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0.1 Outline

• Quality control

• Continuous process variable

• Binomial process variable

• Poisson process variable

1 Quality control

1.1 Quality control chart

Control charts are used to routinely monitor quality.

Two major types:

• univariate control: a graphical display (chart) of one quality characteristic
• multivariate control: a graphical display of a statistic that summarizes or represents more than one

quality characteristic

The control chart shows

• the value of the quality characteristic versus the sample number or versus time
• a center line (CL) that represents the mean value for the in-control process
• an upper control limit (UCL) and a lower control limit (LCL)

The control limits are chosen so that almost all of the data points will fall within these limits as long as
the process remains in-control.

1.2 Example

library(qcc)
data(pistonrings)
head(pistonrings,3)

## diameter sample trial
## 1 74.030 1 TRUE
## 2 74.002 1 TRUE
## 3 74.019 1 TRUE

Piston rings for an automotive engine are produced by a forging process. The inside diameter of the
rings manufactured by the process is measured on 25 samples(sample=1,2,..,25), each of size 5, for the
control phase I (trial=TRUE), when preliminary samples from a process being considered ‘in-control’ are
used to construct control charts. Then, further 15 samples, again each of size 5, are obtained for phase II
(trial=FALSE).

Reference:

Montgomery, D.C. (1991) Introduction to Statistical Quality Control, 2nd ed, New York, John Wiley & Sons,
pp. 206-213
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1.3 Example
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qq chart: pistonrings

LCL 

UCL

CL

Calibration data New data

Number of groups = 200
Center = 74.00118
StdDev = 0.01009029

LCL = 73.97091
UCL = 74.03145

Number beyond limits = 3
Number violating runs = 15

We shall treat different methods for determining LCL,CL and UCL. In that respect, it is crucial that we have

• phase I data, where the process is in-control.
• These data are used to determine LCL,CL and UCL.

1.4 The simple six sigma model

Assume that measurements

• is a sample, i.e they are independent
• they have a normal distribution
• we know the mean µ0 and standard deviation σ0.

In this case we dont need phase I data.

• CL=µ0.
• LCL=µ0 − kσ0.
• UCL=µ0 + kσ0.

The only parameter to determine is k.

We dont want to give a lot of false warnings, and a popular choise is
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• k=3, known as the 3*sigma rule.
• The probability of a measurement outside the control limits is then 0.27%, when the proces is in-control.

This means that the span of allowable variation is 6σ0.

The concept “Six Sigma” has become a mantra in many industrial communities.

1.5 Average Run Length (ARL)

Let pOut denote the probability that a measurement is outside the control limits. On average this means
that we need 1/pOut observations before we get an outlier.

This is known as the the Average Run Length:

AV L = 1
pOut

An in-control process with the 3*sigma rule has AVL

round(1/(2*pdist("norm", -3, plot = FALSE)))

## [1] 370

An in-control process with AVL=500 has k*sigma rule, where k equals

-qdist("norm", (1/2)*(1/500), plot = FALSE)

## [1] 3.090232

1.6 Types of quality control charts.

Depending on the type of control variable, there are various types of control charts.

chart distribution statistic example
xbar normal mean means of a

continuous process
variable

S normal standard deviation standard deviations
of a
continuous process
variable

R normal range ranges of a
continuous
process variable

p binomial proportion percentage of faulty
items

c poisson count number of faulty
items
during a workday
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2 Continuous process variable

2.1 Continuous process variable

Phase I data:

• m samples with n measurements in each sample.
• For sample i = 1, 2, . . .m calculate mean x̄i and standard deviation si.
• Calculate

x̄ = 1
m

m∑
i=1

x̄i and s̄ = 1
m

m∑
i=1

si

When the sample is normal, it can be shown that s̄ is a biased estimate of the true standard deviation σ:

• E(s̄) = c4(n)σ
• c4(n) is tabulated in textbooks and available in the qcc package.

Unbiased estimate of σ:
σ̂1 = s̄

c4(n)
Furthermore s̄ has estimated standard error

se(s̄) = s̄

√
1− c4(n)2

c4(n)

2.2 xbar chart

UCL: x̄+ 3 σ̂1√
n

CL: x̄

LCL: x̄− 3 σ̂1√
n

This corresponds to

• The probability of a measurement outside the control limits is 0.27%.

If we want to change this probability, we need another z-score. E.g if we want to lower this probability to
0.1%, then 3 should be substituted by 3.29.

2.3 Example

phaseI <- matrix(pistonrings$diameter[1:125] , nrow=25, byrow=TRUE)
phaseII <- matrix(pistonrings$diameter[126:200], nrow=25, byrow=TRUE)
h <- qcc(phaseI, type = "xbar", std.dev = "UWAVE-SD",

newdata = phaseII, title = "xbar chart: pistonrings")

• phaseI is a matrix with m = 25 rows, where each row is a sample of size n = 5.
• Similarly phaseII has 15 samples.
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The function qcc calculates the necessary statistics and optionally makes a plot.

• phaseI and type= are the only arguments required.
• We want that the limits are based on the unweighted average of standard deviations - UWAVE-SD. This

is not the default.
• We also want to evaluate the phase II data: newdata=phaseII.
• Optionally, we can specify the title on the plot.

