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1 Concepts, terminology and examples

1.1 Plotting, manipulation, trends and seasonality

• A discrete time stochastic process is a collection of the same variable measured at different points in
time. This is also know as a time series. We will always assume the data is observed at equidistant
points in time (i.e. same time difference between consecutive observations).

• To get appropriate summaries and plots of the data we must tell R that the data is a time series, which
is called a ts object in R. A built-in example is the dataset AirPassengers which we will abbreviate
to AP to save typing:

AP <- AirPassengers
plot(AP, ylab = "Bookings (1000s)")
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• The generic function plot automatically detected that AP was a time series (ts object) and plotted the
correct time on the horizontal axis (by calling plot.ts automatically).

• We can aggregate the time series over each year (sums the values by default, so we add FUN = mean to
get monthly mean), which clearly shows an increasing trend in the yearly number of passenger bookings:

APyear <- aggregate(AP, FUN = mean)
plot(APyear)
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Such a systematic change in a time series that is not periodic is known as the trend of the series.

• The repeating (periodic) pattern within each year seen in the original data is known as seasonality or
seasonal variation. The function cycle indicates which cycle (aka season) each observation belongs
to (in this case 1-12). A boxplot of the number of bookings for each cycle (month) clearly shows the
seasonality:

cyc <- cycle(AP)
cyc <- factor(cyc, labels = month.abb)
boxplot(AP ~ cyc)
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• If we only want to consider a subset of the data the function window is used:

APJun55Dec56 <- window(AP, start = c(1955, 6), end = c(1956, 12))
APJun55Dec56

## Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
## 1955 315 364 347 312 274 237 278
## 1956 284 277 317 313 318 374 413 405 355 306 271 306

• The window function can also sub-sample the time series according to the frequency:

APAug <- window(AP, start = c(1949, 8), end = end(AP), freq = TRUE)

• To plot multiple series in one plot we can use ts.plot:

ts.plot(APyear, APAug, col = c("black", "red"))
legend("topleft", legend = c("Mean", "August"), col = c("black", "red"), lty = 1)
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1.2 Stochastic trend

• The trend for the passenger bookings data was very clear from the data (as well as the seasonal pattern),
and a reasonable explanation may be increasing population, increasing prosperity and technological
advances making tickets cheaper.

• In other situations the behavior of the trend may be less clear and we will need to handle it differently.
For the quarterly exchange rate between GBP and NZD the picture is less clear:
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www <- "https://asta.math.aau.dk/eng/static/datasets?file=pounds_nz.dat"
exchange_data <- read.table(www, header = TRUE)
exchange <- ts(exchange_data, start = 1991, freq = 4)
plot(exchange)
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• In general it is dangerous to extrapolate the trend, and this is even more so the case for a series with a
stochastic trend, which this example may have.

• Especially for financial time series stochastic trends with abrupt changes to the trend are common.

1.3 Multiple series

• Monthly time series from Jan. 1958 to Dec. 1990 of supply of three goods in Australia:

– Electricity (Giga Watt hours)
– Beer (Mega liters)
– Chocolate (tonnes)

CBEdata <- read.table("https://asta.math.aau.dk/eng/static/datasets?file=cbe.dat",
header = TRUE)

CBE <- ts(CBEdata, start = 1958, freq = 12)
plot(CBE)
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• For overlapping time series with the same frequency we can get the data for the overlapping period
like this:

APCBE <- ts.intersect(AP, CBE)
plot(APCBE)
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• In the realm of time series people often find spurious correlations and mistake them for causal
relationships. E.g. the number of passenger bookings in USA looks very similar to electricity consumption
in Australia and there is a strong correlation:

cor(APCBE)

## AP CBE.choc CBE.beer CBE.elec
## AP 1.0000000 0.6375808 -0.4434747 0.8841668
## CBE.choc 0.6375808 1.0000000 -0.6204467 0.7644756
## CBE.beer -0.4434747 -0.6204467 1.0000000 -0.3120179
## CBE.elec 0.8841668 0.7644756 -0.3120179 1.0000000

However, this does not imply that US air passengers really influence the electricity consumption in Australia
(or vice versa)! Time series with similar trends and seasonality will typically show strong correlation even
though they are unrelated. Better explanations may be due to similar population growth, seasonal patterns,
etc.

1.4 Decomposition

1.4.1 Decomposition - trend term

• It can be useful to decompose the time series xt into the trend mt, the seasonal variation st, and an
error term zt. Here we will focus on an additive decomposition xt = mt + st + zt, but multiplicative
models xt = mt · st · zt are also available.
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• To estimate the trend a simple solution is to use a moving average by averaging the preceding and
following L values relative to the current point in time, where L is chosen to average out the season
effect. So if the season effect is weekly we choose L = 3 such that

m̂t = (xt−3 + xt−2 + xt−1 + xt + xt+1 + xt+2 + xt+3)/7

E.g. if the current time t is a Tuesday the moving average averages today’s value with the ones from
the preceding Sat., Sun. and Mon. and the following Wed., Thu. and Fri. For an even season length
like 12 months we have to do something else if we want an equal amount of past and future in the
moving average, and we use half of the value six months in the past/future:

m̂t =
1
2xt−6 + xt−5 + xt−4 + · · ·+ x0 + · · ·+ xt+4 + xt+5 + 1

2xt+6

12

E.g., the moving average for Jul. 1958 uses half the value in Jan. 1958 and half the value in Jan. 1959
and all the 11 values Feb.-Dec. 1958:

choc <- CBE[, "choc"]
i <- 7
(choc[i-6]/2 + sum(choc[(i-5):(i+5)]) + choc[i+6]/2)/12

