Chi-squared test

April 25, 2019

Applied STAtistics group at AAU

Department of Mathematical Sciences

Aalborg University

Introduction

Outline of session:

▶ Calculation of test statistic
▶ χ²-distribution

Lecturer for this session is Ege Rubak, Dept. of Math. Sciences, AAU

Chi-squared (χ^2) test statistic

Those UNIVERS

▶ We have an **observed table** and an **expected table** if H₀ is true:

	Grades	Popular	Sports		Grades	Popular	Sports
Rural	57	50	42	Rural	77.0	44.0	28.1
Suburban	87	42	22	Suburban	78.0	44.5	28.4
Urban	103	49	26	Urban	92.0	52.5	33.5

▶ If these tables are "far from each other", then we reject *H*₀. We want to measure the distance via the Chi-squared test statistic:

- $X^2 = \sum \frac{(f_o f_e)^2}{f_e}$: Sum over all cells in the table
- f_o is the frequency in a cell in the observed table

• f_e is the corresponding frequency in the expected table.

► We have:

$$X_{obs}^2 = \frac{(57 - 77)^2}{77} + \ldots + \frac{(26 - 33.5)^2}{33.5} = 18.8$$

► Is this a large distance??

χ^2 -test template.

- To test the H_0 of independence in a table with r rows and c columns:
 - For a sample we calculate the observed value of the test statistic: X_{obs}^2 .
 - ▶ p-value: What is the prob. of getting a larger X^2 than X^2_{obs} , if H_0 is true?
- This can be approximated by the χ^2 -distribution with df = (r-1)(c-1).
- For Goals and Urban.Rural we have r = c = 3, i.e. df = 4 and $X_{obs}^2 = 18.8$, so the p-value is 0.001:

The χ^2 -distribution

- Has mean $\mu = df$
- Has standard deviation $\sigma = \sqrt{2df}$
- ▶ Is skewed to the right, but approaches a normal distribution when *df* grows.