2.4 Example
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xbar chart: pistonrings

LCL 

UCL

CL

Calibration data New data

Number of groups = 40
Center = 74.00118
StdDev = 0.009829977

LCL = 73.98799
UCL = 74.01436

Number beyond limits = 3
Number violating runs = 1

Besides limits we are also told whether the process is above/below CL for 7 or more consecutive samples
(yellow dots).

run.length=7 is default, but may be changed. If we e.g. want this to happen with probability 0.2%, then we
specify run.length=10.

2.5 S chart: Monitoring variability

In most situations, it is crucial to monitor the process mean.

But it may also be a problem if the variability in “quality” gets too high.

In that respect, it is relevant to monitor the standard deviation, which is done by the S-chart:
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UCL: s̄+ 3se(s̄)
CL: s̄

LCL: s̄− 3se(s̄)

se(s̄) = s̄

√
1− c4(n)2

c4(n)

Where 3 may be substituted by some other z-score depending on the required confidence level.

h <- qcc(phaseI,type="S", newdata=phaseII, title="S chart: pistonrings")

2.6 S chart example
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S chart: pistonrings

LCL 

UCL

CL

Calibration data New data

Number of groups = 40
Center = 0.009240037
StdDev = 0.009829977

LCL = 0
UCL = 0.01930242

Number beyond limits = 0
Number violating runs = 0

Remark that the plot does not allow values below zero.

Quite sensible when we are talking about standard deviations.

2.7 R chart: Range statistics

If the sample size is relatively small (n ≤ 10), it is custom to use the range R instead of the standard deviation.
The range of a sample is simply the difference between the largest and smallest observation.

When the sample is normal, it can be shown that:

• E(R̄) = d2(n)σ, where R̄ is the average of the m sample ranges.
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• d2(n) is tabulated in textbooks and available in the qcc package.

Unbiased estimate of σ:
σ̂2 = R̄

d2(n)

Furthermore R̄ has estimated standard error

se(R̄) = R̄
d3(n)
d2(n)

d3(n) is tabulated in textbooks and available in the qcc package.

2.8 Charts based on R

xbar chart based on R̄:
UCL: x̄+ 3 σ̂2√

n

CL: x̄

LCL: x̄− 3 σ̂2√
n

This is actually the default in the qcc package.

R chart to monitor variability:
UCL: R̄+ 3se(R̄)
CL: R̄

LCL: R̄− 3se(R̄)

2.9 R chart example

h <- qcc(phaseI, type="R", newdata=phaseII, title="R chart: pistonrings")

8



Group

G
ro

up
 s

um
m

ar
y 

st
at

is
tic

s

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39

0.
00

0.
02

0.
04

R chart: pistonrings

LCL 

UCL

CL

Calibration data New data

Number of groups = 40
Center = 0.02276
StdDev = 0.009785039

LCL = 0
UCL = 0.04812533

Number beyond limits = 0
Number violating runs = 0

3 Binomial process variable

3.1 Binomial variation

Let us suppose that the production process operates in a stable manner such that

• the probability that an item is defect is p.
• successive items produced are independent

In a random sample of n items, the number D of defective items follows a binomial distribution with parameters
n and p.

Unbiased estimate of p:
p̂ = D

n

which has standard error

se(p̂) =
√
p(1− p)

n

3.2 p chart

Data from phase I:

• m samples with estimated proportions p̂i, i = 1, . . . ,m
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• p̄ is the average of the estimated proportions.

p chart:

UCL: p̄+ 3
√
p̄(1− p̄)

n

CL: p̄

LCL: p̄− 3
√
p̄(1− p̄)

n

3.3 Example

data(orangejuice)
head(orangejuice, 3)

## sample D size trial
## 1 1 12 50 TRUE
## 2 2 15 50 TRUE
## 3 3 8 50 TRUE

Production of orange juice cans.

• The data were collected as 30 samples of 50 cans.
• The number of defective cans D were observed.
• After the first 30 samples, a machine adjustment was made.
• Then further 24 samples were taken from the process.

with(orangejuice,
qcc(D[trial], sizes=size[trial], type="p",

newdata=D[!trial], newsizes=size[!trial]))
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3.4 Example
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p Chart
for D[trial] and D[!trial]

LCL 

UCL

CL

Calibration data New data

Number of groups = 54
Center = 0.2313333
StdDev = 0.421685

LCL = 0.05242755
UCL = 0.4102391

Number beyond limits = 3
Number violating runs = 15

The machine adjustment after sample 30 has had an obvious effect.

The chart should be recalibrated.

4 Poisson process variable

4.1 Poisson variation

Let us suppose that the production process operates in a stable manner such that

• defective items are produced at a constant rate

The number D of defective items over a time interval of some fixed length follows a poisson distribution with
mean value c.

Unbiased estimate of c:
ĉ = D

which has standard error
se(ĉ) =

√
c
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4.2 c chart

Data from phase I:

• m sampling periods with mean estimates ĉi, i = 1, . . . ,m
• c̄ is the average of the estimated means.

c chart:
UCL: c̄+ 3

√
c̄

CL: c̄

LCL: c̄− 3
√
c̄
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