## [1] 2413.625

This computation can be done for all time points (except the first six and last six) using decompose, which
returns a list with a component trend (and other things to be discussed shortly):

choc_decomp <- decompose(choc)
choc_trend <- choc_decomp$trend
window(choc_trend, end = c(1958, 8))

## Jan Feb Mar Apr May Jun Jul
## 1958 NA NA NA NA NA NA 2413.625
## Aug
## 1958 2409.500

• Note that the procedure automatically chooses the appropriate size of the moving average based on the
frequency of the time series, which was set to 12 in this case.

1.4.2 Decomposition - seasonal term

• To estimate the seasonal effect we subtract the trend and average for each period in the season (e.g. each
month):

choc_no_trend <- choc - choc_trend
plot(choc_no_trend)
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choc_jan <- mean(window(choc_no_trend, st = c(1958, 1), freq = TRUE), na.rm = TRUE)
choc_jan

## [1] -2450.538

choc_may <- mean(window(choc_no_trend, st = c(1958, 5), freq = TRUE), na.rm = TRUE)
choc_may

## [1] 1171.215

It appears that chocolate consumption typically is much higher in May than in January. The season effects
are also calculated by decompose and stored in the list as seasonal:

plot(choc_decomp$seasonal)
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1.4.3 Decomposition - random term

• The entire decomposition can also be plotted:

plot(choc_decomp)
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Decomposition of additive time series

• Here the random term is simply given by zt = xt −mt − st, and this can be accessed through the
random entry of the decomposition output choc_decomp$random.

2 Stationarity and autocorrelation

• Consider the excess chocolate consumption data after adjusting for trend and season (and omitting the
first six and last six entries which are NA):

choc_rand <- na.omit(choc_decomp$random)
plot(choc_rand)
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This is a single realization of something we may think of as a random experiment. If things had been different
(different weather, different chocolate advertisements, different economic fluctuations, . . . ) we could imagine
another series.

This hypothetical scenario applies to any time series xt where we imagine our dataset is somehow randomly
seleceted among an entire ensemble of possible time series.

• Calculating the mean of all such hypothetical series would give us the mean function µ(t) = E(xt) for
all t. Since we already adjusted for trend and season we expect a mean value around zero at each time
point, and we might assume µ(t) = µ for all t, where µ is a fixed constant (zero in this case). If this is
truly the case we say the series is stationary in the mean (first order stationary). In general we can
estimate µ by the sample mean as we have been used to:

µ̂ = x̄ = 1
n

n∑
t=1

xt.

• The variance (square of std. dev.) is in general also a function of time σ2(t) = E[(xt − µ(t))2]. If we
assume we have stationarity of the variance also σ2(t) = σ2 we can estimate σ2 by the sample variance

σ̂2 = 1
n− 1

n∑
t=1

(xt − x̄)2.

• Now consider a process that is stationary in the mean and variance. The variables at different times
may be correlated and the process is called second order stationary if the covariance only depends
on the number of time steps between the variables, Cov(xt, xt+k) = γ(k) for all t, and γ is called the
autocovariance function. The number of time steps k is called the lag. The autocovariance can be
estimated from data:

γ̂(k) = ck = 1
n

n−k∑
t=1

(xt − x̄)(xt+k − x̄)

• The more useful autocorrelation function (acf) is the normalized version that takes values between
-1 and +1: ρ(k) = γ(k)/σ2, which is estimated based on the estimate of the autocovariance above:
ρ̂(k) = rk = ck

c0
.
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• The autocorrelation at lag 0 is always equal to 1, ρ(0) = 1 and r0 = 1.

• For lag 1 it is the correlation between today’s value xt and tomorrows value xt+1. If we look directly at
the chocolate data this correlation is very strong (simply because there is an increasing trend, so high
value is followed by a high value):

i <- 1:(length(choc)-1)
plot(choc[i], choc[i+1])
abline(lsfit(choc[i], choc[i+1]))
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cor(choc[i], choc[i+1])

## [1] 0.8025919

• After removing the trend and seasonality there isn’t really any dependence on the preceding value:

i <- 1:(length(choc_rand)-1)
plot(choc_rand[i], choc_rand[i+1])
abline(lsfit(choc_rand[i], choc_rand[i+1]))
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cor(choc_rand[i], choc_rand[i+1])

## [1] -0.02278652

2.1 Correlogram (empirical acf)

• To calculate the empirical autocorrelation at many lags we use acf which produces a plot by default:

choc_acf <- acf(choc)
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This is called the correlogram.

• It is possible to calculate the correlogram for any time series (also non-stationary). However, the
theoretical properties only make sense for a stationary process.

• The correlogram value at lag k, rk is an estimate of the true autocorrelation ρ(k).

• In particular if ρ(k) = 0 then rk will usually not be exactly zero. Rather it is approximately normally
distributed with a mean close to zero and standard deviation 1/

√
n, where n is the length of the series.

Based on this approximate significance bands are drawn at ±1.96/
√
n.

• The significance bands are only valid for a single lag! Even if ρ(k) = 0 for all lags k = 1, 2, . . . we expect
1/20 of the rk’s to fall outside the line. Furthermore the estimates are heavily correlated so if one falls
outside it is also more likely that the one next does.

