Exam I

You can download the combined lecture notes for this module at: https://asta.math.aau.dk/course/asta/2019-1/std/lecture/5-exam?file=I/module-I.pdf

The following table shows the total number of admitted and rejected applicants to the six largest departments at University of Berkeley in 1973.

	Admitted	Rejected
Male	1198	1493
Female	557	1278

Use a χ^2 -test to check whether the admission statistics for Berkeley show any sign of gender discrimination. To enter the table in R you can do:

```
admit <- matrix(c(1198, 557, 1493, 1278), 2, 2)
rownames(admit) <- c("Male", "Female")
colnames(admit) <- c("Admitted", "Rejected")
admit <- as.table(admit)</pre>
```

Your analysis should as a minimum contain **arguments** that support:

- Statement of hypotheses
- Calculation of expected frequencies
- Calculation of test statistic
- Calculation and interpretation of p-value.

A more detailed data set with the admissions for each department is available on the course web page. The variables are:

- Gender (male/female)
- Dept (department A, B, C, D, E, F)
- Admit (frequency of admitted for each combination)
- Reject (frequency of rejected for each combination)

Load the data into RStudio:

```
##
      Gender Dept Admit Reject
## 1
        Male
                Α
                    512
                            313
## 2 Female
                     89
                             19
                Α
## 3
        Male
                В
                    353
                            207
## 4 Female
                В
                     17
                              8
## 5
        Male
                С
                    120
                            205
                    202
## 6 Female
                С
                            391
## 7
        Male
                D
                    138
                            279
                    131
                            244
## 8 Female
                D
```

```
## 9
         Male
                  Ε
                        53
                               138
## 10 Female
                  F.
                        94
                               299
## 11
         Male
                  F
                        22
                               351
## 12 Female
                        24
                  F
                               317
```

In order to do logistic regression for this kind of data, the response is the columns Admit and Reject (which means that we model the probability of admit):

```
m0 <- glm(cbind(Admit, Reject) ~ Gender + Dept, family = binomial, data = admission)
```

The glm-object m0 is a logistic model with main effects of Gender and Department.

• Investigate whether there is any effect of these predictors.

As a hint you might look at section 9.3 in the combined lecture notes.

```
summary(m0)
```

```
##
## Call:
## glm(formula = cbind(Admit, Reject) ~ Gender + Dept, family = binomial,
       data = admission)
##
##
  Deviance Residuals:
##
                           3
                                                                7
                                                                         8
         1
                     -0.0560
                                                           0.0826 -0.0858
##
   -1.2487
             3.7189
                               0.2706
                                         1.2533
                                                -0.9243
##
         9
                 10
                          11
                                   12
##
   1.2205
           -0.8509
                     -0.2076
                               0.2052
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) 0.68192
                           0.09911
                                     6.880 5.97e-12 ***
## GenderMale -0.09987
                           0.08085
                                    -1.235
                                              0.217
## DeptB
               -0.04340
                           0.10984 -0.395
                                               0.693
## DeptC
               -1.26260
                           0.10663 -11.841
                                            < 2e-16 ***
## DeptD
               -1.29461
                           0.10582 - 12.234
                                            < 2e-16 ***
## DeptE
               -1.73931
                           0.12611 -13.792 < 2e-16 ***
## DeptF
               -3.30648
                           0.16998 -19.452 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
   (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 877.056
                               on 11
                                      degrees of freedom
## Residual deviance: 20.204
                               on 5 degrees of freedom
## AIC: 103.14
##
## Number of Fisher Scoring iterations: 4
```

Looking at the summary of m0:

• Is there a significant gender difference?

• What is the interpretation of the numbers in the DeptB-row?

We add the standardized residuals to admission:

```
admission$stdRes <- round(rstandard(m0),2)
admission</pre>
```

```
##
      Gender Dept Admit Reject stdRes
## 1
        Male
                 Α
                      512
                             313
                                   -4.01
## 2
      Female
                       89
                                    4.26
                 Α
                              19
## 3
                      353
                             207
        Male
                 В
                                   -0.28
## 4
                               8
      Female
                 В
                       17
                                    0.28
## 5
        Male
                 C
                      120
                             205
                                    1.87
## 6
      Female
                 C
                      202
                             391
                                   -1.89
## 7
        Male
                 D
                      138
                             279
                                    0.14
## 8
      Female
                 D
                      131
                             244
                                   -0.14
## 9
        Male
                 Е
                       53
                             138
                                    1.61
## 10 Female
                 Ε
                       94
                             299
                                   -1.65
## 11
                 F
                       22
        Male
                             351
                                   -0.30
## 12 Female
                 F
                       24
                             317
                                    0.30
```

- Looking at the standardized residuals, which department deviates heavily from the model?
- What gender is discrimated in this department?

Next you should fit the model with the interaction Gender*Dept and use anova to compare this to m0.

- Explain what interaction means in the current context.
- Is there a significant interaction?
- In the light of your analysis, explain the reason for your answer to the previous question.