

## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 77.0 (51.7%) 44.0 (29.5%) 28.1 (18.8%) 149.0 (100%)
## Suburban 78.0 (51.7%) 44.5 (29.5%) 28.4 (18.8%) 151.0 (100%)
## Urban 92.0 (51.7%) 52.5 (29.5%) 33.5 (18.8%) 178.0 (100%)
## Sum 247.0 (51.7%) 141.0 (29.5%) 90.0 (18.8%) 478.0 (100%)

• We note that

– The relative frequency for a given column is columnTotal divided by tableTotal. For example
Grades, which is 247

478 = 51.7%.
– The expected value in a given cell in the table is then the cell’s relative column frequency multiplied

by the cell’s rowTotal. For example Rural and Grades: 149× 51.7% = 77.0.

• This can be summarized to:

– The expected value in a cell is the product of the cell’s rowTotal and columnTotal divided by
tableTotal.

2.4 Chi-squared (χ2) test statistic

• We have an observed table:

tab
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## Goals
## Urban.Rural Grades Popular Sports
## Rural 57 50 42
## Suburban 87 42 22
## Urban 103 49 26

• And an expected table, if H0 is true:

## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 77.0 44.0 28.1 149.0
## Suburban 78.0 44.5 28.4 151.0
## Urban 92.0 52.5 33.5 178.0
## Sum 247.0 141.0 90.0 478.0

• If these tables are “far from each other”, then we reject H0. We want to measure the distance via the
Chi-squared test statistic:

– X2 =
∑ (fo−fe)2

fe
: Sum over all cells in the table

– fo is the frequency in a cell in the observed table
– fe is the corresponding frequency in the expected table.

• We have:
X2
obs = (57− 77)2

77 + . . .+ (26− 33.5)2

33.5 = 18.8

• Is this a large distance??

2.5 χ2-test template.

• We want to test the hypothesis H0 of independence in a table with r rows and c columns:

– We take a sample and calculate X2
obs - the observed value of the test statistic.

– p-value: Assume H0 is true. What is then the chance of obtaining a larger X2 than X2
obs, if we

repeat the experiment?

• This can be approximated by the χ2-distribution with df = (r − 1)(c− 1) degrees of freedom.
• For Goals and Urban.Rural we have r = c = 3, i.e. df = 4 and X2

obs = 18.8, so the p-value is:

1 - pdist("chisq", 18.8, df = 4)
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## [1] 0.0008603303

• There is clearly a significant association between Goals and Urban.Rural.

2.6 The function chisq.test.

• All of the above calculations can be obtained by the function chisq.test.

tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)
testStat

##
## Pearson's Chi-squared test
##
## data: tab
## X-squared = 18.828, df = 4, p-value = 0.0008497

testStat$expected

## Goals
## Urban.Rural Grades Popular Sports
## Rural 76.99372 43.95188 28.05439
## Suburban 78.02720 44.54184 28.43096
## Urban 91.97908 52.50628 33.51464
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• The frequency data can also be put directly into a matrix.

data <- c(57, 87, 103, 50, 42, 49, 42, 22, 26)
tab <- matrix(data, nrow = 3, ncol = 3)
row.names(tab) <- c("Rural", "Suburban", "Urban")
colnames(tab) <- c("Grades", "Popular", "Sports")
tab

## Grades Popular Sports
## Rural 57 50 42
## Suburban 87 42 22
## Urban 103 49 26

chisq.test(tab)

##
## Pearson's Chi-squared test
##
## data: tab
## X-squared = 18.828, df = 4, p-value = 0.0008497

3 The χ2-distribution

3.1 The χ2-distribution

• The χ2-distribution with df degrees of freedom:
– Is never negative. And X2 = 0 only happens if fe = fo.
– Has mean µ = df
– Has standard deviation σ =

√
2df

– Is skewed to the right, but approaches a normal distribution when df grows.
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4 Agresti - Summary

4.1 Summary

• For the the Chi-squared statistic, X2, to be appropriate we require that the expected values have to be
fe ≥ 5.

• Now we can summarize the ingredients in the Chi-squared test for independence.