• It is typical to look at a few specific lags. E.g. lag 1 for the immediate past and lag 12 if a season of
length 12 is expected. A spike at lag 12 indicates that there is a seasonal pattern that has not been
adequately accounted for. It appears the seasonal adjustment for the chocolate data hasn’t been perfect
since there is a somewhat large autocorrelation at lag 12 (1 year):

acf(choc_rand)
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2.2 Typical patterns in correlograms

It can be illustrative to consider a few specific examples of correlograms:

• Completely random:

x <- rnorm(100)
par(mfrow = c(2,1), mar = c(4,4,0.5,0.5))
ts.plot(x)
acf(x, main = "", lag.max = 30)
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• Trend only:

x <- 1:100
par(mfrow = c(2,1), mar = c(4,4,0.5,0.5))
ts.plot(x)
acf(x, main = "", lag.max = 30)
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• Sinusoidal wave:

x <- sin((1:100)*2*pi/10)
par(mfrow = c(2,1), mar = c(4,4,0.5,0.5))
ts.plot(x)
acf(x, main = "", lag.max = 100)
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• Repeated pattern:

x0 <- c(3,5,2,1,4)
x <- rep(x0, 20)
par(mfrow = c(2,1), mar = c(4,4,0.5,0.5))
ts.plot(x)
acf(x, main = "", lag.max = 30)
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2.3 Partial autocorrelation function

• If a time series has a strong correlation with the values lagged by one time step it most likely also has a
strong correlation with the values lagged by two time steps: When today’s value is highly influenced
by yesterdays, then yesterdays will be highly influenced by the day before, and thus the lag 2 value
influences the current value through the lag 1 value.

• The partial autocorrelation (pacf) at lag 2 is the correlation between the time series and the lag 2 values
after controlling for the lag 1 values.

• This is analogous to the multiple regression setup

xt = β0 + β1xt−1 + β2xt−2 + ε

where β2 is a partial effect of the corresponding predictor (xt−2) when controlling for the other
predictor (xt−1).

• In general the pacf at lag k is the correlation of xt and xt−k after controlling for the intermediate
variables xt−1, . . . , xt−k−1.

• A more detailed description of partial correlation in the multiple regression setup is in Section 11.7 of
Agresti (2013).

• For a strong deterministic trend the pacf only shows strong correlation in the first lag and after
controlling for this the following lags show no extra correlation:
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x <- 1:100
par(mfrow = c(2,1), mar = c(4,4,0.5,0.5))
ts.plot(x)
pacf(x, main = "")
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3 Basic stochastic models

3.1 White noise

Suppose yt is a time series and we have a model which gives us predictions ŷt. Then the residuals are
xt = yt − ŷt for each time point t = 1, . . . , n. If the model has correctly captured the trend, seasonality and
any autocorrelation in the original process yt then the correlogram (acf) of the residual process xt should
show no obvious patterns. Such a residual process with no autocorrelation or other structure is called white
noise.

3.1.1 Definition and properties of white noise

A time series wt, t = 1, . . . , n is white noise if the variables w1, w2, . . . , wn are independent and identically
distributed with a mean of zero.
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From the definition it follows that white noise is a second order stationary process since the variance function
σ2(t) = σ2 is the same constant for all t and the autocovariance is Cov(wt, wt+k) = 0 for all k 6= 0 which
does not depend on t. We summaries this as:

µ = 0

γ(k) = Cov(wt, wt+k) =
{
σ2 for k = 0
0 for k 6= 0

ρ(k) =
{

1 for k = 0
0 for k 6= 0

Often we will also assume the distribution of each wt is Gaussian (i.e. wt ∼ N(0, σ)) and then we call it
Gaussian white noise.

3.1.2 Simulation of white noise

To understand how white noise behaves we can simulate it with R and plot both the series and the
autocorrelation:

w <- rnorm(100, mean = 0, sd = 1)
par(mfrow = c(2,1), mar = c(4,4,0,0))
ts.plot(w)
acf(w)
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It is a good idea to repeat this simulation and plot a few times to appreciate the variablility of the results.
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3.2 Random walk

A time series xt is called a random walk if

xt = xt−1 + wt

where wt is a white noise series. Using xt−1 = xt−2 + wt−1 we get

xt = xt−2 + wt−1 + wt

Substituting for xt−2 we get
xt = xt−3 + wt−2 + wt−1 + wt

Continuing this way we would get an infinite sum of white noise

xt = wt + wt−1 + wt−2 + wt−3 + . . .

However, we will assume we have a fixed starting point x0 = 0 such that

xt = w1 + w2 + · · ·+ wt

3.2.1 Properties of random walk

A random walk xt has a constant mean function

µ(t) = 0

since the random walk at time t is a sum of t white noise terms that all have mean zero.

However, the variance function
σ2(t) = t · σ2

clearly depends on the time t, so the process is not stationary. The variance function is derived from the
general fact that for independent random variables, y1 and y2, the variance of the sum is

V ar(y1 + y2) = V ar(y1) + V ar(y2).

Thus,
V ar(xt) = V ar(w1 + w2 + · · ·+ wt) = σ2 + σ2 + · · ·+ σ2 = tσ2

The non-stationary autocovariance function is

Cov(xt, xt+k) = tσ2, k = 0, 1, . . .

which only depends on how many white noise terms xt and xt+k have in common (t) and not how far they
are separated (k).

