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1 Concepts, terminology and examples

1.1 Plotting, manipulation, trends and seasonality

• A discrete time stochastic process is a collection of the same variable measured at different points in
time. This is also know as a time series. We will always assume the data is observed at equidistant
points in time (i.e. same time difference between consecutive observations).

• To get appropriate summaries and plots of the data we must tell R that the data is a time series, which
is called a ts object in R. A built-in example is the dataset AirPassengers which we will abbreviate
to AP to save typing:

AP <- AirPassengers
plot(AP, ylab = "Bookings (1000s)")
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• The generic function plot automatically detected that AP was a time series (ts object) and plotted the
correct time on the horizontal axis (by calling plot.ts automatically).

• We can aggregate the time series over each year (sums the values by default, so we add FUN = mean to
get monthly mean), which clearly shows an increasing trend in the yearly number of passenger bookings:

APyear <- aggregate(AP, FUN = mean)
plot(APyear)
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Such a systematic change in a time series that is not periodic is known as the trend of the series.

• The repeating (periodic) pattern within each year seen in the original data is known as seasonality or
seasonal variation. The function cycle indicates which cycle (aka season) each observation belongs
to (in this case 1-12). A boxplot of the number of bookings for each cycle (month) clearly shows the
seasonality:

cyc <- cycle(AP)
cyc <- factor(cyc, labels = month.abb)
boxplot(AP ~ cyc)
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• If we only want to consider a subset of the data the function window is used:

APJun55Dec56 <- window(AP, start = c(1955, 6), end = c(1956, 12))
APJun55Dec56

## Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
## 1955 315 364 347 312 274 237 278
## 1956 284 277 317 313 318 374 413 405 355 306 271 306

• The window function can also sub-sample the time series according to the frequency:

APAug <- window(AP, start = c(1949, 8), end = end(AP), freq = TRUE)

• To plot multiple series in one plot we can use ts.plot:
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ts.plot(APyear, APAug, col = c("black", "red"))
legend("topleft", legend = c("Mean", "August"), col = c("black", "red"), lty = 1)
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1.2 Stochastic trend

• The trend for the passenger bookings data was very clear from the data (as well as the seasonal pattern),
and a reasonable explanation may be increasing population, increasing prosperity and technological
advances making tickets cheaper.

• In other situations the behavior of the trend may be less clear and we will need to handle it differently.
For the quarterly exchange rate between GBP and NZD the picture is less clear:

www <- "https://asta.math.aau.dk/eng/static/datasets?file=pounds_nz.dat"
exchange_data <- read.table(www, header = TRUE)
exchange <- ts(exchange_data, start = 1991, freq = 4)
plot(exchange)

4



Time

xr
at

e

1992 1994 1996 1998 2000

2.
2

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

• In general it is dangerous to extrapolate the trend, and this is even more so the case for a series with a
stochastic trend, which this example may have.

• Especially for financial time series stochastic trends with abrupt changes to the trend are common.

1.3 Multiple series

• Monthly time series from Jan. 1958 to Dec. 1990 of supply of three goods in Australia:

– Electricity (Giga Watt hours)
– Beer (Mega liters)
– Chocolate (tonnes)

CBEdata <- read.table("https://asta.math.aau.dk/eng/static/datasets?file=cbe.dat",
header = TRUE)

CBE <- ts(CBEdata, start = 1958, freq = 12)
plot(CBE)
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• For overlapping time series with the same frequency we can get the data for the overlapping period
like this:

APCBE <- ts.intersect(AP, CBE)
plot(APCBE)
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• In the realm of time series people often find spurious correlations and mistake them for causal
relationships. E.g. the number of passenger bookings in USA looks very similar to electricity consumption
in Australia and there is a strong correlation:

cor(APCBE)

## AP CBE.choc CBE.beer CBE.elec
## AP 1.0000000 0.6375808 -0.4434747 0.8841668
## CBE.choc 0.6375808 1.0000000 -0.6204467 0.7644756
## CBE.beer -0.4434747 -0.6204467 1.0000000 -0.3120179
## CBE.elec 0.8841668 0.7644756 -0.3120179 1.0000000

However, this does not imply that US air passengers really influence the electricity consumption in Australia
(or vice versa)! Time series with similar trends and seasonality will typically show strong correlation even
though they are unrelated. Better explanations may be due to similar population growth, seasonal patterns,
etc.

