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1 Introduction to logistic regression

1.1 Binary response

• We consider a binary response y with outcome 1 or 0. This might be a code indicating whether a person
is able or unable to perform a given task.

• Furthermore, we are given an explanatory variable x, which is numeric, e.g. age.
• We shall study models for

P (y = 1 |x)
i.e. the probability that a person of age x is able to complete the task.

• We shall see methods for determining whether or not age actually influences the probability, i.e. is y
independent of x?

1



1.2 A linear model

P (y = 1 |x) = α+ βx

is simple, but often inappropiate. If β is positive and x sufficiently large, then the probability exceeds 1.

2 Simple logistic regression

2.1 Logistic model

Instead we consider the odds that the person is able to complete the task

Odds(y = 1 |x) = P (y = 1 |x)
P (y = 0 |x) = P (y = 1 |x)

1− P (y = 1 |x)

which can have any positive value.

The logistic model is defined as:

logit(P (y = 1 |x)) = log(Odds(y = 1 |x)) = α+ βx

The function logit(p) = log( p
1−p ) - i.e. log of odds - is termed the logistic transformation.

Remark that log odds can be any number, where zero corresponds to P (y = 1 |x) = 0.5. Solving α+ βx = 0
shows that at age x0 = −α/β you have fifty-fifty chance of solving the task.

2.2 Logistic transformation

• The function logit() (remember to load mosaic first) can be used to calculate the logistic transforma-
tion:

p <- seq(0.1, 0.9, by = 0.2)
p

## [1] 0.1 0.3 0.5 0.7 0.9

l <- logit(p)
l

## [1] -2.1972246 -0.8472979 0.0000000 0.8472979 2.1972246

• The inverse logistic transformation ilogit() applied to the transformed values can recover the original
probabilities:

ilogit(l)

## [1] 0.1 0.3 0.5 0.7 0.9

2



2.3 Odds-ratio

Interpretation of β:

What happens to odds, if we increase age by 1 year?

Consider the so-called odds-ratio:

Odds(y = 1 |x+ 1)
Odds(y = 1 |x) = exp(α+ β(x+ 1))

exp(α+ βx) = exp(β)

where we see, that exp(β) equals the odds for age x+ 1 relative to odds at age x.

This means that when age increase by 1 year, then the relative change in odds is given by 100(exp(β)− 1)%.

2.4 Simple logistic regression
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Examples of logistic curves. The black curve has a positive β-value (=10), whereas the red has a negative β
(=-3).

In addition we note that:

• Increasing the absolute value of β yields a steeper curve.
• When P (y = 1 |x) = 1

2 then logit is zero, i.e. α+ βx = 0.

This means that at age x = −αβ you have 50% chance to perform the task.

2.5 Example: Credit card data

We shall investigate if income is a good predictor of whether or not you have a credit card.

• Data structure: For each level of income, we let n denote the number of persons with that income, and
credit how many of these that carries a credit card.

creInc <- read.csv("https://asta.math.aau.dk/datasets?file=income-credit.csv")
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head(creInc)

## Income n credit
## 1 12 1 0
## 2 13 1 0
## 3 14 8 2
## 4 15 14 2
## 5 16 9 0
## 6 17 8 2

2.6 Example: Fitting the model

modelFit <- glm(cbind(credit,n-credit) ~ Income, data = creInc, family = binomial)

• cbind gives a matrix with two column vectors: credit and n-credit, where the latter is the vector
counting the number of persons without a credit card.

• The response has the form cbind(credit,n-credit).

• We need to use the function glm (generalized linear model).

• The argument family=binomial tells the function that the data has binomial variation. Leaving out
this argument will lead R to believe that data follows a normal distribution - as with lm.

• The function coef extracts the coefficients (estimates of parameters) from the model summary:

coef(summary(modelFit))

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.5179469 0.71033573 -4.952513 7.326117e-07
## Income 0.1054089 0.02615743 4.029788 5.582714e-05

2.7 Test of no effect

coef(summary(modelFit))

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.5179469 0.71033573 -4.952513 7.326117e-07
## Income 0.1054089 0.02615743 4.029788 5.582714e-05

Our model for dependence of odds of having a credit card related to income(x) is

logit(x) = α+ βx

The hypothesis of no relation between income and ability to obtain a credit card corresponds to

H0 : β = 0

with the alternative β 6= 0. Inspecting the summary reveals that β̂ = 0.1054 is more than 4 standard errors
away from zero.
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With a z-score equal to 4.03 we get the tail probability

ptail <- 2*(1-pdist("norm",4.03,xlim=c(-5,5)))
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ptail

## [1] 5.577685e-05

Which is very significant - as reflected by the p-value.

2.8 Confidence interval for odds ratio

From the summary:

• β̂ = 0.10541 and hence exp(β̂) − 1 = 0.11. If income increases by 1000 euro, then odds increases by
11%.

• Standard error on β̂ is 0.02616 and hence a 95% confidence interval for log-odds ratio is β̂ ± 1.96 ×
0.02616 = (0.054; 0, 157).

• Corresponding interval for odds ratio: exp((0.054; 0, 157)) = (1.056; 1.170),
i.e. the increase in odds is - with confidence 95% - between 5.6% and 17%.
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2.9 Plot of model predictions against actual data
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• Tendency is fairly clear and very significant.
• Due to low sample size at some income levels, the deviations are quite large.

3 Multiple logistic regression

3.1 Several numeric predictors

We generalize the model to the case, where we have k predictors x1, x2, . . . , xk. Where some might be
dummies for a factor.

logit(P (y = 1 |x1, x2, . . . , xk)) = α+ β1x1 + · · ·+ βkxk

Interpretation of β-values is unaltered: If we fix x2, . . . , xk and increase x1 by one unit, then the relative
change in odds is given by exp(β1)− 1.