By combining the two results we obtain the non-stationary autocorrelation function

Cor(xt, xt+k) = Cov(xt, xt+k)√
V ar(xt)V ar(xt+k)

= tσ2√
tσ2(t+ k)σ2

= 1√
1 + k/t

When t is large compared to k we have very high correlation (close to one) and even though the process is
not stationary we expect the correlogram of a reasonably long random walk to show very slow decay.
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3.2.2 Simulation of random walk

We already know how to simulate Gaussian white noise (with rnorm) and the random walk is just a cumulative
sum of white noise:

w <- rnorm(1000)
rw <- cumsum(w)
par(mfrow = c(2,1), mar = c(4,4,0.5,0.5))
ts.plot(rw)
acf(rw, lag.max = 100)
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3.2.3 Differencing

The slowly decaying acf for random walk is a classical sign of non-stationarity, indicating there may be some
kind of trend. In this case there is no real trend, since the theoretical mean is constant zero, but we refer to
the apparent trend which seems to change directions unpredictiably as a stochastic trend.

If a time series shows these signs of non-stationarity we can try to study the time series of differences and see
if that is stationary and easier to understand:

∇xt = xt − xt−1.

Since we assume/define x0 = 0 we get
∇x1 = x1
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∇x2 = x2 − x1

∇x3 = x3 − x2

etc.

Specifically when we difference a random walk we recover the white noise series ∇xt = wt:

diffrw <- diff(rw)
par(mfrow = c(2,1), mar = c(4,4,0.5,0.5))
ts.plot(diffrw)
acf(diffrw, lag.max = 30)
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In general if a time series needs to be differenced to become stationary we say that the series is integrated (of
order 1).

3.2.4 Example: Exchange rate

We have previously studied the exchange rate from GBP to NZD and observed what looked like an un-
predictable stochastic trend and we would like to see if it could reasonably be described as a random
walk.

www <- "https://asta.math.aau.dk/eng/static/datasets?file=pounds_nz.dat"
exchange_data <- read.table(www, header = TRUE)
exchange <- ts(exchange_data, start = 1991, freq = 4)
plot(exchange)
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To this end we difference the series and see if the difference looks like white noise:

diffexchange <- diff(exchange)
par(mfrow = c(2,1), mar = c(4,4,0.5,0.5))
plot(diffexchange)
acf(diffexchange)
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The first order difference looks reasonably stationary, so the original exchange rate series could be considered
integrated of order 1. However, there is an indication of significant autocorrelation at lag 1, so a random
walk might not be a completely satisfactory model for this dataset.

4 Auto-regressive (AR) models

4.1 Auto-regressive model of order 1: AR(1)

A significant auto-correlation at lag 1 means that xt and xt−1 are correlated so the previous value xt−1 can
be used to predict the current value xt. This is the idea behind an auto-regressive model of order one AR(1):

xt = α1xt−1 + wt

where wt is white noise and the auto-regressive coefficient α1 is a parameter to be estimated from data.

The model is only stationary if −1 < α1 < 1 such that the dependence of the past decreases with time.

4.1.1 Properties of AR(1) models

For a stationary AR(1) model with −1 < α1 < 1 it can be shown that

• µ(t) = 0
• V ar(xt) = σ2(t) = σ2/(1− α2

1)

27



• γ(k) = αk1σ
2/(1− α2

1)
• ρ(k) = αk1

Furthermore, the partial autocorrelation of an AR(1) model is zero for all lags k ≥ 2.

Below are the theoretical correlograms for the following AR(1) models:

• Model 1: xt = 0.7xt−1 + wt
• Model 2: xt = −0.7xt−1 + wt

k <- 0:10
par(mfrow = c(2,1), mar = c(4,4,0.5,0.5))
plot(k, 0.7^k, type = "h", xlab = "")
plot(k, (-0.7)^k, type = "h", ylim = c(-1,1))
abline(h=0)
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4.1.2 Simulation of AR(1) models

R has a built-in function arima.sim to simulate AR(1) and other more complicated models called ARMA
and ARIMA. It needs the model (i.e. the autoregressive coefficient α1) and the desired number of time steps
n. To simulate 200 time steps of AR(1) with α1 = 0.7 we do:
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x <- arima.sim(model = list(ar = 0.7), n = 200)
plot(x)
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acf(x)
points(k, 0.7^k, col = "red")
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Here we have compared the empirical correlogram with the theoretical values of the model.
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4.1.3 Fitted AR(1) models

To estimate the autoregressive parameter α1 we use the function ar:

fit <- ar(x, order.max = 1)

The resulting object contains the value of the estimated parameter and a bunch of other information. In this
case the input data are artificial so we know we should ideally get a value close to 0.7:

fit$ar

## [1] 0.6814584

An estimate of the variance of the estimate α̂1 is given in fit$asy.var.coef (the estimated std. error is the
square root of this):

fit$asy.var.coef

## [,1]
## [1,] 0.002705124

se <- sqrt(fit$asy.var.coef)
se

## [,1]
## [1,] 0.0520108

ci <- c(fit$ar - 2*se, fit$ar + 2*se)
ci

## [1] 0.5774368 0.7854800

There are several different methods that can be used to estimate the model, but we ignore the details of this.
However, first step in the estimation is to subtract the mean x̄ of the time series before doing anything else,
so the model that is fitted is actually:

xt − x̄ = α1 · (xt−1 − x̄) + wt

To predict the value of xt given xt−1 we use that wt is white noise so we expect it to be zero on average:

x̂t − x̄ = α̂1 · (xt−1 − x̄)

So the predictions are given by
x̂t = x̄+ α̂1 · (xt−1 − x̄), t ≥ 2.

