Logistic Regression

The ASTA team

Contents

1 Introduction to logistic regression 1
1.1 Binary response 1
1.2 A linear model 2
2 Simple logistic regression 2
2.1 Logistic model 2
2.2 Logistic transformation 2
2.3 Odds-ratio 3
2.4 Simple logistic regression 3
2.5 Example: Credit card data 3
2.6 Example: Fitting the model 4
2.7 Test of no effect 4
2.8 Confidence interval for odds ratio 5
2.9 Plot of model predictions against actual data 6
3 Multiple logistic regression 6
3.1 Several numeric predictors 6
3.2 Example 6
3.3 Global test of no effects 7
3.4 Example 7
3.5 Test of influence of a given predictor 8
3.6 Model selection by stepwise selection 8
3.7 Prediction and classification 9

1 Introduction to logistic regression

1.1 Binary response

- We consider a binary response y with outcome 1 or 0 . This might be a code indicating whether a person is able or unable to perform a given task.
- Furthermore, we are given an explanatory variable x, which is numeric, e.g. age.
- We shall study models for

$$
P(y=1 \mid x)
$$

i.e. the probability that a person of age x is able to complete the task.

- We shall see methods for determining whether or not age actually influences the probability, i.e. is y independent of x ?

1.2 A linear model

$$
P(y=1 \mid x)=\alpha+\beta x
$$

is simple, but often inappropiate. If β is positive and x sufficiently large, then the probability exceeds 1 .

2 Simple logistic regression

2.1 Logistic model

Instead we consider the odds that the person is able to complete the task

$$
\operatorname{Odds}(y=1 \mid x)=\frac{P(y=1 \mid x)}{P(y=0 \mid x)}=\frac{P(y=1 \mid x)}{1-P(y=1 \mid x)}
$$

which can have any positive value.
The logistic model is defined as:

$$
\operatorname{logit}(P(y=1 \mid x))=\log (\operatorname{Odds}(y=1 \mid x))=\alpha+\beta x
$$

The function $\operatorname{logit}(p)=\log \left(\frac{p}{1-p}\right)$ - i.e. \log of odds - is termed the logistic transformation.
Remark that \log odds can be any number, where zero corresponds to $P(y=1 \mid x)=0.5$. Solving $\alpha+\beta x=0$ shows that at age $x_{0}=-\alpha / \beta$ you have fifty-fifty chance of solving the task.

2.2 Logistic transformation

- The function logit() (remember to load mosaic first) can be used to calculate the logistic transformation:

```
p<- seq(0.1, 0.9, by = 0.2)
p
## [1] 0.1 0.3 0.5 0.7 0.9
l <- logit(p)
l
## [1] -2.1972246 -0.8472979 0.0000000 0.8472979 2.1972246
```

- The inverse logistic transformation ilogit() applied to the transformed values can recover the original probabilities:

```
ilogit(l)
```


2.3 Odds-ratio

Interpretation of β :
What happens to odds, if we increase age by 1 year?
Consider the so-called odds-ratio:

$$
\frac{\operatorname{Odds}(y=1 \mid x+1)}{\operatorname{Odds}(y=1 \mid x)}=\frac{\exp (\alpha+\beta(x+1))}{\exp (\alpha+\beta x)}=\exp (\beta)
$$

where we see, that $\exp (\beta)$ equals the odds for age $x+1$ relative to odds at age x.
This means that when age increase by 1 year, then the relative change in odds is given by $100(\exp (\beta)-1) \%$.

2.4 Simple logistic regression

Logistic curves

X

Examples of logistic curves. The black curve has a positive β-value $(=10)$, whereas the red has a negative β (=-3).

In addition we note that:

- Increasing the absolute value of β yields a steeper curve.
- When $P(y=1 \mid x)=\frac{1}{2}$ then logit is zero, i.e. $\alpha+\beta x=0$.

This means that at age $x=-\frac{\alpha}{\beta}$ you have 50% chance to perform the task.

2.5 Example: Credit card data

We shall investigate if income is a good predictor of whether or not you have a credit card.