5 Standardized residuals

5.1 Residual analysis

• If we reject the hypothesis of independence it can be of interest to identify the significant deviations.
• In a given cell in the table, fo − fe is the deviation between data and the expected values under the

null hypothesis.
• We assume that fe ≥ 5.
• If H0 is true, then the standard error of fo − fe is given by

se =
√
fe(1− rowProportion)(1− columnProportion)

• The corresponding z-score
z = fo − fe

se

should in 95% of the cells be between ±2. Values above 3 or below -3 should not appear.
• In popKids table cell Rural and Grade we got fe = 77.0 and fo = 57. Here columnProportion= 51.7%

and rowProportion= 149/478 = 31.2%.
• We can then calculate

z = 57− 77√
77(1− 0.517)(1− 0.312)

= −3.95

.
• Compared to the null hypothesis there are way too few rural kids who find grades important.
• In summary: The standardized residuals allow for cell-by-cell (fe vs fo) comparision.

8



5.2 Residual analysis in R

• In R we can extract the standardized residuals from the output of chisq.test:

tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)
testStat$stdres

## Goals
## Urban.Rural Grades Popular Sports
## Rural -3.9508449 1.3096235 3.5225004
## Suburban 1.7666608 -0.5484075 -1.6185210
## Urban 2.0865780 -0.7274327 -1.8186224

6 Models for table data in R

6.1 Example

• We will study the dataset HairEyeColor.

HairEyeColor <- read.delim("https://asta.math.aau.dk/datasets?file=HairEyeColor.txt")
head(HairEyeColor)

## Hair Eye Sex Freq
## 1 Black Brown Male 32
## 2 Brown Brown Male 53
## 3 Red Brown Male 10
## 4 Blond Brown Male 3
## 5 Black Blue Male 11
## 6 Brown Blue Male 50

• Data is organized such that the variable Freq gives the frequency of each combination of the factors
Hair, Eye and Sex.

• For example: 32 observations are men with black hair and brown eyes.
• We are interested in the association between eye color and hair color ignoring the sex
• We aggregate data, so we have a table with frequencies for each combination of Hair and Eye.

HairEye <- aggregate(Freq ~ Eye + Hair, FUN = sum, data = HairEyeColor)
HairEye

## Eye Hair Freq
## 1 Blue Black 20
## 2 Brown Black 68
## 3 Green Black 5
## 4 Hazel Black 15
## 5 Blue Blond 94
## 6 Brown Blond 7
## 7 Green Blond 16
## 8 Hazel Blond 10
## 9 Blue Brown 84
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## 10 Brown Brown 119
## 11 Green Brown 29
## 12 Hazel Brown 54
## 13 Blue Red 17
## 14 Brown Red 26
## 15 Green Red 14
## 16 Hazel Red 14

6.2 Model specification

• We can write down a model for (the logarithm of) the expected frequencies by using dummy variables
ze1, ze2, ze3 and zh1, zh2, zh3

• To denote the different levels of Eye and Hair (the reference level has all dummy variables equal to 0):

log(fe) = α+ βe1ze1 + βe2ze2 + βe3ze3 + βh1zh1 + βh2zh2 + βh3zh3.

• Note that we haven’t included an interaction term, which is this case implies, that we assume indepen-
dence between Eye and Hair in the model.

• Since our response variable now is a count it is no longer a linear model (lm) as we have been used to
(linear regression).

• Instead it is a so-called generalized linear model and the relevant R command is glm.

6.3 Model specification in R

model <- glm(Freq ~ Hair + Eye, family = poisson, data = HairEye)

• The argument family = poisson ensures that R knows that data should be interpreted as discrete
counts and not a continuous variable.

summary(model)

##
## Call:
## glm(formula = Freq ~ Hair + Eye, family = poisson, data = HairEye)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -7.326 -2.065 -0.212 1.235 6.172
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.66926 0.11055 33.191 < 2e-16 ***
## HairBlond 0.16206 0.13089 1.238 0.21569
## HairBrown 0.97386 0.11294 8.623 < 2e-16 ***
## HairRed -0.41945 0.15279 -2.745 0.00604 **
## EyeBrown 0.02299 0.09590 0.240 0.81054
## EyeGreen -1.21175 0.14239 -8.510 < 2e-16 ***
## EyeHazel -0.83804 0.12411 -6.752 1.46e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 453.31 on 15 degrees of freedom
## Residual deviance: 146.44 on 9 degrees of freedom
## AIC: 241.04
##
## Number of Fisher Scoring iterations: 5

• A value of X2 = 146.44 with df = 9 shows that there is very clear significance and we reject the null
hypothesis of independence between hair and eye color.