Given the predictions we can estimate the model errors as usual by the model residuals:

ŵt = xt − x̂t, t ≥ 2.

If we believe the model describes the dataset well the residuals should look like a sample of white noise:
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res <- na.omit(fit$resid)
par(mfrow = c(2,1), mar = c(4,4,1,1))
plot(res)
acf(res)
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This naturally looks good for this artificial dataset.

4.1.4 AR(1) model fitted to exchange rate

A random walk is an example of a AR(1) model with α1 = 1, and it is non-stationary. This didn’t provide an
ideal fit for the exchange rate dataset, so we might suggest a stationary AR(1) model with α1 as a parameter
to be estimated from data:

fitexchange <- ar(exchange, order.max = 1)
fitexchange$ar

## [1] 0.890261

resexchange <- na.omit(fitexchange$resid)
par(mfrow = c(2,1), mar = c(4,4,1,1))
plot(resexchange)
acf(resexchange)
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This does not appear to really provide a better fit than the random walk model proposed earlier.

An alternative would be to propose a AR(1) model for the differenced time series ∇xt = xt − xt−1:

dexchange <- diff(exchange)
fitdiff <- ar(dexchange, order.max = 1)
fitdiff$ar

## [1] 0.3451507

resdiff <- na.omit(fitdiff$resid)
par(mfrow = c(2,1), mar = c(4,4,1,1))
plot(resdiff)
acf(resdiff)
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4.1.5 Prediction from AR(1) model

We can use a fitted AR(1) model to predict future values of a time series. If the last observed time point is t
then we predict xt+1 using the equation given previously:

x̂t+1 = x̄+ α̂1 · (xt − x̄).

If we want to predict xt+2 we use
x̂t+2 = x̄+ α̂1 · (x̂t+1 − x̄).

And we can continue this way. Prediction is performed by predict in R. E.g. for the AR(1) model fitted to
the exchange rate data the last observation is in third quarter of 2000. If we want to predict 1 year ahead to
third quarter of 2001 (probably a bad idea due to the stochastic trend):

pred1 <- predict(fitexchange, n.ahead = 4)
pred1

## $pred
## Qtr1 Qtr2 Qtr3 Qtr4
## 2000 3.453332
## 2001 3.384188 3.322631 3.267830
##
## $se
## Qtr1 Qtr2 Qtr3 Qtr4
## 2000 0.1767767
## 2001 0.2366805 0.2750411 0.3020027
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Note how the prediction returns both the predicted value and a standard error for this value. So we predict
that the exchange rate in third quarter of 2001 would be within 3.27±0.6 with approximately 95% probability.

We can plot a prediction and approximate 95% pointwise prediction intervals with ts.plot (where we use a
10 year prediction – which is a very bad idea – to see how it behaves in the long run):

pred10 <- predict(fitexchange, n.ahead = 40)
lower10 <- pred10$pred-2*pred10$se
upper10 <- pred10$pred+2*pred10$se
ts.plot(exchange, pred10$pred, lower10, upper10, lty = c(1,2,3,3))
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4.2 Auto-regressive models of higher order

The first order auto-regressive model can be generalised to higher order by adding more lagged terms to
explain the current value xt. An AR(p) process is

xt = α1xt−1 + α2xt−2 + · · ·+ αpxt−p + wt

where wt is white noise and α1, α2, . . . , αp are parameters to be estimated from data.

The parameters cannot be chosen arbitrarily if we want the model to be stationary. To check that a given
AR(p) model is stationary we must find all the roots of the characteristic equation

1− α1z − α2z
2 − · · · − αpzp = 0

and check that the absolute value of all the roots is greater than 1.
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4.2.1 Estimation of AR(p) models

For an AR(p) model there are typically two things we need to estimate:

1. The maximal non-zero lag p in the model.
2. The autoregressive coefficients/parameters α1, . . . , αp.

For the first point we note the following theoretical property of AR(p) processes:

For an AR(p) process the theoretical value of the partial autocorrelation at lag k is αk. Thus, for all lags
greater than p the theoretical partial autocorrelation is zero. So heuristically we can choose the maximal lag
p of an AR(p) process by looking at when the estimated partial autocorrelation function is close to zero.

In practice it can be hard to say exactly when the pacf is sufficienty close to zero and more advanced methods
are often used. The function ar in R uses AIC (Akaike’s Information Criterion) to automatically select the
value for p.

Once the order is chosen and the estimates α̂1, . . . , α̂p are found the corresponding standard errors can be
found as the square root of the diagonal of the matrix stored as asy.var.coef in the fitted model object.