- Data structure: For each level of income, we let n denote the number of persons with that income, and credit how many of these that carries a credit card.

```
creInc <- read.csv("https://asta.math.aau.dk/datasets?file=income-credit.csv")
```

```
head(creInc)
```

\#\#	Income	n	credit
\#\# 1	12	1	0
\#\# 2	13	1	0
\#\#	3	14	8
\#\# 4	15	14	2
\#\#	5	16	9

2.6 Example: Fitting the model

```
modelFit <- glm(cbind(credit,n-credit) ~ Income, data = creInc, family = binomial)
```

- cbind gives a matrix with two column vectors: credit and n-credit, where the latter is the vector counting the number of persons without a credit card.
- The response has the form cbind(credit, n -credit).
- We need to use the function glm (generalized linear model).
- The argument family=binomial tells the function that the data has binomial variation. Leaving out this argument will lead R to believe that data follows a normal distribution - as with lm.
- The function coef extracts the coefficients (estimates of parameters) from the model summary:

```
coef(summary(modelFit))
```

\#\#	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|z\|)$
\#\# (Intercept)	-3.5179469	0.71033573	-4.952513	$7.326117 \mathrm{e}-07$
\#\# Income	0.1054089	0.02615743	4.029788	$5.582714 \mathrm{e}-05$

2.7 Test of no effect

```
coef(summary(modelFit))
```

```
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.5179469 0.71033573 -4.952513 7.326117e-07
## Income 0.1054089 0.02615743 4.029788 5.582714e-05
```

Our model for dependence of odds of having a credit card related to income (x) is

$$
\operatorname{logit}(x)=\alpha+\beta x
$$

The hypothesis of no relation between income and ability to obtain a credit card corresponds to

$$
H_{0}: \quad \beta=0
$$

with the alternative $\beta \neq 0$. Inspecting the summary reveals that $\hat{\beta}=0.1054$ is more than 4 standard errors away from zero.

With a z-score equal to 4.03 we get the tail probability

```
ptail <- 2*(1-pdist("norm",4.03,xlim=c(-5,5)))
```


ptail
\#\# [1] 5.577685e-05

Which is very significant - as reflected by the p-value.

2.8 Confidence interval for odds ratio

From the summary:

- $\hat{\beta}=0.10541$ and hence $\exp (\hat{\beta})-1=0.11$. If income increases by 1000 euro, then odds increases by 11%.
- Standard error on $\hat{\beta}$ is 0.02616 and hence a 95% confidence interval for log-odds ratio is $\hat{\beta} \pm 1.96 \times$ $0.02616=(0.054 ; 0,157)$.
- Corresponding interval for odds ratio: $\exp ((0.054 ; 0,157))=(1.056 ; 1.170)$, i.e. the increase in odds is - with confidence 95% - between 5.6% and 17%.

2.9 Plot of model predictions against actual data

Expected (red line) and observed (black dots) probabilities

- Tendency is fairly clear and very significant.
- Due to low sample size at some income levels, the deviations are quite large.

3 Multiple logistic regression

3.1 Several numeric predictors

We generalize the model to the case, where we have k predictors $x_{1}, x_{2}, \ldots, x_{k}$. Where some might be dummies for a factor.

$$
\operatorname{logit}\left(P\left(y=1 \mid x_{1}, x_{2}, \ldots, x_{k}\right)\right)=\alpha+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}
$$

Interpretation of β-values is unaltered: If we fix x_{2}, \ldots, x_{k} and increase x_{1} by one unit, then the relative change in odds is given by $\exp \left(\beta_{1}\right)-1$.

3.2 Example

Wisconsin Breast Cancer Database covers 683 observations of 10 variables in relation to examining tumors in the breast.

- Nine clinical variables with a score between 0 and 10 .
- The binary variable Class with levels benign/malignant.
- By default R orders the levels lexicografically and chooses the first level as reference $(y=0)$. Hence benign is reference, and we model odds of malignant.

We shall work with only 4 of the predictors, where two of these have been discretized.

```
BC <- read.table("https://asta.math.aau.dk/datasets?file=BCO.dat",header=TRUE)
```

head (BC)

\#\#	nuclei cromatin	Size.low	Size.medium	Shape.low	Class	
\#\#	1	3	TRUE	FALSE	TRUE	benign
\#\# 2	10	3	FALSE	TRUE	FALSE	benign
\#\# 3	2	3	TRUE	FALSE	TRUE	benign
\#\# 4	4	3	FALSE	FALSE	FALSE	benign
\#\# 5	1	3	TRUE	FALSE	TRUE	benign
\#\# 6	10	9	FALSE	FALSE	FALSE malignant	

3.3 Global test of no effects

First we fit the model mainEffects with main effect of all predictors - remember the notaion ~ . for all predictors. Then we fit the model noEffects with no predictors.

```
mainEffects <- glm(Class~., data=BC, family=binomial)
noEffects <- glm(Class~1, data=BC, family=binomial)
```

First we want to test, whether there is any effect of the predictors, i.e the nul hypothesis

$$
H_{0}: \quad \beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=\beta_{5}=0
$$