1 - pdist("chisq", 146.44, df = 9)
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## [1] 0

6.4 Expected values and standardized residuals

• We also want to look at expected values and standardized (studentized) residuals.
• The null hypothesis predicts e3.67+0.02 = 40.1 with brown eyes and black hair, but we have observed 68.
• This is significantly too many, since the standardized residual is 5.86.
• The null hypothesis predicts 47.2 with brown eyes and blond hair, but we have seen 7. This is

significantly too few, since the standardized residual is -9.42.
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HairEye$fitted <- fitted(model)
HairEye$resid <- rstudent(model)
HairEye

## Eye Hair Freq fitted resid
## 1 Blue Black 20 39.22 -4.492
## 2 Brown Black 68 40.14 5.856
## 3 Green Black 5 11.68 -2.508
## 4 Hazel Black 15 16.97 -0.583
## 5 Blue Blond 94 46.12 9.368
## 6 Brown Blond 7 47.20 -9.423
## 7 Green Blond 16 13.73 0.719
## 8 Hazel Blond 10 19.95 -2.936
## 9 Blue Brown 84 103.87 -3.437
## 10 Brown Brown 119 106.28 2.151
## 11 Green Brown 29 30.92 -0.511
## 12 Hazel Brown 54 44.93 2.023
## 13 Blue Red 17 25.79 -2.399
## 14 Brown Red 26 26.39 -0.101
## 15 Green Red 14 7.68 2.368
## 16 Hazel Red 14 11.15 0.961

7 Introduction to logistic regression

7.1 Binary response

• We consider a binary response y with outcome 1 or 0. This might be a code indicating whether a person
is able or unable to perform a given task.

• Furthermore, we are given an explanatory variable x, which is numeric, e.g. age.
• We shall study models for

P (y = 1 |x)

i.e. the probability that a person of age x is able to complete the task.
• We shall see methods for determining whether or not age actually influences the probability, i.e. is y

independent of x?

7.2 A linear model

P (y = 1 |x) = α+ βx

is simple, but often inappropiate. If β is positive and x sufficiently large, then the probability exceeds 1.

8 Simple logistic regression

8.1 Logistic model

Instead we consider the odds that the person is able to complete the task

Odds(y = 1 |x) = P (y = 1 |x)
P (y = 0 |x) = P (y = 1 |x)

1− P (y = 1 |x)
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which can have any positive value.

The logistic model is defined as:

logit(P (y = 1 |x)) = log(Odds(y = 1 |x)) = α+ βx

The function logit(p) = log( p
1−p ) - i.e. log of odds - is termed the logistic transformation.

Remark that log odds can be any number, where zero corresponds to P (y = 1 |x) = 0.5. Solving α+ βx = 0
shows that at age x0 = −α/β you have fifty-fifty chance of solving the task.

8.2 Logistic transformation

• The function logit() (remember to load mosaic first) can be used to calculate the logistic transforma-
tion:

p <- seq(0.1, 0.9, by = 0.2)
p

## [1] 0.1 0.3 0.5 0.7 0.9

l <- logit(p)
l

## [1] -2.197 -0.847 0.000 0.847 2.197

• The inverse logistic transformation ilogit() applied to the transformed values can recover the original
probabilities:

ilogit(l)

## [1] 0.1 0.3 0.5 0.7 0.9

8.3 Odds-ratio

Interpretation of β:

What happens to odds, if we increase age by 1 year?

Consider the so-called odds-ratio:

Odds(y = 1 |x+ 1)
Odds(y = 1 |x) = exp(α+ β(x+ 1))

exp(α+ βx) = exp(β)

where we see, that exp(β) equals the odds for age x+ 1 relative to odds at age x.

This means that when age increase by 1 year, then the relative change in odds is given by 100(exp(β)− 1)%.
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8.4 Simple logistic regression

Logistic curves
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Examples of logistic curves. The black curve has a positive β-value (=10), whereas the red has a negative β
(=-3).

In addition we note that:

• Increasing the absolute value of β yields a steeper curve.
• When P (y = 1 |x) = 1

2 then logit is zero, i.e. α+ βx = 0.

This means that at age x = −αβ you have 50% chance to perform the task.

