ASTA

The ASTA team

Contents

1 The regression problem 2
1.1 Example 2
2 Dummy coding 3
2.1 Dummy coding 3
2.2 Example 4
2.3 Example: Prediction equations 5
2.4 Agresti - summary 6
3 Model with interaction 6
3.1 Interaction 6
3.2 Interaction 7
3.3 Example: Prediction equations 7
3.4 Example: Individual tests 8
4 Test for no interaction 9
4.1 Test for no interaction 9
4.2 Hypothesis and test statistic 11
4.3 Test for no interaction in R 12
5 Hierarchy of models 12
5.1 Hierarchy of models 12
5.2 Example 13
5.3 Example 13
5.4 Multicollinearity and variance inflation factors 14
6 One way analysis of variance 15
6.1 Example 15
6.2 The ANOVA Model 16
7 Estimation of mean values 16
7.1 Estimates 16
7.2 Contrast coding 16
7.3 Example 17
8 Overall test for effect 17
8.1 Graphical representation of models 17
8.2 Hypotheses and test statistic 18
8.3 Interpretation of F statistic - Variance between/within groups 18
8.4 Example 19
9 Two way analysis of variance 20
9.1 Additive effects 20
9.2 Dummy coding 21
9.3 Main effect model in \mathbf{R} 21
9.4 Testing effect of supp 22
9.5 Testing effect of dose 22
10 Interaction 22
10.1 Example 22
10.2 Dummy coding 24
10.3 Example 24

1 The regression problem

1.1 Example

- We will study the dataset in Agresti Table 13.1 available as Income.txt on the course website. We read in data in RStudio

```
Income <- read.delim("https://asta.math.aau.dk/datasets?file=Income.txt")
```

- We have a sample with measurements of 3 variables:
- y=income: Quantitative variable, which is yearly income. This will be our response.
- $\mathrm{x}=$ education: Quantitative predictor, which is the number of years of education.
- $\mathrm{z}=\mathrm{race}$: Explanatory factor with levels $\mathrm{b}(\mathrm{black}), \mathrm{h}($ hispanic $)$ and w (white).
- We always start with some graphics (remember the function gf_point for plotting points and gf_lm for adding a regression line).

```
library(mosaic)
gf_point(inc ~ educ, col = ~race, data = Income) %>% gf_lm()
```


- An unclear picture, but a tendency to increasing income with increasing education.
- The trend lines for the three races are different. But is the difference significant? Or can the difference be explained by sampling variation?
- Such a regression with both qualitative and quantitative predictors is called an analysis of covariance (ANCOVA). When the model only contains qualitative predictors, the problem is known as analysis of variance (ANOVA) which is the topic of the next lecture.

2 Dummy coding

2.1 Dummy coding

- First, we will look at the model without interaction, i.e. the effect of education is the same for all races, which corresponds to parallel lines.
- We also have to introduce dummy coding of the factor z :
$-z_{1}=1$ if $\mathrm{race}=\mathrm{b}$ and zero otherwise
$-z_{2}=1$ if race=h and zero otherwise
$-z_{2}=1$ if race=h and zero otherwise
- This determines the regression model:

$$
E(y \mid x, z)=\alpha+\beta x+\beta_{1} z_{1}+\beta_{2} z_{2}
$$

which corresponds to parallel regressions lines for each race.

- w: $\left(z_{1}=0, z_{2}=0\right) E(y \mid x)=\alpha+\beta x$
- b: $\left(z_{1}=1, z_{2}=0\right) E(y \mid x)=\alpha+\beta_{1}+\beta x$.
- h: $\left(z_{1}=0, z_{2}=1\right) E(y \mid x)=\alpha+\beta_{2}+\beta x$.
- β_{1} is the difference in Intercept between black and white.
- β_{2} is the difference in Intercept between Hispanic and white.