4.2.2 Example of AR(p) model

We use an example of monthly global temperatures expressed as anomalies from the monthly average in
1961-1990. We reduce the dataset to the yearly mean temperature, and fit an AR(p) model to this. A good
fit would indicate that the higher temperatures over the last decade could be explained by a purely stochastic
process which just has dependence on the temperature anomalies from previous year and eventually might as
well start decreasing again. However, this does not mean that there is no climate crisis! There is
lots of scientific evidence of this based on much more complicated models and more detailed data.

global_data <- scan("https://asta.math.aau.dk/eng/static/datasets?file=global.dat")
global_monthly <- ts(global_data, st = c(1856,1), end = c(2005,12), freq = 12)
global <- aggregate(global_monthly, FUN = mean)
plot(global)
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globalfit <- ar(global, order.max = 10)
globalfit

##
## Call:
## ar(x = global, order.max = 10)
##
## Coefficients:
## 1 2 3 4
## 0.6825 0.0032 0.0672 0.1730
##
## Order selected 4 sigma^2 estimated as 0.01371

globalresid <- na.omit(globalfit$resid)
par(mfrow = c(2,1), mar = c(4,4,1,1))
plot(globalresid)
acf(globalresid, lag.max = 30)
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5 Moving average models

Another class of models are moving average (MA) models. An moving average process of order q, MA(q), is
defined by

xt = wt + β1wt−1 + β2wt−2 + · · ·+ βqwt−q

where wt is a white noise process with mean zero and variance σ2
w and β1, β2, . . . , βq are parameters to be

estimated.

Since a moving average process is a finite sum of stationary white noise terms it is itself stationary and
therefore the mean and variance is time-invariant (same constant mean and variance for all t):

• Mean µ(t) = 0
• Variance σ2(t) = σ2

w(1 + β2
1 + β2

2 + · · ·+ β2
q )

The autocorrelation function, for k ≥ 0, is

ρ(k) =


1 k = 0∑q−k
i=0 βiβi+k/

∑q
i=0 β

2
i k = 1, 2, . . . , q

0 k > q

where β0 = 1.

37



5.1 Simulation of MA(q) processes

To simulate a MA(q) process we just need the white noise process wt and then transform it using the MA
coefficients. If we e.g. want to simulate a model with β1 = −0.7, β2 = 0.5, and β3 = −0.2 we can use
arima.sim:

xsim <- arima.sim(list(ma = c(-.7, .5, -.2)), n = 200)
plot(xsim)
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The theoretical autocorrelations are in this case:

ρ(1) = 1 · (−0.7) + (−0.7) · 0.5 + 0.5 · (−0.2)
1 + (−0.7)2 + 0.52 + (−0.2)2 = −0.65

ρ(2) = 1 · 0.5 + (−0.7) · (−0.2)
1 + (−0.7)2 + 0.52 + (−0.2)2 = 0.36

ρ(3) = 1 · (−0.2)
1 + (−0.7)2 + 0.52 + (−0.2)2 = −0.11

acf(xsim)
points(1:3, c(-.65, .36, -.11), col = "red")
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5.1.1 Estimation of MA(q) models

To estimate the parameters of a MA(q) model we use arima:

xfit <- arima(xsim, order = c(0,0,3))
xfit

##
## Call:
## arima(x = xsim, order = c(0, 0, 3))
##
## Coefficients:
## ma1 ma2 ma3 intercept
## -0.7395 0.5630 -0.1814 -0.0353
## s.e. 0.0710 0.0779 0.0731 0.0415
##
## sigma^2 estimated as 0.8325: log likelihood = -265.84, aic = 541.68

The function arima does not include automatic selection of the order of the model so this has to be chosen
beforehand or selected by comparing several proposed models using the AIC.
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6 Mixed models: Auto-regressive moving average models

A time series xt follows an auto-regressive moving average (ARMA) process of order (p, q), denoted
ARMA(p, q), if

xt = α1xt−1 + α2xt−2 + · · ·+ αpxt−p + wt + β1wt−1 + β2wt−2 + · · ·+ βqwt−q

where wt is a white noise process and α1, α2, . . . , αp, β1, β2, . . . , βq are parameters to be estimated.

We can simulate an ARMA model with arima.sim. E.g. an ARMA(1,1) model:

xarma <- arima.sim(model = list(ar = -0.6, ma = 0.5), n = 200)
plot(xarma)
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Estimation is done with arima as before.

6.0.1 Example with exchange rate data

For the exchange rate data we may e.g. suggest either a AR(1), MA(1) or ARMA(1,1) model. We can
compare fitted model using AIC (smaller is better):

exchange_ar <- arima(exchange, order = c(1,0,0))
AIC(exchange_ar)

## [1] -37.40417

exchange_ma <- arima(exchange, order = c(0,0,1))
AIC(exchange_ma)
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## [1] -3.526895

exchange_arma <- arima(exchange, order = c(1,0,1))
AIC(exchange_arma)

## [1] -42.27357

exchange_arma

##
## Call:
## arima(x = exchange, order = c(1, 0, 1))
##
## Coefficients:
## ar1 ma1 intercept
## 0.8925 0.5319 2.9597
## s.e. 0.0759 0.2021 0.2435
##
## sigma^2 estimated as 0.01505: log likelihood = 25.14, aic = -42.27

par(mfrow = c(2,1), mar = c(4,4,1,1))
resid_arma <- na.omit(exchange_arma$residuals)
plot(resid_arma)
acf(resid_arma)
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7 Continuous time stochastic processes

7.1 Data example

In this lecture we will study a type of data that on the surface looks like data from time series analysis as
presented in the previous lectures. As an illustration, we shall study the data set Irates, that contains
information about interest rates in the U.S. between 1946 and 1991.

We are interested in the relation between the two variables:

• t=time: The time point of the measurement.

