Ordinal data

The ASTA team

Contents

1	\mathbf{Ass}	ssociation between ordinal variables				
	1.1	Ordinal variables	1			
	1.2	Gamma coefficient	1			
	1.3	Gamma coefficient	2			
	1.4	Example	2			

1 Association between ordinal variables

1.1 Ordinal variables

For a random sample of black males the General Social Survey in 1996 asked two questions:

- Q1: What is your yearly income (income)?
- Q2: How satisfied are you with your job (satisfaction)?

Both measurements are on an ordinal scale.

	VeryD	LittleD	ModerateS	VeryS
$< 15 \mathrm{k}$	1	3	10	6
15-25k	2	3	10	7
25-40k	1	6	14	12
> 40k	0	1	9	11

We might do a chi-square test to see whether Q1 and Q2 are associated, but the test does not exploit the ordinality.

We shall consider a test that incorporates ordinality.

1.2 Gamma coefficient

Consider a pair of respondents, where respondent1 is below respondent2 in relation to Q1.

- If respondent1 is also below respondent2 in relation to Q2 then the pair is *concordant*.
- If respondent1 is above respondent2 in relation to Q2 then the pair is *disconcordant*.

Let

• C = the number of concordant pairs in our sample.

• D = the number of disconcordant pairs in our sample.

We define the estimated gamma coefficient

$$\hat{\gamma} = \frac{C - D}{C + D} = \underbrace{\frac{C}{C + D}}_{concordant \ prop.} - \underbrace{\frac{D}{C + D}}_{discordant \ prop.}$$

1.3 Gamma coefficient

Properties:

- Gamma lies between -1 og 1
- The sign tells whether the association is positive or negative
- Large absolute values correspond to strong association

The standard error $se(\hat{\gamma})$ on $\hat{\gamma}$ is complicated to calculate, so we leave that to software.

We can now determine a 95% confidence interval:

$$\hat{\gamma} \pm 1.96 se(\hat{\gamma})$$

and if zero is contained in the interval, then there is no significant association, when we perform a test with a 5% significance level.

1.4 Example

First, we need to install the package vcdExtra, which has the function GKgamma for calculating gamma. It also has the dataset on job satisfaction and income built-in:

library(vcdExtra)
JobSat

##	satisfaction					
##	income	VeryD	LittleD	ModerateS	VeryS	
##	< 15k	1	3	10	6	
##	15-25k	2	3	10	7	
##	25-40k	1	6	14	12	
##	> 40k	0	1	9	11	

```
GKgamma(JobSat, level = 0.90)
```

gamma : 0.221
std. error : 0.117
CI : 0.028 0.414

A positive association. Marginally significant at the 10% level, but not so at the 5% level.