8.5 Example: Credit card data

We shall investigate if income is a good predictor of whether or not you have a credit card.

• Data structure: For each level of income, we let n denote the number of persons with that income, and
credit how many of these that carries a credit card.

creInc <- read.csv("https://asta.math.aau.dk/datasets?file=income-credit.csv")

head(creInc)

## Income n credit
## 1 12 1 0
## 2 13 1 0
## 3 14 8 2
## 4 15 14 2
## 5 16 9 0
## 6 17 8 2

8.6 Example: Fitting the model
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modelFit <- glm(cbind(credit,n-credit) ~ Income, data = creInc, family = binomial)

• cbind gives a matrix with two column vectors: credit and n-credit, where the latter is the vector
counting the number of persons without a credit card.

• The response has the form cbind(credit,n-credit).

• We need to use the function glm (generalized linear model).

• The argument family=binomial tells the function that the data has binomial variation. Leaving out
this argument will lead R to believe that data follows a normal distribution - as with lm.

• The function coef extracts the coefficients (estimates of parameters) from the model summary:

coef(summary(modelFit))

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.518 0.7103 -4.95 7.33e-07
## Income 0.105 0.0262 4.03 5.58e-05

8.7 Test of no effect

coef(summary(modelFit))

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.518 0.7103 -4.95 7.33e-07
## Income 0.105 0.0262 4.03 5.58e-05

Our model for dependence of odds of having a credit card related to income(x) is

logit(x) = α+ βx

The hypothesis of no relation between income and ability to obtain a credit card corresponds to

H0 : β = 0

with the alternative β 6= 0. Inspecting the summary reveals that β̂ = 0.1054 is more than 4 standard errors
away from zero.

With a z-score equal to 4.03 we get the tail probability

ptail <- 2*(1-pdist("norm",4.03,xlim=c(-5,5)))
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## [1] 5.58e-05

Which is very significant - as reflected by the p-value.

8.8 Confidence interval for odds ratio

From the summary:

• β̂ = 0.10541 and hence exp(β̂) − 1 = 0.11. If income increases by 1000 euro, then odds increases by
11%.

• Standard error on β̂ is 0.02616 and hence a 95% confidence interval for log-odds ratio is β̂ ± 1.96 ×
0.02616 = (0.054; 0, 157).

• Corresponding interval for odds ratio: exp((0.054; 0, 157)) = (1.056; 1.170),
i.e. the increase in odds is - with confidence 95% - between 5.6% and 17%.
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8.9 Plot of model predictions against actual data
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• Tendency is fairly clear and very significant.
• Due to low sample size at some income levels, the deviations are quite large.

9 Multiple logistic regression

9.1 Several numeric predictors

We generalize the model to the case, where we have k predictors x1, x2, . . . , xk. Where some might be
dummies for a factor.

logit(P (y = 1 |x1, x2, . . . , xk)) = α+ β1x1 + · · ·+ βkxk

Interpretation of β-values is unaltered: If we fix x2, . . . , xk and increase x1 by one unit, then the relative
change in odds is given by exp(β1)− 1.

9.2 Example

Wisconsin Breast Cancer Database covers 683 observations of 10 variables in relation to examining tumors in
the breast.
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• Nine clinical variables with a score between 0 and 10.
• The binary variable Class with levels benign/malignant.
• By default R orders the levels lexicografically and chooses the first level as reference (y = 0). Hence

benign is reference, and we model odds of malignant.

We shall work with only 4 of the predictors, where two of these have been discretized.

BC <- read.table("https://asta.math.aau.dk/datasets?file=BC0.dat",header=TRUE)
head(BC)

## nuclei cromatin Size.low Size.medium Shape.low Class
## 1 1 3 TRUE FALSE TRUE benign
## 2 10 3 FALSE TRUE FALSE benign
## 3 2 3 TRUE FALSE TRUE benign
## 4 4 3 FALSE FALSE FALSE benign
## 5 1 3 TRUE FALSE TRUE benign
## 6 10 9 FALSE FALSE FALSE malignant

9.3 Global test of no effects

First we fit the model mainEffects with main effect of all predictors - remember the notaion ~ . for all
predictors. Then we fit the model noEffects with no predictors.

mainEffects <- glm(Class~., data=BC, family=binomial)
noEffects <- glm(Class~1, data=BC, family=binomial)

First we want to test, whether there is any effect of the predictors, i.e the nul hypothesis

H0 : β1 = β2 = β3 = β4 = β5 = 0

9.4 Example

Similarly to lm we can use the function anova to compare mainEffects and noEffects. Only difference is
that we need to tell the function that the test is a chi-square test and not an F-test.

anova(noEffects, mainEffects, test="Chisq")

## Analysis of Deviance Table
##
## Model 1: Class ~ 1
## Model 2: Class ~ nuclei + cromatin + Size.low + Size.medium + Shape.low
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 682 884
## 2 677 135 5 749 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

18



mainEffects is a much better model.