3.2 Example

Wisconsin Breast Cancer Database covers 683 observations of 10 variables in relation to examining tumors in
the breast.
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• Nine clinical variables with a score between 0 and 10.
• The binary variable Class with levels benign/malignant.
• By default R orders the levels lexicografically and chooses the first level as reference (y = 0). Hence

benign is reference, and we model odds of malignant.

We shall work with only 4 of the predictors, where two of these have been discretized.

BC <- read.table("https://asta.math.aau.dk/datasets?file=BC0.dat",header=TRUE)
head(BC)

## nuclei cromatin Size.low Size.medium Shape.low Class
## 1 1 3 TRUE FALSE TRUE benign
## 2 10 3 FALSE TRUE FALSE benign
## 3 2 3 TRUE FALSE TRUE benign
## 4 4 3 FALSE FALSE FALSE benign
## 5 1 3 TRUE FALSE TRUE benign
## 6 10 9 FALSE FALSE FALSE malignant

3.3 Global test of no effects

First we fit the model mainEffects with main effect of all predictors - remember the notaion ~ . for all
predictors. Then we fit the model noEffects with no predictors.

mainEffects <- glm(Class~., data=BC, family=binomial)
noEffects <- glm(Class~1, data=BC, family=binomial)

First we want to test, whether there is any effect of the predictors, i.e the nul hypothesis

H0 : β1 = β2 = β3 = β4 = β5 = 0

3.4 Example

Similarly to lm we can use the function anova to compare mainEffects and noEffects. Only difference is
that we need to tell the function that the test is a chi-square test and not an F-test.

anova(noEffects, mainEffects, test="Chisq")

## Analysis of Deviance Table
##
## Model 1: Class ~ 1
## Model 2: Class ~ nuclei + cromatin + Size.low + Size.medium + Shape.low
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 682 884.35
## 2 677 135.06 5 749.29 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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mainEffects is a much better model.

The test statistic is the Deviance (749.29), which should be small.

It is evaluated in a chi-square with 5 (the number of parameters equal to zero under the nul hypothesis)
degrees of freedom.

The 95%-critical value for the χ2(5) distribution is 11.07 and the p-value is in practice zero.

3.5 Test of influence of a given predictor

round(coef(summary(mainEffects)),4)

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.7090 0.8570 -0.8274 0.4080
## nuclei 0.4403 0.0823 5.3484 0.0000
## cromatin 0.5058 0.1444 3.5026 0.0005
## Size.lowTRUE -3.6154 0.8081 -4.4740 0.0000
## Size.mediumTRUE -2.3773 0.7188 -3.3074 0.0009
## Shape.lowTRUE -2.1490 0.6054 -3.5496 0.0004

For each predictor p can we test the hypothesis:

H0 : βp = 0

• Looking at the z-values, there is a clear effect of all 5 predictors. Which of course is also supported by
the p-values.

• Is it relevant to include interactions?

3.6 Model selection by stepwise selection

We extend the model to BIG including interactions. And then perform a so-called stepwise selection:

BIG <- glm(Class~.^2, data=BC, family=binomial)
final <- step(BIG, k=log(dim(BC)[1]), trace=0)
round(coef(summary(final)), 4)

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.0337 0.9025 0.0373 0.9702
## nuclei 0.3015 0.0837 3.6038 0.0003
## cromatin 0.4456 0.1441 3.0930 0.0020
## Size.lowTRUE -5.4213 1.1359 -4.7729 0.0000
## Size.mediumTRUE -2.2948 0.6895 -3.3282 0.0009
## Shape.lowTRUE -2.2488 0.6485 -3.4676 0.0005
## nuclei:Size.lowTRUE 0.5690 0.2356 2.4149 0.0157

• step: Stepwise removal of “insignificant” predictors from BIG (our model including all interactions).
• Choise of k=log(dim(BC)[1]) corresponds to the so-called BIC (Bayesian Information Criterion),

which we shall not treat in detail. Just note that when k increases, we gradually obtain a simpler model,
i.e. the number of predictors decrease.

• If trace=1, you will see all steps in the iterative process.
• We end up with a model including one interaction.

8



3.7 Prediction and classification

BC$pred <- round(predict(final,type="response"),3)

• We add the column pred to our dataframe BC.
• pred is the final model’s estimate of the probability of malignant.

head(BC[,c("Class","pred")])

## Class pred
## 1 benign 0.004
## 2 benign 0.890
## 3 benign 0.010
## 4 benign 0.929
## 5 benign 0.004
## 6 malignant 0.999

Not good for patients 2 and 4.

We may classify by round(BC$pred):

• 0 to denote benign
• 1 to denote malignant

tally(~ Class + round(pred), data = BC)

## round(pred)
## Class 0 1
## benign 432 12
## malignant 11 228

23 patients are misclassified.

sort(BC$pred[BC$Class=="malignant"])[1:5]

## [1] 0.084 0.092 0.107 0.123 0.179

There is a malignant woman with a predicted probability of malignancy, which is only 8.4%.

If we assign all women with predicted probability of malignancy above 5% to further investigation, then we
catch all malignant.
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tally(~ Class + I(pred>.05), data = BC)

## I(pred > 0.05)
## Class TRUE FALSE
## benign 39 405
## malignant 239 0

The expense is that the number of false positive increases from 12 to 39.

tally(~ Class + I(pred>.1), data = BC)

## I(pred > 0.1)
## Class TRUE FALSE
## benign 26 418
## malignant 237 2

• If we instead set the alarm to 10%, then the number of false positives decreases from 39 to 26.
• But at the expense of 2 false negative.
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