Logistic Regression

The ASTA team

Contents

1	Intr	roduction to logistic regression					
	1.1	Binary response	1				
	1.2	A linear model	2				
2	\mathbf{Sim}	ple logistic regression	2				
	2.1	Logistic model	2				
	2.2	Logistic transformation	2				
	2.3	Odds-ratio	3				
	2.4	Simple logistic regression	3				
	2.5	Example: Credit card data	3				
	2.6	Example: Fitting the model	4				
	2.7	Test of no effect	4				
	2.8	Confidence interval for odds ratio	5				
	2.9	Plot of model predictions against actual data	6				
3	Mu	ltiple logistic regression	6				
	3.1	Several numeric predictors	6				
	3.2	Example	6				
	3.3	Global test of no effects	7				
	3.4	Example	7				
	3.5	Test of influence of a given predictor	8				
	3.6	Model selection by stepwise selection	8				
	3.7	Prediction and classification	9				

1 Introduction to logistic regression

1.1 Binary response

- We consider a binary response y with outcome 1 or 0. This might be a code indicating whether a person is able or unable to perform a given task.
- Furthermore, we are given an explanatory variable x, which is numeric, e.g. age.
- We shall study models for

$$P(y=1 \mid x)$$

- i.e. the probability that a person of age x is able to complete the task.
- We shall see methods for determining whether or not age actually influences the probability, i.e. is y independent of x?

1.2 A linear model

$$P(y=1 \mid x) = \alpha + \beta x$$

is simple, but often inappropiate. If β is positive and x sufficiently large, then the probability exceeds 1.

2 Simple logistic regression

2.1 Logistic model

Instead we consider the **odds** that the person is able to complete the task

$$\texttt{Odds}(y=1\,|\,x) = \frac{P(y=1\,|\,x)}{P(y=0\,|\,x)} = \frac{P(y=1\,|\,x)}{1-P(y=1\,|\,x)}$$

which can have any positive value.

The logistic model is defined as:

$$logit(P(y=1 \mid x)) = log(Odds(y=1 \mid x)) = \alpha + \beta x$$

The function $logit(p) = log(\frac{p}{1-p})$ - i.e. log of odds - is termed the logistic transformation.

Remark that log odds can be any number, where zero corresponds to P(y = 1 | x) = 0.5. Solving $\alpha + \beta x = 0$ shows that at age $x_0 = -\alpha/\beta$ you have fifty-fifty chance of solving the task.

2.2 Logistic transformation

• The function logit() (remember to load mosaic first) can be used to calculate the logistic transformation:

p <- seq(0.1, 0.9, by = 0.2)
p</pre>

[1] 0.1 0.3 0.5 0.7 0.9

l <- logit(p)
l</pre>

[1] -2.1972246 -0.8472979 0.0000000 0.8472979 2.1972246

• The inverse logistic transformation ilogit() applied to the transformed values can recover the original probabilities:

ilogit(1)

[1] 0.1 0.3 0.5 0.7 0.9

2.3 Odds-ratio

Interpretation of β :

What happens to odds, if we increase age by 1 year?

Consider the so-called **odds-ratio**:

$$\frac{\operatorname{Odds}(y=1 \mid x+1)}{\operatorname{Odds}(y=1 \mid x)} = \frac{\exp(\alpha + \beta(x+1))}{\exp(\alpha + \beta x)} = \exp(\beta)$$

where we see, that $\exp(\beta)$ equals the odds for age x + 1 relative to odds at age x.

This means that when age increase by 1 year, then the relative change in odds is given by $100(\exp(\beta) - 1)\%$.

2.4 Simple logistic regression

Х

Examples of logistic curves. The black curve has a positive β -value (=10), whereas the red has a negative β (=-3).

In addition we note that:

- Increasing the absolute value of β yields a steeper curve.
- When $P(y = 1 | x) = \frac{1}{2}$ then logit is zero, i.e. $\alpha + \beta x = 0$.

This means that at age $x = -\frac{\alpha}{\beta}$ you have 50% chance to perform the task.

2.5 Example: Credit card data

We shall investigate if income is a good predictor of whether or not you have a credit card.