1.4 Decomposition

1.4.1 Decomposition - trend term

• It can be useful to decompose the time series xt into the trend mt, the seasonal variation st, and an
error term zt. Here we will focus on an additive decomposition xt = mt + st + zt, but multiplicative
models xt = mt · st · zt are also available.
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• To estimate the trend a simple solution is to use a moving average by averaging the preceding and
following L values relative to the current point in time, where L is chosen to average out the season
effect. So if the season effect is weekly we choose L = 3 such that

m̂t = (xt−3 + xt−2 + xt−1 + xt + xt+1 + xt+2 + xt+3)/7

E.g. if the current time t is a Tuesday the moving average averages today’s value with the ones from
the preceding Sat., Sun. and Mon. and the following Wed., Thu. and Fri. For an even season length
like 12 months we have to do something else if we want an equal amount of past and future in the
moving average, and we use half of the value six months in the past/future:

m̂t =
1
2xt−6 + xt−5 + xt−4 + · · ·+ x0 + · · ·+ xt+4 + xt+5 + 1

2xt+6

12

E.g., the moving average for Jul. 1958 uses half the value in Jan. 1958 and half the value in Jan. 1959
and all the 11 values Feb.-Dec. 1958:

choc <- CBE[, "choc"]
i <- 7
(choc[i-6]/2 + sum(choc[(i-5):(i+5)]) + choc[i+6]/2)/12

## [1] 2413.625

This computation can be done for all time points (except the first six and last six) using decompose, which
returns a list with a component trend (and other things to be discussed shortly):

choc_decomp <- decompose(choc)
choc_trend <- choc_decomp$trend
window(choc_trend, end = c(1958, 8))

## Jan Feb Mar Apr May Jun Jul
## 1958 NA NA NA NA NA NA 2413.625
## Aug
## 1958 2409.500

• Note that the procedure automatically chooses the appropriate size of the moving average based on the
frequency of the time series, which was set to 12 in this case.

1.4.2 Decomposition - seasonal term

• To estimate the seasonal effect we subtract the trend and average for each period in the season (e.g. each
month):

choc_no_trend <- choc - choc_trend
plot(choc_no_trend)
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choc_jan <- mean(window(choc_no_trend, st = c(1958, 1), freq = TRUE), na.rm = TRUE)
choc_jan

## [1] -2450.538

choc_may <- mean(window(choc_no_trend, st = c(1958, 5), freq = TRUE), na.rm = TRUE)
choc_may

## [1] 1171.215

It appears that chocolate consumption typically is much higher in May than in January. The season effects
are also calculated by decompose and stored in the list as seasonal:

plot(choc_decomp$seasonal)
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1.4.3 Decomposition - random term

• The entire decomposition can also be plotted:

plot(choc_decomp)
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• Here the random term is simply given by zt = xt −mt − st, and this can be accessed through the
random entry of the decomposition output choc_decomp$random.

2 Stationarity and autocorrelation

• Consider the excess chocolate consumption data after adjusting for trend and season (and omitting the
first six and last six entries which are NA):

choc_rand <- na.omit(choc_decomp$random)
plot(choc_rand)

11



Time

ch
oc

_r
an

d

1960 1965 1970 1975 1980 1985 1990

−
15

00
−

50
0

0
50

0
15

00

This is a single realization of something we may think of as a random experiment. If things had been different
(different weather, different chocolate advertisements, different economic fluctuations, . . . ) we could imagine
another series.

This hypothetical scenario applies to any time series xt where we imagine our dataset is somehow randomly
seleceted among an entire ensemble of possible time series.

• Calculating the mean of all such hypothetical series would give us the mean function µ(t) = E(xt) for
all t. Since we already adjusted for trend and season we expect a mean value around zero at each time
point, and we might assume µ(t) = µ for all t, where µ is a fixed constant (zero in this case). If this is
truly the case we say the series is stationary in the mean (first order stationary). In general we can
estimate µ by the sample mean as we have been used to:

µ̂ = x̄ = 1
n

n∑
t=1

xt.

• The variance (square of std. dev.) is in general also a function of time σ2(t) = E[(xt − µ(t))2]. If we
assume we have stationarity of the variance also σ2(t) = σ2 we can estimate σ2 by the sample variance

σ̂2 = 1
n− 1

n∑
t=1

(xt − x̄)2.

• Now consider a process that is stationary in the mean and variance. The variables at different times
may be correlated and the process is called second order stationary if the covariance only depends
on the number of time steps between the variables, Cov(xt, xt+k) = γ(k) for all t, and γ is called the
autocovariance function. The number of time steps k is called the lag. The autocovariance can be
estimated from data:

γ̂(k) = ck = 1
n

n−k∑
t=1

(xt − x̄)(xt+k − x̄)

• The more useful autocorrelation function (acf) is the normalized version that takes values between
-1 and +1: ρ(k) = γ(k)/σ2, which is estimated based on the estimate of the autocovariance above:
ρ̂(k) = rk = ck

c0
.
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• The autocorrelation at lag 0 is always equal to 1, ρ(0) = 1 and r0 = 1.