2.2 Example

- We want to tell R that we want w as reference for race (default is lexicographical ordering, i.e. (b, h, w) and b would then be the reference):

```
Income$race <- relevel(Income$race, "ъ")
```

- Then we use + in the model formula to only have additive effects of educ and race, i.e. a model without interaction:

```
model1 <- lm(inc ~ educ + race, data = Income)
summary(model1)
```

```
##
## Call:
## lm(formula = inc ~ educ + race, data = Income)
##
## Residuals:
\#\# Min 1Q Median 3Q Max
## -27.664 -9.622 -1.642 6.552 57.620
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -15.6635 8.4121 -1.862 0.0665 .
## educ 4.4317 0.6191 7.158 4.42e-10 ***
## raceb -10.8744 4.4730 -2.431 0.0174 *
## raceh -4.9338 4.7632 -1.036 0.3036
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.46 on 76 degrees of freedom
## Multiple R-squared: 0.462, Adjusted R-squared: 0.4408
## F-statistic: 21.75 on 3 and 76 DF, p-value: 2.853e-10
```

- The common slope to educ is estimated to be $\widehat{\beta}=4.4316685$, with corresponding p -value $=4.42 \times 10^{-10}$ which is significantly different from zero.
- There is a clear positive effect of educ on income.
- The estimate for w-intercept is $\widehat{\alpha}=-15.6635$, which isn't significantly different from zero if we test at level 5% (this test is not really of interest).
- The difference between b- and w-intercept (raceb) is $\widehat{\beta}_{1}=-10.8744$, which is significant with p -value $=1.74 \%$.
- There is no significant difference between h - and w-intercept.

```
plotModel(model1)
```


2.3 Example: Prediction equations

```
summary(model1)
##
## Call:
## lm(formula = inc ~ educ + race, data = Income)
##
## Residuals:
\#\# Min 1Q Median 3Q Max
## -27.664 -9.622 -1.642 6.552 57.620
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -15.6635 8.4121 -1.862 0.0665
## educ 4.4317 0.6191 7.158 4.42e-10 ***
## raceb -10.8744 4.4730 -2.431 0.0174 *
## raceh -4.9338 4.7632 -1.036 0.3036
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.46 on 76 degrees of freedom
```

\#\# Multiple R-squared: 0.462, Adjusted R-squared: 0.4408
\#\# F-statistic: 21.75 on 3 and 76 DF, p-value: $2.853 \mathrm{e}-10$

- Reference/baseline group (white):

$$
\widehat{y}=-15.66+4.43 x
$$

- Black:

$$
\widehat{y}=-15.66-10.87+4.43 x=-26.54+4.43 x
$$

- Hispanic:

$$
\widehat{y}=-15.66-4.93+4.43 x=-20.60+4.43 x
$$

2.4 Agresti - summary

TABLE 13.4: Summary of Regression Equations and Parameters for Model with No Interaction, when Categorical Predictor Has Three Categories

Category	y-Intercept	Slope	Mean $E(y)$ at Fixed x	Difference From Mean of Category 3, Controlling for x
1	$\alpha+\beta_{1}$	β	$\left(\alpha+\beta_{1}\right)+\beta x$	β_{1}
2	$\alpha+\beta_{2}$	β	$\left(\alpha+\beta_{2}\right)+\beta x$	β_{2}
3	α	β	$\alpha+\beta x$	0

FIGURE 13.5: Graphic Portrayal of a Model with No Interaction, when the Categorical Predictor Has Three Categories

3 Model with interaction

3.1 Interaction

- In the following we will expand the model to include interaction between the effects of race and education on income. Before proceeding, let us recall what interaction means (and doesn't mean) in this context:
- Interaction between the effects of race and education on income does not mean that the values of education and race themselves are related or affect each other.
- Interaction between the effects of race and education on income means that the relationship between education and income depends on the value of race. I.e. for each fixed value of race the slope of the line relating education and income may have a different value.
- Often we just refer to this as "interaction between education and race" when it really should read "interaction between the effects of race and education on income".

3.2 Interaction

- We will expand the regression model, so we include interaction between x and z_{1} respectively z_{2} :

$$
E(y \mid x, z)=\alpha+\beta x+\beta_{1} z_{1}+\beta_{2} z_{2}+\beta_{3} z_{1} x+\beta_{4} z_{2} x .
$$

- This yields a regression line for each race:
- w $\left(z_{1}=0, z_{2}=0\right): E(y \mid x)=\alpha+\beta x$
- $\mathrm{b}\left(z_{1}=1, z_{2}=0\right): E(y \mid x)=\alpha+\beta_{1}+\left(\beta+\beta_{3}\right) x$.
- $\mathrm{h}\left(z_{1}=0, z_{2}=1\right): E(y \mid x)=\alpha+\beta_{2}+\left(\beta+\beta_{4}\right) x$.
- β_{1} is the difference in Intercept between black and white, while β_{3} is the difference in slope between black and white.
- β_{2} is the difference inIntercept between Hispanic and white, while β_{4} is the difference in slope between Hispanic and white.

