Data collection and wrangling

The ASTA team

Contents

1	Data collection							
	1.1	Data collection	1					
	1.2	Data collection	2					
2	Pop	Population and sample						
	2.1	Population and sample	2					
3 Example: United States presidential election, 1936								
	3.1	Example: United States presidential election, 1936	3					
	3.2	Example: United States presidential election, 1936	3					
	3.3	Example: United States presidential election, 1936	3					
4 Example: Bullet holes of honor								
	4.1	Example: Bullet holes of honor	4					
	4.2	Example: Bullet holes of honor	4					
5	The	eory: Biases / sampling	4					
	5.1	Biases	4					
	5.2	Sampling	5					
6	Dat	ta wrangling	5					
	6.1	Data wrangling	5					

1 Data collection

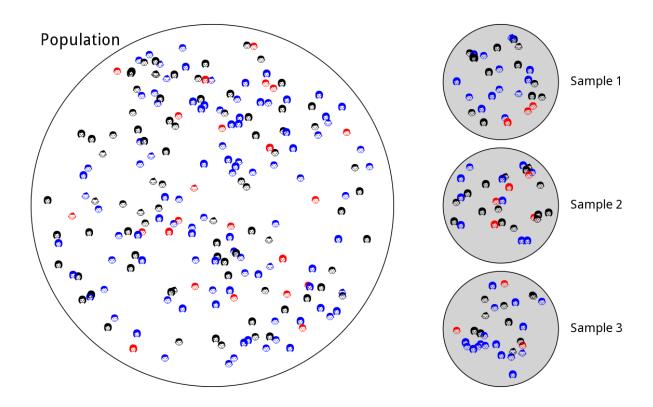
1.1 Data collection

- Getting numbers to report is easy
- Getting sensible and trustworthy numbers to report is orders of magnitude more difficult

Ronald Fisher (1890-1962):

To consult the statistician after an experiment is finished is often merely to ask him to conduct a post mortem examination. He can perhaps say what the experiment died of.

Said about Fisher:


- Anders Hald (1913-2007), Danish statistician: "a genius who almost single-handedly created the foundations for modern statistical science"
- Bradley Efron (b. 1938): "the single most important figure in 20th century statistics"

1.2 Data collection

- Competences, ideally:
 - Statistics, both conceptually and analyses
 - Data wrangling (loading data; right format for analyses, tables, figures; ...)
 - Visualizations
 - Knowledge about subject (best with access to experts)
- Not just downloading a spreadsheet!
 - Population vs sample
 - Descriptives of the sample (e.g. mean)
 - Statistical inference about population (how close is sample's mean to population's mean)
- Do collect and analyze data, but know about pitfalls and limitations in generalisability!

2 Population and sample

2.1 Population and sample

Sample 3 of size n = 30:

shape	color	n_sample	p_sample	p_pop	p_diff
baby	black	2	0.07	0.04	-0.02
baby	blue	1	0.03	0.04	0.01
baby	red	0	0.00	0.01	0.01
man	black	5	0.17	0.12	-0.04
man	blue	8	0.27	0.22	-0.04
man	red	3	0.10	0.08	-0.02
woman	black	3	0.10	0.23	0.13
woman	blue	8	0.27	0.22	-0.05
woman	red	0	0.00	0.02	0.02

• Descriptive vs statistical inference.

3 Example: United States presidential election, 1936

3.1 Example: United States presidential election, 1936

(Based on Agresti, this and this.)

- Current president: Franklin D. Roosevelt
- Election: Franklin D. Roosevelt vs Alfred Landon (Republican governor of Kansas)
- Literary Digest: magazine with history of accurately predicting winner of past 5 presidential elections

3.2 Example: United States presidential election, 1936

- Literary Digest poll ($\hat{\pi}$ and $1 \hat{\pi}$): Landon: 57%; Roosevelt: 43%
- Actual results (π and $1-\pi$): Landon: 38%; Roosevelt: 62%
- Sampling error: 57%-38% = 19%
 - Practically all of the sampling error was the result of **sample bias**
 - Poll size of > 2 mio. individuals participated extremely large poll

3.3 Example: United States presidential election, 1936

- Mailing list of about 10 mio. names was created
 - Based on every telephone directory, lists of magasine subscribers, rosters of clubs and associations, and other sources
 - Each one of 10 mio. received a mock ballot and asked to return the marked ballot to the magazine
- "respondents who returned their questionnaires represented only that subset of the population with a relatively intense interest in the subject at hand, and as such constitute in no sense a random sample ... it seems clear that the minority of anti-Roosevelt voters felt more strongly about the election than did the pro-Roosevelt majority" (*The American Statistician*, 1976)
- Biases:
 - Selection bias
 - * List generated towards middle- and upper-class voters (e.g. 1936 and telephones)
 - * Many unemployed (club memberships and magazine subscribers)
 - Non-response bias
 - * Only responses from 2.3/2.4 mio out of 10 million people
 - * Cannot force people to participate: but mail may be junk (phone, interviews, online, pay/paid, ...)

4 Example: Bullet holes of honor

4.1 Example: Bullet holes of honor

(Based on this.)

- World War II
- Royal Air Force (RAF), UK
 - Lost many planes to German anti-aircraft fire
- Armor up!
 - Where?
 - Count up all the bullet holes in planes that returned from missions
 - * Put extra armor in the areas that attracted the most fire

4.2 Example: Bullet holes of honor

- Hungarian-born mathematician Abraham Wald:
 - If a plane makes it back safely with a bunch of bullet holes in its wings: holes in the wings aren't very dangerous
 - * Survivorship bias
 - Armor up the areas that (on average) don't have any bullet holes
 - * They never make it back, apparently dangerous

5 Theory: Biases / sampling

5.1 Biases

Agresti section 2.3:

- Sampling/selection bias
 - Probability sampling: each sample of size n has same probability of being sampled
 - * Still problems: undercoverage, groups not represented (inmates, homeless, hospitalized, ...)
 - Non-probability sampling: probability of sample not possible to determine
 - * E.g. volunteer sampling
- Response bias
 - E.g. poorly worded, confusing or even order of questions
 - Lying if think socially unacceptable
- Non-response bias
 - Non-response rate high; systematic in non-responses (age, health, believes)

5.2 Sampling

Agresti section 2.4:

- Random sampling schemes:
 - Simple sampling: each possible sample of equal size equally probable
 - Systematic sampling
 - Stratified sampling
 - Cluster sampling
 - Multistage sampling
 - . . .

6 Data wrangling

6.1 Data wrangling

This will be illustrated with two specific cases.

The material is on Moodle.