Linear regression and correlation
 The ASTA team

Contents

1 The regression problem 1
1.1 We want to predict 1
1.2 Initial graphics 2
1.3 Simple linear regression 2
1.4 Model for linear regression 3
1.5 Least squares 3
1.6 The prediction equation and residuals 4
1.7 Estimation of conditional standard deviation 4
1.8 Example in R 5
1.9 Test for independence 5
1.10 Example 6
1.11 Confidence interval for slope 6
1.12 Correlation 7
2 R-squared: Reduction in prediction error 8
2.1 R-squared: Reduction in prediction error 8
2.2 Graphical illustration of sums of squares 8
$2.3 \quad r^{2}$: Reduction in prediction error 9

1 The regression problem

1.1 We want to predict

- We will study the dataset trees, which is on the course website (and actually also already available in R).

```
trees <- read.delim("https://asta.math.aau.dk/datasets?file=trees.txt")
```

- In this experiment we have measurements of 3 variables for 31 randomly chosen trees:
- [,1] Girth numeric. Tree diameter in inches.
- [,2] Height numeric. Height in ft.
- [,3] Volume numeric. Volume of timber in cubic ft.
- We want to predict the tree volume, if we measure the tree height and/or the tree girth (diameter).
- This type of problem is called regression.
- Relevant terminology:
- We measure a quantitative response y, e.g. Volume.
- In connection with the response value y we also measure one (later we will consider several) potential explanatory variable x. Another name for the explanatory variable is predictor.

1.2 Initial graphics

- Any analysis starts with relevant graphics.

- For each combination of the variables we plot the (x, y) values.
- It looks like Girth is a good predictor for Volume.
- If we only are interested in the association between two (and not three or more) variables we use the usual gf_point function.

1.3 Simple linear regression

- We choose to use $\mathrm{x}=\mathrm{Girth}$ as predictor for $\mathrm{y}=\mathrm{Volume}$. When we only use one predictor we are doing simple regression.
- The simplest model to describe an association between response y and a predictor x is simple linear regression.
- I.e. ideally we see the picture

$$
y(x)=\alpha+\beta x
$$

where
$-\alpha$ is called the Intercept - the line's intercept with the y-axis, corresponding to the response for $x=0$.

- β is called Slope - the line's slope, corresponding to the change in response, when we increase the predictor by one unit.

1.4 Model for linear regression

- Assume we have a sample with joint measurements (x, y) of predictor and response.
- Ideally the model states that

$$
y(x)=\alpha+\beta x,
$$

but due to random variation there are deviations from the line.

- What we observe can then be described by

$$
y=\alpha+\beta x+\varepsilon
$$

where ε is a random error, which causes deviations from the line.

- We will continue under the following fundamental assumption:
- The errors ε are normally distributed with mean zero and standard deviation $\sigma_{y \mid x}$.
- We call $\sigma_{y \mid x}$ the conditional standard deviation given x, since it describes the variation in y around the regression line, when we know x.

1.5 Least squares

- In summary, we have a model with 3 parameters:
- (α, β) which determine the line
$-\sigma_{y \mid x}$ which is the standard deviation of the deviations from the line.
- How are these estimated, when we have a sample $\left(x_{1}, y_{1}\right) \ldots\left(x_{n}, y_{n}\right)$ of (x, y) values??
- To do this we focus on the errors

$$
\varepsilon_{i}=y_{i}-\alpha-\beta x_{i}
$$

which should be as close to 0 as possible in order to fit the data best possible.

- We will chose the line, which minimizes the sum of squares of the errors:

$$
\sum_{i=1}^{n} \varepsilon_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\alpha-\beta x_{i}\right)^{2}
$$

- If we set the partial derivatives to zero we obtain two linear equations for the unknowns (α, β), where the solution (a, b) is given by:

$$
b=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad \text { and } \quad a=\bar{y}-b \bar{x}
$$

1.6 The prediction equation and residuals

- The equation for the estimates $(\hat{\alpha}, \hat{\beta})=(a, b)$,

$$
\hat{y}=a+b x
$$

is called the prediction equation, since it can be used to predict y for any value of x.