3.3 Example: Prediction equations

- When we use $*$ in the model formula we include interaction between educ and race:

```
model2 <- lm(inc ~ educ * race, data = Income)
summary(model2)
```

\#\#
\#\# Call:
\#\# $\operatorname{lm}($ formula $=$ inc \sim educ $*$ race, data $=$ Income)
\#\#
\#\# Residuals:

\#\#	Min	1Q	Median	3Q	Max
\#\#	-25.064	-9.448	-1.453	6.167	56.936

\#\#
\#\# Coefficients:
\#\# Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
\#\# (Intercept) -25.8688 $10.4982-2.464 \quad 0.0161$ *
\#\# educ $\quad 5.2095 \quad 0.7828 \quad 6.655 \quad 4.3 \mathrm{e}-09$ ***
$\begin{array}{lllll}\text { \#\# raceb } & 19.3333 & 18.2928 & 1.057 & 0.2940\end{array}$
$\begin{array}{lllll}\text { \#\# raceh } & 9.2640 & 24.2797 & 0.382 & 0.7039\end{array}$
\#\# educ:raceb -2.4107 $1.4177-1.700 \quad 0.0933$.
$\begin{array}{lllll}\text { \#\# educ:raceh } & -1.1208 & 2.0060 & -0.559 & 0.5781\end{array}$
\#\# ---
\#\# Signif. codes: $0{ }^{\prime * * * '} 0.001^{\prime * *} 0.01 '^{\prime \prime} 0.05$ '.' 0.1 ' ' 1
\#\#
\#\# Residual standard error: 15.37 on 74 degrees of freedom
\#\# Multiple R-squared: 0.4825, Adjusted R-squared: 0.4475
\#\# F-statistic: 13.8 on 5 and 74 DF, p-value: 1.618e-09

- Reference/baseline group (white):

$$
\widehat{y}=-25.87+5.21 x
$$

- Black:

$$
\widehat{y}=-25.87+19.33+(5.21-2.41) x=-6.54+2.80 x
$$

- Hispanic:

$$
\widehat{y}=-25.87+9.26+(5.21-1.12) x=-16.60+4.09 x
$$

3.4 Example: Individual tests

```
summary(model2)
##
## Call:
## lm(formula = inc ~ educ * race, data = Income)
##
## Residuals:
\begin{tabular}{rrrrrr} 
\#\# & Min & 1Q & Median & 3Q & Max \\
\#\# & -25.064 & -9.448 & -1.453 & 6.167 & 56.936
\end{tabular}
##
## Coefficients:
## Estimate Std. Error t value Pr}\operatorname{Pr}(>|t|
## (Intercept) -25.8688 10.4982 -2.464 0.0161 *
## educ 5.2095 0.7828 6.655 4.3e-09 ***
## raceb 19.3333 18.2928 1.057 0.2940
## raceh 9.2640
## educ:raceb 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.37 on 74 degrees of freedom
## Multiple R-squared: 0.4825, Adjusted R-squared: 0.4475
## F-statistic: 13.8 on 5 and 74 DF, p-value: 1.618e-09
```

- The difference in slope between b and w (educ:raceb) is estimated to $\widehat{\beta}_{3}=-2.4107$. With pvalue $=9.33 \%$ there is no significant difference.
- Furthermore, there isn't any significant difference of slope between h and w. In other words there is probably not interaction between educ and race.

4 Test for no interaction

4.1 Test for no interaction

plotModel(model1)

plotModel(model2)


```
summary(model1)$r.squared
```

\#\# [1] 0.4619906
summary (model2) \$r. squared
\#\# [1] 0.4824822

- Is model2 significantly better than model1? I.e. is R^{2} significantly higher for model2?

