## Contingency tables and independence

April 28, 2019

#### Applied STAtistics group at AAU

Department of Mathematical Sciences

Aalborg University



## Introduction

Outline of session:

- Contingency tables
- Independence and expected table counts

Lecturer for this session is Ege Rubak, Dept. of Math. Sciences, AAU





# A contingency table



- We consider the dataset popularKids, where we study association between 2 qualitative variables (factors): Goals and Urban.Rural.
- Based on a sample we make a cross tabulation of the factors and we get a so-called contingency table (krydstabel).

|          | Grades | Popular | Sports | Total |
|----------|--------|---------|--------|-------|
| Rural    | 57     | 50      | 42     | 149   |
| Suburban | 87     | 42      | 22     | 151   |
| Urban    | 103    | 49      | 26     | 178   |
| Total    | 247    | 141     | 90     | 478   |



- A CORE UNIVERSIT
- Another representation of data is the percent-wise distribution of Goals for each level of Urban.Rural, i.e. the sum in each row of the table is 100 (up to rounding):

|          | Grades | Popular | Sports | Sum   |
|----------|--------|---------|--------|-------|
| Rural    | 38.3   | 33.6    | 28.2   | 100.1 |
| Suburban | 57.6   | 27.8    | 14.6   | 100.0 |
| Urban    | 57.9   | 27.5    | 14.6   | 100.0 |

- Here we will talk about the conditional distribution of Goals given Urban.Rural.
- An important question could be:
  - Are the goals of the kids different when they come from urban, suburban or rural areas? I.e. are the rows in the table significantly different?
- There is (almost) no difference between urban and suburban, but it looks like rural is different.

### Independence



- Recall, that two factors are independent, when there is no difference between the population's distributions of one factor given the other.
- Otherwise the factors are said to be **dependent**.
- If we e.g. have the following conditional population distributions of Goals given Urban.Rural:

|          | Grades | Popular | Sports |
|----------|--------|---------|--------|
| Rural    | 50     | 30      | 20     |
| Suburban | 50     | 30      | 20     |
| Urban    | 50     | 30      | 20     |

- ▶ Then the factors Goals and Urban.Rural are independent.
- ▶ We take a sample and "measure" the factors *F*<sub>1</sub> and *F*<sub>2</sub>. E.g. Goals and Urban.Rural for a random child.
- The hypothesis of interest today is:

 $H_0$ :  $F_1$  and  $F_2$  are independent,  $H_a$ :  $F_1$  and  $F_2$  are dependent.



Our best guess of the distribution of Goals is the relative frequencies in the sample:

| Grades | Popular | Sports |
|--------|---------|--------|
| 51.7   | 29.5    | 18.8   |

- If we assume independence, then this is also a guess of the conditional distributions of Goals given Urban.Rural.
- ► The corresponding expected counts in the sample are then:

|          | Grades        | Popular       | Sports       | Sum          |
|----------|---------------|---------------|--------------|--------------|
| Rural    | 77.0 (51.7%)  | 44.0 (29.5%)  | 28.1 (18.8%) | 149.0 (100%) |
| Suburban | 78.0 (51.7%)  | 44.5 (29.5%)  | 28.4 (18.8%) | 151.0 (100%) |
| Urban    | 92.0 (51.7%)  | 52.5 (29.5%)  | 33.5 (18.8%) | 178.0 (100%) |
| Sum      | 247.0 (51.7%) | 141.0 (29.5%) | 90.0 (18.8%) | 478.0 (100%) |

# Calculation of expected table



|          | Grades        | Popular       | Sports       | Sum          |
|----------|---------------|---------------|--------------|--------------|
| Rural    | 77.0 (51.7%)  | 44.0 (29.5%)  | 28.1 (18.8%) | 149.0 (100%) |
| Suburban | 78.0 (51.7%)  | 44.5 (29.5%)  | 28.4 (18.8%) | 151.0 (100%) |
| Urban    | 92.0 (51.7%)  | 52.5 (29.5%)  | 33.5 (18.8%) | 178.0 (100%) |
| Sum      | 247.0 (51.7%) | 141.0 (29.5%) | 90.0 (18.8%) | 478.0 (100%) |

#### We note that

- ▶ The relative frequency for a given column is columnTotal divided by tableTotal. For example Grades, which is  $\frac{247}{478} = 51.7\%$ .
- The expected value in a given cell in the table is then the cell's relative column frequency multiplied by the cell's rowTotal. For example Rural and Grades: 149 × 51.7% = 77.0.



The expected value in a cell is the product of the cell's rowTotal and columnTotal divided by tableTotal.