• For lag 1 it is the correlation between today’s value xt and tomorrows value xt+1. If we look directly at
the chocolate data this correlation is very strong (simply because there is an increasing trend, so high
value is followed by a high value):

i <- 1:(length(choc)-1)
plot(choc[i], choc[i+1])
abline(lsfit(choc[i], choc[i+1]))
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cor(choc[i], choc[i+1])

## [1] 0.8025919

• After removing the trend and seasonality there isn’t really any dependence on the preceding value:

i <- 1:(length(choc_rand)-1)
plot(choc_rand[i], choc_rand[i+1])
abline(lsfit(choc_rand[i], choc_rand[i+1]))
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cor(choc_rand[i], choc_rand[i+1])

## [1] -0.02278652

2.1 Correlogram (empirical acf)

• To calculate the empirical autocorrelation at many lags we use acf which produces a plot by default:

choc_acf <- acf(choc)
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This is called the correlogram.

• It is possible to calculate the correlogram for any time series (also non-stationary). However, the
theoretical properties only make sense for a stationary process.

• The correlogram value at lag k, rk is an estimate of the true autocorrelation ρ(k).

• In particular if ρ(k) = 0 then rk will usually not be exactly zero. Rather it is approximately normally
distributed with a mean close to zero and standard deviation 1/

√
n, where n is the length of the series.

Based on this approximate significance bands are drawn at ±1.96/
√
n.

• The significance bands are only valid for a single lag! Even if ρ(k) = 0 for all lags k = 1, 2, . . . we expect
1/20 of the rk’s to fall outside the line. Furthermore the estimates are heavily correlated so if one falls
outside it is also more likely that the one next does.

• It is typical to look at a few specific lags. E.g. lag 1 for the immediate past and lag 12 if a season of
length 12 is expected. A spike at lag 12 indicates that there is a seasonal pattern that has not been
adequately accounted for. It appears the seasonal adjustment for the chocolate data hasn’t been perfect
since there is a somewhat large autocorrelation at lag 12 (1 year):

acf(choc_rand)
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2.2 Typical patterns in correlograms

It can be illustrative to consider a few specific examples of correlograms:

• Completely random:

x <- rnorm(100)
par(mfrow = c(2,1), mar = c(4,4,0.5,0.5))
ts.plot(x)
acf(x, main = "", lag.max = 30)
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• Trend only:

x <- 1:100
par(mfrow = c(2,1), mar = c(4,4,0.5,0.5))
ts.plot(x)
acf(x, main = "", lag.max = 30)
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• Sinusoidal wave:

x <- sin((1:100)*2*pi/10)
par(mfrow = c(2,1), mar = c(4,4,0.5,0.5))
ts.plot(x)
acf(x, main = "", lag.max = 100)
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• Repeated pattern:

x0 <- c(3,5,2,1,4)
x <- rep(x0, 20)
par(mfrow = c(2,1), mar = c(4,4,0.5,0.5))
ts.plot(x)
acf(x, main = "", lag.max = 30)
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2.3 Partial autocorrelation function

• If a time series has a strong correlation with the values lagged by one time step it most likely also has a
strong correlation with the values lagged by two time steps: When today’s value is highly influenced
by yesterdays, then yesterdays will be highly influenced by the day before, and thus the lag 2 value
influences the current value through the lag 1 value.

• The partial autocorrelation (pacf) at lag 2 is the correlation between the time series and the lag 2 values
after controlling for the lag 1 values.

• This is analogous to the multiple regression setup

xt = β0 + β1xt−1 + β2xt−2 + ε

where β2 is a partial effect of the corresponding predictor (xt−2) when controlling for the other
predictor (xt−1).

• In general the pacf at lag k is the correlation of xt and xt−k after controlling for the intermediate
variables xt−1, . . . , xt−k−1.

• A more detailed description of partial correlation in the multiple regression setup is in Section 11.7 of
Agresti (2013).

• For a strong deterministic trend the pacf only shows strong correlation in the first lag and after
controlling for this the following lags show no extra correlation:
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x <- 1:100
par(mfrow = c(2,1), mar = c(4,4,0.5,0.5))
ts.plot(x)
pacf(x, main = "")
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