- Note: The prediction equation is determined by the current sample. I.e. there is an uncertainty attached to it. A new sample would without any doubt give a different prediction equation.
- Our best estimate of the errors is

$$
e_{i}=y_{i}-\hat{y}=y_{i}-a-b x_{i}
$$

i.e. the vertical deviations from the prediction line.

- These quantities are called residuals.
- We have that
- The prediction line passes through the point (\bar{x}, \bar{y}).
- The sum of the residuals is zero.

1.7 Estimation of conditional standard deviation

- To estimate $\sigma_{y \mid x}$ we need Sum of Squared Errors

$$
S S E=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

which is the squared distance between the model and data.

- We then estimate $\sigma_{y \mid x}$ by the quantity

$$
s_{y \mid x}=\sqrt{\frac{S S E}{n-2}}
$$

- Instead of n we divide $S S E$ with the degrees of freedom $d f=n-2$. Theory shows, that this is reasonable.
- The degrees of freedom $d f$ are determined as the sample size minus the number of parameters in the regression equation.
- In the current setup we have 2 parameters: (α, β).

1.8 Example in R

```
model <- lm(Volume ~ Girth, data = trees)
summary(model)
##
## Call:
## lm(formula = Volume ~ Girth, data = trees)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.065 -3.107 0.152 3.495 9.587
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***
## Girth 5.0659 0.2474 20.48< 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.252 on 29 degrees of freedom
## Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331
## F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16
```

- The estimated residuals vary from -8.065 to 9.578 with median 0.152 .
- The estimate of Intercept is $a=-36.9435$
- The estimate of slope of Girth is $b=5.0659$
- The estimate of the conditional standard deviation (called residual standard error in \mathbf{R}) is $s_{y \mid x}=4.252$ with $31-2=29$ degrees of freedom.

1.9 Test for independence

- We consider the regression model

$$
y=\alpha+\beta x+\varepsilon
$$

where we use a sample to obtain estimates (a, b) of (α, β), an estimate $s_{y \mid x}$ of $\sigma_{y \mid x}$ and the degrees of freedom $d f=n-2$.

- We are going to test

$$
H_{0}: \beta=0 \quad \text { against } \quad H_{a}: \beta \neq 0
$$

- The null hypothesis specifies, that y doesn't depend linearly on x.
- In other words the question is: Is the value of b far away from zero?
- It can be shown that b has standard error

$$
s e_{b}=\frac{s_{y \mid x}}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}
$$

with $d f$ degrees of freedom.

- So, we want to use the test statistic

$$
t_{\mathrm{obs}}=\frac{b}{s e_{b}}
$$

which has to be evaluated in a t-distribution with $d f$ degrees of freedom.

1.10 Example

- Recall the summary of our example:

```
summary(model)
##
## Call:
## lm(formula = Volume ~ Girth, data = trees)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.065 -3.107 0.152 3.495 9.587
##
## Coefficients:
## Estimate Std. Error t value Pr}(>|t|
## (Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***
## Girth 5.0659 0.2474 20.48 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.252 on 29 degrees of freedom
## Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331
## F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16
```

- As we noted previously $b=5.0659$ and $s_{y \mid x}=4.252$ with $d f=29$ degrees of freedom.
- In the second column(Std. Error) of the Coefficients table we find $s e_{b}=0.2474$.
- The observed t-score (test statistic) is then

$$
t_{\text {obs }}=\frac{b}{s e_{b}}=\frac{5.0659}{0.2474}=20.48
$$

which also can be found in the third column(t value).

- The corresponding p-value is found in the usual way by using the t-distribution with 29 degrees of freedom.
- In the fourth column $(\operatorname{Pr}(>|t|))$ we see that the p -value is less than 2×10^{-16}. This is no surprise since the t -score was way above 3 .

1.11 Confidence interval for slope

- When we have both the standard error and the reference distribution, we can construct a confidence interval in the usual way:

$$
b \pm t_{c r i t} s e_{b}
$$

where the t-score is determined by the confidence level and we find this value using qdist in \mathbf{R}.