4.2 Hypothesis and test statistic

- The simpler model1 is obtained from the more complicated model2 by setting $\beta_{3}=0$ and $\beta_{4}=0$, so the null hypothesis "the simpler additive model describes data sufficiently well compared to the complicated interaction model" is really the simple mathematical hypothesis:

$$
H_{0}: \beta_{3}=0, \beta_{4}=0
$$

- We will look at the difference between R^{2} for the two models, but as before (for multiple linear regression) we have to convert this to an F statistic which we can then calculate a p-value for.
- Formula for $F_{o b s}$ (no need to learn this by heart):

$$
F_{o b s}=\frac{\left(R_{2}^{2}-R_{1}^{2}\right) /\left(\mathrm{df}_{1}-\mathrm{df}_{2}\right)}{\left(1-R_{2}^{2}\right) / \mathrm{df}_{2}}
$$

where df_{1} and df_{2} are n minus the number of model parameters for the two models (i.e. $80-4=76$ and $80-6=74$ in our case).

- The formula for $F_{\text {obs }}$ can be rewritten in terms of sums of squared errors (SSE) for each model (no need to memorize it):

$$
F_{o b s}=\frac{\left(S S E_{1}-S S E_{2}\right) /\left(\mathrm{df}_{1}-\mathrm{df}_{2}\right)}{\left(S S E_{2}\right) / \mathrm{df}_{2}} .
$$

- In the literature SSE is sometimes denoted by RSS for Residual Sums of Squares; i.e SSE $=$ RSS.

4.3 Test for no interaction in R

- In R the calculations are done using anova:

```
anova(model1, model2)
## Analysis of Variance Table
##
## Model 1: inc ~ educ + race
## Model 2: inc ~ educ * race
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 76 18164
## 2 
```

- The F-test for dropping the interaction educ:race has F -value $=1.465$, which in no way is significant with p -value $=23.77 \%$.

5 Hierarchy of models

5.1 Hierarchy of models

- Interaction: The most general model with main effects educ and race and interaction educ:race:

```
Interaction <- lm(inc ~ educ * race, data = Income)
```

- MainEffects: The model where there are additive effects of educ and race.

```
MainEffects <- lm(inc ~ educ + race, data = Income)
```

- educEff: Model where there only is an effect of educ (simple lin. reg.).

```
educEff <- lm(inc ~ educ, data = Income)
```

- raceEff: Model where there only is an effect of race (a different mean for each group - more on this in the ANOVA lecture).

```
raceEff <- lm(inc ~ race, data = Income)
```

- We can, corresponding to Agresti Table 13.10, make F-tests for 3 pairwise comparisons of models.

5.2 Example

- Comparing MainEffects and Interaction is what we have already done.

```
anova(MainEffects, Interaction)
## Analysis of Variance Table
##
## Model 1: inc ~ educ + race
## Model 2: inc ~ educ * race
## Res.Df RSS Df Sum of Sq F Pr (>F)
## 1 76 18164
## 2 
```

- We recognize $F=1.465$ with p-value $=23.77 \%$, i.e. model2 isn't significantly better than model1. So no educ:race interaction.
- In the same manner we can compare educEff and MainEffects. I.e. we investigate whether the effect of race can be left out.

```
anova(educEff, MainEffects)
## Analysis of Variance Table
##
## Model 1: inc ~ educ
## Model 2: inc ~ educ + race
## Res.Df RSS Df Sum of Sq F Pr (>F)
## 1 78 19625
## 2 76 18164 2 1460.6 3.0556 0.05292 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- If any, the effect of race is weak with p -value $=5.292 \%$.
- Finally, we compare raceEff and MainEffects. Clearly educ cannot be left out (P -value $=4.422 \times 10^{-10}$).

```
anova(raceEff, MainEffects)
## Analysis of Variance Table
##
## Model 1: inc ~ race
## Model 2: inc ~ educ + race
## Res.Df RSS Df Sum of Sq F Pr (>F)
## 1 77 30410
## 2 76 18164 1 12245 51.235 4.422e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


5.3 Example

- The methods generalize to models with more than 2 predictors.
- We return to the dataset Ericksen, where we study the response crime:

```
Ericksen <- read.delim("https://asta.math.aau.dk/datasets?file=Ericksen.txt")
model <- lm(crime ~ city * highschool + city * poverty, data = Ericksen)
```