• Data structure: For each level of income, we let n denote the number of persons with that income, and credit how many of these that carries a credit card.

creInc <- read.csv("https://asta.math.aau.dk/datasets?file=income-credit.csv")</pre>

head(creInc)

##		Income	n	credit
##	1	12	1	0
##	2	13	1	0
##	3	14	8	2
##	4	15	14	2
##	5	16	9	0
##	6	17	8	2

2.6 Example: Fitting the model

```
modelFit <- glm(cbind(credit,n-credit) ~ Income, data = creInc, family = binomial)</pre>
```

- cbind gives a matrix with two column vectors: credit and n-credit, where the latter is the vector counting the number of persons without a credit card.
- The response has the form cbind(credit,n-credit).
- We need to use the function glm (generalized linear model).
- The argument family=binomial tells the function that the data has binomial variation. Leaving out this argument will lead R to believe that data follows a normal distribution as with lm.
- The function **coef** extracts the coefficients (estimates of parameters) from the model summary:

coef(summary(modelFit))

Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.5179469 0.71033573 -4.952513 7.326117e-07
Income 0.1054089 0.02615743 4.029788 5.582714e-05

2.7 Test of no effect

coef(summary(modelFit))

```
##Estimate Std. Errorz valuePr(>|z|)## (Intercept)-3.51794690.71033573-4.9525137.326117e-07## Income0.10540890.026157434.0297885.582714e-05
```

Our model for dependence of odds of having a credit card related to income(x) is

$$\texttt{logit}(x) = \alpha + \beta x$$

The hypothesis of no relation between income and ability to obtain a credit card corresponds to

$$H_0: \quad \beta = 0$$

with the alternative $\beta \neq 0$. Inspecting the summary reveals that $\hat{\beta} = 0.1054$ is more than 4 standard errors away from zero.

With a z-score equal to 4.03 we get the tail probability

Which is very significant - as reflected by the p-value.

2.8 Confidence interval for odds ratio

From the summary:

- $\hat{\beta} = 0.10541$ and hence $\exp(\hat{\beta}) 1 = 0.11$. If income increases by 1000 euro, then odds increases by 11%.
- Standard error on $\hat{\beta}$ is 0.02616 and hence a 95% confidence interval for log-odds ratio is $\hat{\beta} \pm 1.96 \times 0.02616 = (0.054; 0, 157).$
- Corresponding interval for odds ratio: $\exp((0.054; 0, 157)) = (1.056; 1.170),$

i.e. the increase in odds is - with confidence 95% - between 5.6% and 17%.

^{## [1] 5.577685}e-05

2.9 Plot of model predictions against actual data

- Tendency is fairly clear and very significant.
- Due to low sample size at some income levels, the deviations are quite large.

3 Multiple logistic regression

3.1 Several numeric predictors

We generalize the model to the case, where we have k predictors x_1, x_2, \ldots, x_k . Where some might be dummies for a factor.

$$logit(P(y=1 | x_1, x_2, \dots, x_k)) = \alpha + \beta_1 x_1 + \dots + \beta_k x_k$$

Interpretation of β -values is unaltered: If we fix x_2, \ldots, x_k and increase x_1 by one unit, then the relative change in odds is given by $\exp(\beta_1) - 1$.

3.2 Example

Wisconsin Breast Cancer Database covers 683 observations of 10 variables in relation to examining tumors in the breast.

- Nine clinical variables with a score between 0 and 10.
- The binary variable Class with levels benign/malignant.
- By default **R** orders the levels lexicografically and chooses the first level as reference (y = 0). Hence benign is reference, and we model odds of malignant.

We shall work with only 4 of the predictors, where two of these have been discretized.

BC <- read.table("https://asta.math.aau.dk/datasets?file=BC0.dat",header=TRUE)
head(BC)</pre>

##		nuclei	cromatin	Size.low	Size.medium	Shape.low	Class
##	1	1	3	TRUE	FALSE	TRUE	benign
##	2	10	3	FALSE	TRUE	FALSE	benign
##	3	2	3	TRUE	FALSE	TRUE	benign
##	4	4	3	FALSE	FALSE	FALSE	benign
##	5	1	3	TRUE	FALSE	TRUE	benign
##	6	10	9	FALSE	FALSE	FALSE	malignant

3.3 Global test of no effects

First we fit the model mainEffects with main effect of all predictors - remember the notaion \sim . for all predictors. Then we fit the model noEffects with no predictors.

```
mainEffects <- glm(Class~., data=BC, family=binomial)
noEffects <- glm(Class~1, data=BC, family=binomial)</pre>
```

First we want to test, whether there is any effect of the predictors, i.e the nul hypothesis