• X_t=rate: The interest rate at the corresponding time point.
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The plot should be understood as follows: For each time point (between 1946 and 1991) there is a value of
the interest rate called Xt. So Xt could be seen as a function of t, and this function is plotted.

In principle we imagine that there are infinitely many data points, simply because there are infinitely many
time points between 1946 and 1991. Of course this is never true: In practice we will always only have finitely
many data points.

But it makes sense to believe that the real data actually contains all the data points. We are just not able to
measure them (and to store them in a computer).

With a model for all datapoints, we are - through simulation - able to describe the behaviour of data. Also
between the observations.

8 Wiener process

A key example of a process in continuous time will be the so–called Wiener process.

Three simulated realizations (black, blue and red) of this process can be seen here
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A Wiener process has the following properties:

• It starts in 0: W0 = 0.

• It has independent increments: For 0 < s < t it holds that Wt −Ws is independent of everything that
has happened up to time s, that is Wu for all u ≤ s.

• It has normally distributed increments: For 0 < s < t it holds that the increment Wt −Ws is normally
distributed with variance t− s:

Wt −Ws ∼ N(µ = 0, σ2 = t− s).

The intuition of this process is that it somehow changes direction all the time: How the process changes after
time s will be independent of what has happened before time s. So whether the process should increase or
decrease after s will not be affected by how much it was increasing or decreasing before.

This gives the very bumpy behaviour over time.

9 Differential equation models

9.1 Ordinary differential equations

A common way to define a continuous time stochastic process model is through a stochastic differential
equation (SDE) which we will turn to shortly, but before doing so we will recall some basic things about
ordinary differential equations.

Suppose f is a differentiable function. Recall the mathematical description of a differential equation

df(t)
dt

= −4f(t)

This equation has the solution
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f(t) = C · exp(−4t)

for any constant C. If we furthermore know that f(0) = 1, then C = 1 and

f(t) = exp(−4t)

The solution can be seen below
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With a slightly unusual notation we can rewrite this as

df(t) = −4 · f(t)dt

This equation has the following (hopefully intuitive) interpretation:

• We imagine that we increase the time point from t to t+ dt, where dt is something small. So the time
is increased by dt.

• Then the value of f is (approximately) changed from f(t) to f(t)− 4f(t)dt. So actually the value of f
is decreased by 4f(t) dt

So when t is increased, then f(t) is decreased. And the decrease is determined by the value of f(t). That is
why f decreases slower and slower, when t is increased.

We say that the function has a drift towards zero, and this drift is determined by the value of the function.

9.2 Stochastic differential equations

It will probably never be true that data behaves exactly like the exponentially decreasing curve on the
previous slide.
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Instead we will consider a model, where some random noise from a Wiener process has been added. Two
different (black/blue) simulated realizations can be seen below
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The type of process that is simulated above is most often described formally by the equation

dXt = −4Xtdt+ 0.1dWt

This is called a Stochastic Differential Equation (SDE), and the processes simulated above are called
solutions of the stochastic differential equation.

The SDE dXt = −4Xtdt+ 0.1dWt has two terms:

• −4Xtdt is the drift term.

• 0.1dWt is the diffusion term.

The intuition behind this notation is very similar to the intuition in the equation df(t) = −4 · f(t) dt for an
ordinary differential equation. When the time is increased by the small amount dt, then the process Xt is
increased by −4Xt dt AND by how much the process 0.1Wt has increased on the time interval [t, t+ dt].

So this process has a drift towards zero, but it is also pushed in a random direction (either up or down) by
the Wiener process (more precisely, the process 0.1Wt)

9.2.1 Simulation examples

Firstly we simulate the SDE from before

dXt = −4Xtdt+ 0.1dWt
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For this, we need the package Sim.DiffProc. We use the function snssde1 for which we have to specify the
drift term and the diffusion term as R-functions of x. In this case, the function for the diffusion term is
constantly equal to 0.1.

The parameters needed in the function input are:

• drift is the function determining the drift term.

• diffusion is the function determining the diffusion term.

• M is the desired number of realizations of the process.

• N is the number of simulation steps (R does not simulate a continuous curve but a lot of connected dots,
and this is the number of dots).

• t0 is the initial time of the simulated process.

• T is the ending time of the simulated process.

• x0 is the initial value of the process (the value of X at time t0).

library(Sim.DiffProc)
f <- expression(-4*x) ## the drift term as a function of x
g <- expression(0.1) ## the diffusion term as a function of x
res <- snssde1d(drift=f, diffusion=g, M=2, N=1000, t0=0, T=10, x0=1)
plot(res, plot.type = 'single', col = c('black','blue'))
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With the ending time being larger than before, we see that the process stabilizes around 0: There is a drift
towards 0, but also some noise pushing the process away from 0.