- The variables are:
- crime: Quantitative variable
- city: city or state
- highschool: Quantitative variable
- poverty: Quantitative variable
- The model has 3 predictors with main effects and includes
- interaction between city and highschool
- interaction between city and poverty.

```
summary(model)
##
## Call:
## lm(formula = crime ~ city * highschool + city * poverty, data = Ericksen)
##
## Residuals:
\#\# Min 1Q Median 3Q Max
## -38.741 -8.745 -1.557 7.820 47.470
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 61.1456 18.1254 3.373 0.001305 **
## citystate 18.1526 20.4131 0.889 0.377413
## highschool -1.5711 0.6062 -2.592 0.011979 *
## poverty 5.3105 1.4333 3.705 0.000463 ***
## citystate:highschool 0.7025 0.7327 0.959 0.341523
## citystate:poverty -5.1862 1.6619 -3.121 0.002773 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.16 on 60 degrees of freedom
## Multiple R-squared: 0.6577, Adjusted R-squared: 0.6292
## F-statistic: 23.06 on 5 and 60 DF, p-value: 7.748e-13
```

- There isn't significant (p -value $=34.1523 \%$) interaction between city and highschool.
- I.e. the effect of highschool on crime is the same in metropolitan areas (city=city) and the nonmetropolitan areas (city=state).
- There is clearly (p -value $=0.2773 \%$) interaction between city and poverty.
- I.e. the effect of poverty on crime is different in metropolitan and non-metropolitan areas.
- For city=state, the effect of poverty (on crime) is smaller than in the major cities.
- Hence, poverty has larger effect on crime in the major cities than in the states outside the major cites.

5.4 Multicollinearity and variance inflation factors

- Ideally the predictors in linear regression should be uncorrelated, which is almost never the case.
- The consequence of the two predictors being correlated (collinear), is that the uncertainty of the parameter estimates increase (because the squared standard error increases) by a factor commonly called the variance inflation factor (VIF).
- If multiple pairs of predictors are collinear, we say that the model suffers from multicollinearity.
- If we have a model with p predictors, then the VIF of x_{j} is:

$$
\mathrm{VIF}_{j}=\frac{1}{1-R_{j}^{2}}
$$

where R_{j}^{2} is the multiple R^{2} value of a model using x_{j} as a response and the remaining $p-1$ predictors as explanatory variables.

- The larger VIF_{j} is, the higher the collinearity between x_{j} and the remaining predictors is.
- Rule of thumb: If a VIF is larger than 10 the collinearity is too high.

6 One way analysis of variance

6.1 Example

- The data set chickwts is available in R, and on the course webpage.
- Newly hatched chicks were randomly allocated into six groups, and each group was given a different feed supplement.
- Their weights in grams after six weeks are given along with feed types, i.e. we have a sample with corresponding measurements of 2 variables:
- weight: a numeric variable giving the chick weight.
- feed: a factor giving the feed type.
- Always start with some graphics:

```
library(mosaic)
gf_boxplot(weight ~ feed, data = chickwts)
```


6.2 The ANOVA Model

- We measure the response y which in this case is weight.
- We want to study the effect of the factor x on y. In this case $x=$ feed and divides the sample in $g=6$ groups.
- The mean responses within the groups are denoted $\mu_{1}, \mu_{2}, \ldots, \mu_{g}$.
- We will assume that
$-y=\mu_{x}+\epsilon$, when y is a response in group x
$-\epsilon$ are a sample from a population with mean zero and standard deviation σ.
- The standard deviation for the population in each group is the same and equals σ
- The response variable, y, is normal distributed within each group.
- The ANOVA test is a test of independence between the quantitative response variable and the qualitative explanatory variables.

7 Estimation of mean values

7.1 Estimates

- Least squares estimates for population means $\widehat{\mu}_{x}$ is given by the average of the response measurements in group x.
- For a given measured response y we let \widehat{y} denote the model's prediction of y, i.e.

$$
\widehat{y}=\widehat{\mu}_{x}
$$

if y is a response for an observation in group x.

- We use mean to find the mean, for each group:

```
mean(weight ~ feed, data = chickwts)
## casein horsebean linseed meatmeal soybean sunflower
## 323.5833 160.2000 218.7500 
```

- We can e.g. see that $\widehat{y}=323.6$, when $\mathrm{feed}=$ casein but $\widehat{y}=160.2$, when feed=horsebean.
- Is it a significant difference?