The test statistic is the Deviance (749.29), which should be small.

It is evaluated in a chi-square with 5 (the number of parameters equal to zero under the nul hypothesis)
degrees of freedom.

The 95%-critical value for the χ2(5) distribution is 11.07 and the p-value is in practice zero.

9.5 Test of influence of a given predictor

round(coef(summary(mainEffects)),4)

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.709 0.8570 -0.827 0.4080
## nuclei 0.440 0.0823 5.348 0.0000
## cromatin 0.506 0.1444 3.503 0.0005
## Size.lowTRUE -3.615 0.8081 -4.474 0.0000
## Size.mediumTRUE -2.377 0.7188 -3.307 0.0009
## Shape.lowTRUE -2.149 0.6054 -3.550 0.0004

For each predictor p can we test the hypothesis:

H0 : βp = 0

• Looking at the z-values, there is a clear effect of all 5 predictors. Which of course is also supported by
the p-values.

• Is it relevant to include interactions?

9.6 Model selection by stepwise selection

We extend the model to BIG including interactions. And then perform a so-called stepwise selection:

BIG <- glm(Class~.^2, data=BC, family=binomial)
final <- step(BIG, k=log(dim(BC)[1]), trace=0)
round(coef(summary(final)), 4)

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.0337 0.9025 0.0373 0.9702
## nuclei 0.3015 0.0837 3.6038 0.0003
## cromatin 0.4456 0.1441 3.0930 0.0020
## Size.lowTRUE -5.4213 1.1359 -4.7729 0.0000
## Size.mediumTRUE -2.2948 0.6895 -3.3282 0.0009
## Shape.lowTRUE -2.2488 0.6485 -3.4676 0.0005
## nuclei:Size.lowTRUE 0.5690 0.2356 2.4149 0.0157

• step: Stepwise removal of “insignificant” predictors from BIG (our model including all interactions).
• Choise of k=log(dim(BC)[1]) corresponds to the so-called BIC (Bayesian Information Criterion),

which we shall not treat in detail. Just note that when k increases, we gradually obtain a simpler model,
i.e. the number of predictors decrease.

• If trace=1, you will see all steps in the iterative process.
• We end up with a model including one interaction.
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9.7 Prediction and classification

BC$pred <- round(predict(final,type="response"),3)

• We add the column pred to our dataframe BC.
• pred is the final model’s estimate of the probability of malignant.

head(BC[,c("Class","pred")])

## Class pred
## 1 benign 0.004
## 2 benign 0.890
## 3 benign 0.010
## 4 benign 0.929
## 5 benign 0.004
## 6 malignant 0.999

Not good for patients 2 and 4.

We may classify by round(BC$pred):

• 0 to denote benign
• 1 to denote malignant

tally(~ Class + round(pred), data = BC)

## round(pred)
## Class 0 1
## benign 432 12
## malignant 11 228

23 patients are misclassified.

sort(BC$pred[BC$Class=="malignant"])[1:5]

## [1] 0.084 0.092 0.107 0.123 0.179

There is a malignant woman with a predicted probability of malignancy, which is only 8.4%.

If we assign all women with predicted probability of malignancy above 5% to further investigation, then we
catch all malignant.
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tally(~ Class + I(pred>.05), data = BC)

## I(pred > 0.05)
## Class TRUE FALSE
## benign 39 405
## malignant 239 0

The expense is that the number of false positive increases from 12 to 39.

tally(~ Class + I(pred>.1), data = BC)

## I(pred > 0.1)
## Class TRUE FALSE
## benign 26 418
## malignant 237 2

• If we instead set the alarm to 10%, then the number of false positives decreases from 39 to 26.
• But at the expense of 2 false negative.
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