Increasing the diffusion parameter from 0.1 to 1 (i.e. dXt = −4Xtdt+ 1dWt) makes the process more varying:
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f <- expression(-4*x)
g <-expression(1)
res <- snssde1d(drift=f, diffusion=g, M=2, N=1000, t0=0, T=10, x0=1)
plot(res, plot.type='single', col=c('black','blue'))
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Making the drift parameter positive (e.g. dXt = 0.2Xtdt+ 0.1dWt) drives the process away from 0:

f <- expression(0.2*x)
g <-expression(0.1)
res <- snssde1d(drift=f, diffusion=g, M=2, N=1000, t0=0, T=10, x0=0.2)
plot(res,plot.type='single',col=c('black','blue'))
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Sometimes the noise depends on the value of the process itself. In this case the diffusion term includes Xt.
E.g. dXt = 0.2Xtdt+ 0.1

√
XtdWt:

f <- expression(0.2*x)
g <- expression(0.1*sqrt(x))
res <- snssde1d(drift=f,diffusion=g,M=2,N=1000,t0=0,T=10,x0=0.2)
plot(res,plot.type='single',col=c('black','blue'))
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9.3 Fitting SDE models to data

When we want to fit a model to data, we will work with the following more general stochastic differential
equation

dXt = (θ1 + θ2Xt)dt+ θ3X
θ4
t dWt

where θ1, θ2, θ3, θ4 are parameters, such that θ3, θ4 ≥ 0. For a given dataset the goal is then to find (estimate)
parameter values such that the model describes the data as well as possible.

We note that:

• The SDE above given by dXt = −4Xtdt+ 0.1dWt is the special case with θ1 = 0, θ2 = −4, θ3 = 0.1
and θ4 = 0 (recall the mathematical convention that x0 = 1).

• The Wiener process Xt = Wt is the special case with θ1 = 0, θ2 = 0, θ3 = 1 and θ4 = 0.

• The ordinary differential equation is the special case with θ1 = 0, θ2 = −4, θ3 = 0 and θ4 = 0 (in
principle, θ4 could be anything, when θ3 = 0).

• The parameters θ1 and θ2 control the drift, and in fact it can be shown that the process will drift
towards − θ1

θ2
if this is positive, and otherwise it will drift away from this. For example if dXt =

(2− 4Xt)dt+ 0.1dWt then Xt will drift towards − 2
−4 = 0.5:

f <- expression(2-4*x)
g <- expression(0.1)
res <- snssde1d(drift=f, diffusion=g, M=2, N=1000, t0=0, T=10, x0=1)
plot(res, plot.type='single', col=c('black','blue'))
abline(h = 0.5, col = "red")
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9.3.1 Fitting an SDE model to interest rate data

Recall the data for U.S. interest rates between 1946 and 1991.

This could look like a stochastic differential equation with θ1 = 0 and θ4 being positive, since the process
varies more, when it has high values. We can use the function fitsde to find the best choice of parameters.
Note that in the function we have to give a (good) guess on the parameters (here we use θ1 = 0, θ2 = 0,
θ3 = 0.5 and θ4 = 0.5 )

data(Irates)
rate <- Irates[ , "r1"]
fx <- expression(theta[1]+theta[2]*x)
## the drift term as a function of x
gx <- expression(theta[3]*x^theta[4])
## the diffusion term as a function of x
fitmod <- fitsde(rate, drift = fx, diffusion = gx,

start = list(theta1=0, theta2=0, theta3=0.5, theta4=0.5))
summary(fitmod)

## Pseudo maximum likelihood estimation
##
## Method: Euler
## Call:
## fitsde(data = rate, drift = fx, diffusion = gx, start = list(theta1 = 0,
## theta2 = 0, theta3 = 0.5, theta4 = 0.5))
##
## Coefficients:
## Estimate Std. Error
## theta1 0.8862133 0.24588655
## theta2 -0.1591198 0.08044809
## theta3 0.7138713 0.03379098
## theta4 0.5926193 0.02765048
##
## -2 log L: 648.049

Thus, the estimated model is

dXt = (0.89− 0.16Xt)dt+ 0.71X0.59
t dWt.

We can have the confidence intervals by

confint(fitmod)

## 2.5 % 97.5 %
## theta1 0.4042845 1.368142087
## theta2 -0.3167952 -0.001444485
## theta3 0.6476422 0.780100349
## theta4 0.5384254 0.646813280

To draw random realizations from the fitted model we just have to extract the fitted parameters and then
use snssde1 as before:
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theta <- coef(fitmod)
t <- time(Irates)
s <- snssde1d(drift=fx, diffusion = gx, M = 3, t0 = min(t), T = max(t), x0 = 0.325)

A plot of three realizations overlayed the original data:

plot(s, plot.type = "single", col = c("red", "blue", "cyan"))
lines(Irates[,'r1'], col = "black", lwd = 2)
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9.4 Comparing fitted SDE models

If we believe that the data can be better (or equally well) described by another model we can compare the
model using the AIC as we did previously for discrete processes.

If we propose a model with no drift (i.e. θ1 = 0 and θ2 = 0) we get the following fitted model:

f2 <- expression(0)
## No drift term
g2 <- expression(theta[1]*x^theta[2])
## the diffusion term as a function of x
fitmod2 <- fitsde(rate, drift = f2, diffusion = g2,

start = list(theta1=0.5, theta2=0.5))
summary(fitmod2)

## Pseudo maximum likelihood estimation
##
## Method: Euler
## Call:
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## fitsde(data = rate, drift = f2, diffusion = g2, start = list(theta1 = 0.5,
## theta2 = 0.5))
##
## Coefficients:
## Estimate Std. Error
## theta1 0.7400495 0.03454472
## theta2 0.5743530 0.02698523
##
## -2 log L: 661.0032

The AIC of the original model with four parameters is lower than the AIC of this new model so we prefer the
original model:

AIC(fitmod)

## [1] 656.049

AIC(fitmod2)

## [1] 665.0032
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