 $H_0: \quad \beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = 0$

3.4 Example

Similarly to 1m we can use the function anova to compare mainEffects and noEffects. Only difference is that we need to tell the function that the test is a chi-square test and not an F-test.

```
anova(noEffects, mainEffects, test="Chisq")
```

```
## Analysis of Deviance Table
##
## Model 1: Class ~ 1
## Model 2: Class ~ nuclei + cromatin + Size.low + Size.medium + Shape.low
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 682 884.35
## 2 677 135.06 5 749.29 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```

mainEffects is a much better model.

The test statistic is the Deviance (749.29), which should be small.

It is evaluated in a chi-square with 5 (the number of parameters equal to zero under the nul hypothesis) degrees of freedom.

The 95%-critical value for the $\chi^2(5)$ distribution is 11.07 and the p-value is in practice zero.

3.5 Test of influence of a given predictor

```
round(coef(summary(mainEffects)),4)
```

##		Estimate	Std. Error	z value	Pr(z)
##	(Intercept)	-0.7090	0.8570	-0.8274	0.4080
##	nuclei	0.4403	0.0823	5.3484	0.0000
##	cromatin	0.5058	0.1444	3.5026	0.0005
##	Size.lowTRUE	-3.6154	0.8081	-4.4740	0.0000
##	Size.mediumTRUE	-2.3773	0.7188	-3.3074	0.0009
##	Shape.lowTRUE	-2.1490	0.6054	-3.5496	0.0004

For each predictor p can we test the hypothesis:

$$H_0: \quad \beta_p = 0$$

- Looking at the z-values, there is a clear effect of all 5 predictors. Which of course is also supported by the p-values.
- Is it relevant to include interactions?

3.6 Model selection by stepwise selection

We extend the model to BIG including interactions. And then perform a so-called stepwise selection:

```
BIG <- glm(Class~.^2, data=BC, family=binomial)
final <- step(BIG, k=log(dim(BC)[1]), trace=0)
round(coef(summary(final)), 4)</pre>
```

##		Estimate	Std. Error	z value	Pr(z)
##	(Intercept)	0.0337	0.9025	0.0373	0.9702
##	nuclei	0.3015	0.0837	3.6038	0.0003
##	cromatin	0.4456	0.1441	3.0930	0.0020
##	Size.lowTRUE	-5.4213	1.1359	-4.7729	0.0000
##	Size.mediumTRUE	-2.2948	0.6895	-3.3282	0.0009
##	Shape.lowTRUE	-2.2488	0.6485	-3.4676	0.0005
##	<pre>nuclei:Size.lowTRUE</pre>	0.5690	0.2356	2.4149	0.0157

• step: Stepwise removal of "insignificant" predictors from BIG (our model including all interactions).

- Choise of k=log(dim(BC)[1]) corresponds to the so-called BIC (Bayesian Information Criterion), which we shall not treat in detail. Just note that when k increases, we gradually obtain a simpler model, i.e. the number of predictors decrease.
- If trace=1, you will see all steps in the iterative process.
- We end up with a model including one interaction.

3.7 Prediction and classification

```
BC$pred <- round(predict(final,type="response"),3)</pre>
```

- We add the column pred to our dataframe BC.
- pred is the final model's estimate of the probability of malignant.

head(BC[,c("Class","pred")])

Class pred
1 benign 0.004
2 benign 0.890
3 benign 0.010
4 benign 0.929
5 benign 0.004
6 malignant 0.999

Not good for patients 2 and 4.

We may classify by round(BC\$pred):

- 0 to denote benign
- 1 to denote malignant

tally(~ Class + round(pred), data = BC)

round(pred)
Class 0 1
benign 432 12
malignant 11 228

23 patients are misclassified.

sort(BC\$pred[BC\$Class=="malignant"])[1:5]

[1] 0.084 0.092 0.107 0.123 0.179

There is a malignant woman with a predicted probability of malignancy, which is only 8.4%.

If we assign all women with predicted probability of malignancy above 5% to further investigation, then we catch all malignant.

tally(~ Class + I(pred>.05), data = BC)
I(pred > 0.05)
Class TRUE FALSE
benign 39 405
malignant 239 0

The expense is that the number of false positive increases from 12 to 39.

```
tally(~ Class + I(pred>.1), data = BC)
## I(pred > 0.1)
## Class TRUE FALSE
## benign 26 418
## malignant 237 2
```

• If we instead set the alarm to 10%, then the number of false positives decreases from 39 to 26.

• But at the expense of 2 false negative.