7.2 Contrast coding

- In many cases there is a group corresponding to "no treatment" and we are interested in the effect of different treatments.
- In this example we only have different feeds, which are sorted in lexicographical order by R, so casein is the reference.
- We can specify the model via:
- Intercept corresponding to the mean response for the reference (casein).
- For each of the other groups we have a contrast, which measures the difference between the mean value for that group and the reference group.
- For a given contrast we can calculate standard error, t-score and p-value, and thereby investigate whether there is a difference between this group and the reference group.
- In Agresti this is referred to as using dummy variables.

7.3 Example

```
model <- lm(weight ~ feed, data = chickwts)
summary(model)
##
## Call:
## lm(formula = weight ~ feed, data = chickwts)
##
## Residuals:
\begin{tabular}{lrrrrr} 
\#\# & Min & \(1 Q\) & Median & 3Q & Max \\
\#\# & -123.909 & -34.413 & 1.571 & 38.170 & 103.091
\end{tabular}
##
## Coefficients:
## Estimate Std. Error t value Pr}\operatorname{Pr}(>|t|
## (Intercept) 323.583 15.834 20.436 < 2e-16 ***
## feedhorsebean -163.383 23.485 -6.957 2.07e-09 ***
## feedlinseed -104.833 22.393 -4.682 1.49e-05 ***
## feedmeatmeal -46.674 22.896 -2.039 0.045567 *
## feedsoybean -77.155 21.578 -3.576 0.000665 ***
## feedsunflower 5.333 22.393 0.238 0.812495
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 54.85 on 65 degrees of freedom
## Multiple R-squared: 0.5417, Adjusted R-squared: 0.5064
## F-statistic: 15.36 on 5 and 65 DF, p-value: 5.936e-10
```

- We get information about contrasts and their significance:
- Intercept corresponding to casein has weight different from zero ($p<2 \times 10^{-16}$).
- Weight difference between casein and horsebean is extremely significant ($\mathrm{p}=2 \times 10^{-9}$) .
- There is no significant weight difference between casein and sunflower ($\mathrm{p}=81 \%$).

8 Overall test for effect

8.1 Graphical representation of models

- We have two alternative explanations of the data.
- Simple model with one parameter (mean): "The feed type doesn't matter. The weight is just random around a common mean value".
- Complex model with six parameters (means): "The feed type is important. For each feed type we get a different mean value and the weights are random around these values."

8.2 Hypotheses and test statistic

- Is the complex model significantly better (i.e. is there any effect of the explanatory grouping variable)? We can write the corresponding hypotheses in two different ways

$$
H_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{g} \quad \text { against } \quad H_{a}: \text { At least } 2 \text { of the population means are different }
$$

- Alternatively

$$
H_{0}: \text { All contrasts are equal to zero. } \quad H_{a}: \text { At least one contrast is non-zero. }
$$

- We will (indirectly) use R^{2} to do the test. If it is large, the complex model has good predictive power compared to the simple model. To judge significance we use

$$
F_{o b s}=\frac{(n-g) R^{2}}{(g-1)\left(1-R^{2}\right)}=\frac{(T S S-S S E) /(g-1)}{S S E /(n-g)}
$$

- Large values of R^{2} implies large values of $F_{o b s}$, which points to the alternative hypothesis.
- I.e. when we have calculated the observed value $F_{o b s}$, then we have to find the probability that a new experiment would result in a larger value.

8.3 Interpretation of F statistic - Variance between/within groups

- It can be shown that the numerator of $F_{o b s}$ is a measure of the variance between the groups, i.e. how much "boxes" vary around the total average (the red line).
- Likewise it can be shown the denominator of $F_{o b s}$ is a measure for the variance within groups, i.e. how "tall" the boxes in the boxplot are.