- In our example we have 29 degrees of freedom and with a confidence level of 95% we get $t_{\text {crit }}=$ qdist("t", 0.975, df = 29) = 2.045.
- If you are lazy (like most statisticians are):

```
confint(model)
```

```
## 2.5 % 97.5 %
## (Intercept) -43.825953-30.060965
## Girth 4.559914 5.571799
```

- i.e. $(4.56,5.57)$ is a 95% confidence interval for the slope of Girth.

1.12 Correlation

- The estimated slope b in a linear regression doesn't say anything about the strength of association between y and x.
- Girth was measured in inches, but if we rather measured it in kilometers the slope is much larger: An increase of 1 km in Girth yield an enormous increase in Volume.
- Let s_{y} and s_{x} denote the sample standard deviation of y and x, respectively.
- The corresponding t-scores

$$
y_{t}=\frac{y}{s_{y}} \quad \text { and } \quad x_{t}=\frac{x}{s_{x}}
$$

are independent of the chosen measurement scale.

- The corresponding prediction equation is then

$$
\hat{y}_{t}=\frac{a}{s_{y}}+\frac{s_{x}}{s_{y}} b x_{t}
$$

- i.e. the standardized regression coefficient (slope) is

$$
r=\frac{s_{x}}{s_{y}} b
$$

which also is called the correlation between y and x.

- It can be shown that:
$--1 \leq r \leq 1$
- The absolute value of r measures the (linear) strength of dependence between y and x.
- When $r=1$ all the points are on the prediction line, which has positive slope.
- When $r=-1$ all the points are on the prediction line, which has negative slope.
- To calculate the correlation in \mathbf{R} :

```
cor(trees)
```

\#\# Girth Height Volume
\#\# Girth 1.00000000 .51928010 .9671194
\#\# Height 0.51928011 .00000000 .5982497
\#\# Volume 0.96711940 .59824971 .0000000

- There is a strong positive correlation between Volume and Girth ($\mathrm{r}=0.967$).
- Note, calling cor on a data.frame (like trees) only works when all columns are numeric. Otherwise the relevant numeric columns should be extracted like this:

```
cor(trees[,c("Height", "Girth", "Volume")])
```

which produces the same output as above.

- Alternatively, one can calculate the correlation between two variables of interest like:

```
cor(trees$Height, trees$Volume)
```

\#\# [1] 0.5982497

2 R-squared: Reduction in prediction error

2.1 R-squared: Reduction in prediction error

- We want to compare two different models used to predict the response y.
- Model 1: We do not use the knowledge of x, and use \bar{y} to predict any y-measurement. The corresponding prediction error is defined as

$$
T S S=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

and is called the Total Sum of Squares.

- Model 2: We use the prediction equation $\hat{y}=a+b x$ to predict y_{i}. The corresponding prediction error is then the Sum of Squared Errors

$$
S S E=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

- We then define

$$
r^{2}=\frac{T S S-S S E}{T S S}
$$

which can be interpreted as the relative reduction in the prediction error, when we include x as explanatory variable.

- This is also called the fraction of explained variation, coefficient of determination or simply r-squared.
- For example if $r^{2}=0.65$, the interpretation is that x explains about 65% of the variation in y, whereas the rest is due to other sources of random variation.

2.2 Graphical illustration of sums of squares

- Note the data points are the same in both plots. Only the prediction rule changes.
- The error of using Rule 1 is the total sum of squares $E_{1}=T S S=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$.
- The error of using Rule 2 is the residual sum of squares (sum of squared errors) $E_{2}=S S E=$ $\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$.

$2.3 \quad r^{2}$: Reduction in prediction error

- For the simple linear regression we have that

$$
r^{2}=\frac{T S S-S S E}{T S S}
$$

is equal to the square of the correlation between y and x, so it makes sense to denote it r^{2}.

- Towards the bottom of the output below we can read off the value $r^{2}=0.9353=93.53 \%$, which is a large fraction of explained variation.

```
summary(model)
##
## Call:
## lm(formula = Volume ~ Girth, data = trees)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.065 -3.107 0.152 3.495 9.587
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36.9435 
## Girth 5.0659 0.2474 20.48 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.252 on 29 degrees of freedom
## Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331
## F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16
```