3.4 Example

Similarly to lm we can use the function anova to compare mainEffects and noEffects. Only difference is that we need to tell the function that the test is a chi-square test and not an F-test.

```
anova(noEffects, mainEffects, test="Chisq")
## Analysis of Deviance Table
##
## Model 1: Class ~ 1
## Model 2: Class ~ nuclei + cromatin + Size.low + Size.medium + Shape.low
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 682 884.35
## 2 677 135.06 5 749.29 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

mainEffects is a much better model.
The test statistic is the Deviance (749.29), which should be small.
It is evaluated in a chi-square with 5 (the number of parameters equal to zero under the nul hypothesis) degrees of freedom.

The 95%-critical value for the $\chi^{2}(5)$ distribution is 11.07 and the p -value is in practice zero.

3.5 Test of influence of a given predictor

```
round(coef(summary(mainEffects)),4)
## Estimate Std. Error z value Pr}(>|z|
## (Intercept) -0.7090 0.8570 -0.8274 0.4080
## nuclei }0.4403 0.0823 5.3484 0.0000 
```



```
## Size.lowTRUE -3.6154 0.8081 -4.4740 0.0000
## Size.mediumTRUE -2.3773 
## Shape.lowTRUE -2.1490 0.6054 -3.5496 0.0004
```

For each predictor p can we test the hypothesis:

$$
H_{0}: \quad \beta_{p}=0
$$

- Looking at the z-values, there is a clear effect of all 5 predictors. Which of course is also supported by the p-values.
- Is it relevant to include interactions?

3.6 Model selection by stepwise selection

We extend the model to BIG including interactions. And then perform a so-called stepwise selection:

```
BIG <- glm(Class~.`2, data=BC, family=binomial)
final <- step(BIG, k=log(dim(BC)[1]), trace=0)
round(coef(summary(final)), 4)
```

\#\#	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|z\|)$
\#\# (Intercept)	0.0337	0.9025	0.0373	0.9702
\#\# nuclei	0.3015	0.0837	3.6038	0.0003
\#\# cromatin	0.4456	0.1441	3.0930	0.0020
\#\# Size.lowTRUE	-5.4213	1.1359	-4.7729	0.0000
\#\# Size.mediumTRUE	-2.2948	0.6895	-3.3282	0.0009
\#\# Shape.lowTRUE	-2.2488	0.6485	-3.4676	0.0005
\#\# nuclei:Size.lowTRUE	0.5690	0.2356	2.4149	0.0157

- step: Stepwise removal of "insignificant" predictors from BIG (our model including all interactions).
- Choise of $\mathrm{k}=\log (\operatorname{dim}(\mathrm{BC})[1])$ corresponds to the so-called BIC (Bayesian Information Criterion), which we shall not treat in detail. Just note that when k increases, we gradually obtain a simpler model, i.e. the number of predictors decrease.
- If trace=1, you will see all steps in the iterative process.
- We end up with a model including one interaction.

3.7 Prediction and classification

```
BC$pred <- round(predict(final,type="response"),3)
```

- We add the column pred to our dataframe BC.
- pred is the final model's estimate of the probability of malignant.

```
head(BC[,c("Class","pred")])
```

\#\#	Class	pred
\#\# 1	benign 0.004	
\#\# 2	benign 0.890	
\#\# 3	benign 0.010	
\#\# 4	benign 0.929	
\#\# 5	benign 0.004	
\#\# 6 malignant 0.999		

Not good for patients 2 and 4.

We may classify by round (BC\$pred):

- 0 to denote benign
- 1 to denote malignant
tally(~ Class + round (pred), data = BC)

```
## round(pred)
## Class 0 1
## benign 432 12
## malignant 11 228
```

23 patients are misclassified.

```
sort(BC$pred[BC$Class=="malignant"]) [1:5]
```

\#\# [1] 0.0840 .0920 .1070 .1230 .179

There is a malignant woman with a predicted probability of malignancy, which is only 8.4%.
If we assign all women with predicted probability of malignancy above 5% to further investigation, then we catch all malignant.

```
tally(~ Class + I(pred>.05), data = BC)
\#\# I(pred > 0.05)
\#\# Class TRUE FALSE
\#\# benign 39405
\#\# malignant 2390
```

The expense is that the number of false positive increases from 12 to 39 .

```
tally(~ Class + I(pred>.1), data = BC)
## I(pred > 0.1)
## Class TRUE FALSE
## benign 26 418
## malignant 237
```

- If we instead set the alarm to 10%, then the number of false positives decreases from 39 to 26 .
- But at the expense of 2 false negative.