- If the boxes' deviations from the red line are to be explained by randomness, then the two types of variances should be of same magnitude. This is measured by the F-test statistic, which can be stated as

$$
F_{o b s}=\frac{\text { variance between groups }}{\text { variance within groups }}
$$

8.4 Example

```
model <- lm(weight ~ feed, data = chickwts)
summary(model)
##
## Call:
## lm(formula = weight ~ feed, data = chickwts)
##
## Residuals:
## Min 1Q Median 3Q Max
```

```
## -123.909 -34.413 1.571 38.170 103.091
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 323.583 15.834 20.436 < 2e-16 ***
## feedhorsebean -163.383 23.485 -6.957 2.07e-09 ***
## feedlinseed -104.833 22.393 -4.682 1.49e-05 ***
## feedmeatmeal -46.674 22.896 -2.039 0.045567 *
## feedsoybean -77.155 21.578 -3.576 0.000665 ***
## feedsunflower 5.333 22.393 0.238 0.812495
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 54.85 on 65 degrees of freedom
## Multiple R-squared: 0.5417, Adjusted R-squared: 0.5064
## F-statistic: 15.36 on 5 and 65 DF, p-value: 5.936e-10
```

- The last line gives us the value of $F_{\text {obs }}=15.36$ and the corresponding p-value $\left(5.9 \times 10^{-10}\right)$. Clearly there is a significant difference between the types of feed.

9 Two way analysis of variance

9.1 Additive effects

- The data set ToothGrowth is available in \mathbf{R} and on the webpage. For more info about this data, use ?ToothGrowth.
- The data describes the tooth length in guinea pigs where some recvieve vitamin C treatment and others are given orange juice in different dosage.
- A total of 60 observations on 3 variables.
- [,1] len The tooth length
- [,2] supp The type of the supplement (OJ or VC)
- [,3] dose The dosage (LO, ME, HI)
- We will study the response len with the predictors supp and dose.
- At first we look at the model with additive effects
- len $=\mu+$ "effect of supp"+ "effect of dose" + error
- This is also called the main effects model since it does not contain interaction terms.
- The parameter μ corresponds to the Intercept and is the mean tooth length in the reference group (supp OJ, dose LO).
- The effect of supp is the difference in mean when changing from OJ to VC.
- The effect of dose is the difference in mean when changing from LO to eitherME or HI.

9.2 Dummy coding

- Let us introduce dummy variables:
$-s_{C}=1$ if supp VC and zero otherwise.
$-d_{M}=1$ if dose is ME and zero otherwise.
$-d_{H}=1$ if dose is HI and zero otherwise.
- Then we state the model

$$
\text { length }=\mu+\beta_{1} s_{C}+\beta_{2} d_{M}+\beta_{3} d_{H}+\text { error. }
$$

- Interpretation:
- μ is the expected tooth length when supp is OJ and dose is LO $\left(s_{C}=d_{M}=d_{H}=0\right)$).
$-\beta_{1}$ is the effect of supplement OJ to VC $\left(s_{C}=1\right)$.
- β_{2} is the effect of increasing dosage from LO to ME $\left(d_{M}=1\right)$.
$-\beta_{3}$ is the effect of increasing dosage from LO to HI $\left(d_{H}=1\right)$.

9.3 Main effect model in R

- The main effects model is fitted by

```
MainEff <- lm(len ~ supp + dose, data = ToothGrowth)
summary(MainEff)
##
## Call:
## lm(formula = len ~ supp + dose, data = ToothGrowth)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.085 -2.751 -0.800 2.446 9.650
##
## Coefficients:
## Estimate Std. Error t value Pr}(>|t|
## (Intercept) 12.4550 0.9883 12.603 < 2e-16 ***
## suppVC -3.7000 0.9883 -3.744 0.000429 ***
## doseME 9.1300 1.2104 7.543 4.38e-10 ***
## doseHI 15.4950 1.2104 12.802 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.828 on 56 degrees of freedom
## Multiple R-squared: 0.7623, Adjusted R-squared: 0.7496
## F-statistic: 59.88 on 3 and 56 DF, p-value: < 2.2e-16
```

- The model has 4 parameters.
- The F test at the end compares with the (null) model with only one overall mean parameter. Does it seem like supp and dose has an additive effect?

9.4 Testing effect of supp

- Alternative model without effect of supp:

```
doseEff <- lm(len ~ dose, data = ToothGrowth)
```

- We can compare R^{2} to see if doseEff (Model 1) is sufficent to explain the data compared to MainEff (Model 2). This is done by converting to F-statistic:

$$
F_{o b s}=\frac{\left(R_{2}^{2}-R_{1}^{2}\right) /\left(d f_{1}-d f_{2}\right)}{\left(1-R_{2}^{2}\right) / d f_{2}}=\frac{\left(S S E_{1}-S S E_{2}\right) /\left(d f_{1}-d f_{2}\right)}{\left(S S E_{2}\right) / d f_{2}} .
$$

- In \mathbf{R} the calculations are done using anova:

```
anova(doseEff, MainEff)
## Analysis of Variance Table
##
## Model 1: len ~ dose
## Model 2: len ~ supp + dose
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 57 1025.78
## 2 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


9.5 Testing effect of dose

- Alternative model without effect of dose:

```
suppEff <- lm(len ~ supp, data = ToothGrowth)
anova(suppEff, MainEff)
## Analysis of Variance Table
##
## Model 1: len ~ supp
## Model 2: len ~ supp + dose
## Res.Df RSS Df Sum of Sq F Fr Pr(>F)
## 1 58 3246.9
## 2 56 820.4 2 2426.4 82.811 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


10 Interaction

10.1 Example

- We will extend the model by introducing an interaction between supp and dose.
- A graphical check for no interaction in the main effects model:

- Interaction plot:
with(ToothGrowth, interaction.plot(dose, supp, len, col = 2:3))

- For each of the supplement types we plot the average number of tooth length as a function of dosage.
- If the main effects model is correct then the difference between supplements is the same for all levels of dosage, i.e. the curves should be parallel - except for noise.
- This does not seem to be the case.

10.2 Dummy coding

- The extended model can be formulated as

$$
\text { length }=\mu+\beta_{1} s_{C}+\beta_{2} d_{M}+\beta_{3} d_{H}+\beta_{4} s_{C} d_{M}+\beta_{5} s_{C} d_{H}+\text { error }
$$

- Interpretation:
- μ is the expected tooth length for supp OJ and dose LO ($s_{C}=d_{M}=d_{H}=0$).
- β_{1} is the effect of changing from supp OJ to VC, dose is LO ($s_{C}=1, d_{M}=d_{H}=0$).
- β_{2} is the effect of increasing dose from LO to ME, when supp is OJ $\left(s_{C}=0, d_{M}=1\right)$.
$-\beta_{3}$ is the effect of increasing dose from LO to HI, when supp is $\mathrm{OJ}\left(s_{C}=0, d_{H}=1\right)$.
- β_{4} is an additional effect of both changing from supp OJ to VC and increasing dose from LO to ME $\left(s_{C}=1, d_{M}=1\right)$
- β_{5} is an additional effect of both changing from supp OJ to VC and increasing dose from LO to HI $\left(s_{C}=1, d_{H}=1\right)$

10.3 Example

- We fit the interaction model by changing plus to multiply in the model expression from before:

```
Interaction <- lm(len ~ supp*dose, data = ToothGrowth)
```

- Now we can think of an experiment with 6 groups corresponding to each combination of the predictors.
- Looking at the group averages it looks like, the supplement types behave quite differently depending on dose:

```
mean(len ~ supp + dose, data = ToothGrowth)
## OJ.LO VC.LO OJ.ME VC.ME OJ.HI VC.HI
## 13.23 7.98 22.70 16.77 26.06 26.14
```

- But is that significant?

```
anova(MainEff, Interaction)
## Analysis of Variance Table
##
## Model 1: len ~ supp + dose
## Model 2: len ~ supp * dose
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 56 820.43
## 2 54 712.11 2 108.32 4.107 0.02186 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- With a p-value of 2.1860269% there is a significant interaction supp: dose, i.e. the lack of parallel curves in the interaction plot is significant.

```
summary(Interaction)
```

```
##
## Call:
## lm(formula = len ~ supp * dose, data = ToothGrowth)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.20 
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.230 1.148 11.521 3.60e-16 ***
## suppVC -5.250 1.624 -3.233 0.00209 **
## doseME 9.470 1.624 5.831 3.18e-07 ***
## doseHI 12.830 1.624 7.900 1.43e-10 ***
## suppVC:doseME -0.680 2.297 -0.296 0.76831
## suppVC:doseHI 5.330 2.297 2.321 0.02411 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.631 on 54 degrees of freedom
## Multiple R-squared: 0.7937, Adjusted R-squared: 0.7746
## F-statistic: 41.56 on 5 and 54 DF, p-value: < 2.2e-16
```

- The additional effect of both changing from supp OJ to VC and increasing dose from LO to HI ($\beta_{5}=$ suppVC: doseHI) is highly significant.

