Quality Control

The ASTA team

Contents

	0.1	Outline	2					
1	Qua	ality control	2					
	1.1	Quality control chart	2					
	1.2	Example	2					
	1.3	Example	3					
	1.4	The simple six sigma model	3					
	1.5	Average Run Length (ARL)	4					
	1.6	Types of quality control charts.	4					
2	Cor	Continuous process variable						
	2.1	Continuous process variable	5					
	2.2	xbar chart	5					
	2.3	Example	5					
	2.4	Example	6					
	2.5	S chart: Monitoring variability	6					
	2.6	S chart example	7					
	2.7	R chart: Range statistics	7					
	2.8	Charts based on R	8					
	2.9	R chart example	8					
3	Binomial process variable							
	3.1	Binomial variation	9					
	3.2	p chart	9					
	3.3	Example	10					
	3.4	Example	11					
4	Poisson process variable							
	4.1	Poisson variation	11					
	4.2	c chart	12					

0.1 Outline

- Quality control
- Continuous process variable
- Binomial process variable
- Poisson process variable

1 Quality control

1.1 Quality control chart

Control charts are used to routinely monitor quality.

Two major types:

- **univariate control**: a graphical display (chart) of one quality characteristic
- **multivariate control**: a graphical display of a statistic that summarizes or represents more than one quality characteristic

The control chart shows

- the value of the quality characteristic versus the sample number or versus time
- a center line (CL) that represents the mean value for the in-control process
- an upper control limit (UCL) and a lower control limit (LCL)

The control limits are chosen so that almost all of the data points will fall within these limits as long as the process remains in-control.

1.2 Example

```
library(qcc)
data(pistonrings)
head(pistonrings,3)
```

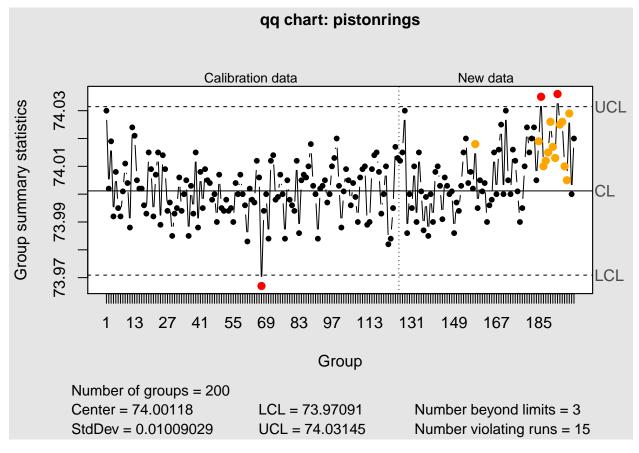
##		diameter	sample	trial
##	1	74.030	1	TRUE
##	2	74.002	1	TRUE
##	3	74.019	1	TRUE

Piston rings for an automotive engine are produced by a forging process. The inside diameter of the rings manufactured by the process is measured on 25 samples(sample=1,2,..,25), each of size 5, for the control phase I (trial=TRUE), when preliminary samples from a process being considered 'in-control' are used to construct control charts. Then, further 15 samples, again each of size 5, are obtained for phase II (trial=FALSE).

Reference:

Montgomery, D.C. (1991) Introduction to Statistical Quality Control, 2nd ed, New York, John Wiley & Sons, pp. 206-213

1.3 Example



We shall treat different methods for determining LCL,CL and UCL. In that respect, it is crucial that we have

- phase I data, where the process is in-control.
- These data are used to determine LCL,CL and UCL.

1.4 The simple six sigma model

Assume that measurements

- is a sample, i.e they are independent
- they have a normal distribution
- we know the mean μ_0 and standard deviation σ_0 .

In this case we dont need phase I data.

- CL= μ_0 .
- LCL= $\mu_0 k\sigma_0$.
- UCL= $\mu_0 + k\sigma_0$.

The only parameter to determine is k.

We dont want to give a lot of false warnings, and a popular choise is

- k=3, known as the 3*sigma rule.
- The probability of a measurement outside the control limits is then 0.27%, when the process is in-control.

This means that the span of allowable variation is $6\sigma_0$.

The concept "Six Sigma" has become a mantra in many industrial communities.

1.5 Average Run Length (ARL)

Let pOut denote the probability that a measurement is outside the control limits. On average this means that we need 1/pOut observations before we get an outlier.

This is known as the the Average Run Length:

$$AVL = \frac{1}{\text{pOut}}$$

An in-control process with the 3*sigma rule has AVL

```
round(1/(2*pdist("norm", -3, plot = FALSE)))
```

[1] 370

An in-control process with AVL=500 has k*sigma rule, where k equals

```
-qdist("norm", (1/2)*(1/500), plot = FALSE)
```

[1] 3.090232

1.6 Types of quality control charts.

Depending on the type of control variable, there are various types of control charts.

chart	distribution	statistic	example
xbar	normal	mean	means of a continuous process variable
S	normal	standard deviation	standard deviations of a continuous process variable
R	normal	range	ranges of a continuous process variable
р	binomial	proportion	percentage of faulty items
c	poisson	count	number of faulty items during a workday

2 Continuous process variable

2.1 Continuous process variable

Phase I data:

- m samples with n measurements in each sample.
- For sample i = 1, 2, ..., m calculate mean \bar{x}_i and standard deviation s_i .
- Calculate

$$\bar{x} = \frac{1}{m} \sum_{i=1}^{m} \bar{x}_i$$
 and $\bar{s} = \frac{1}{m} \sum_{i=1}^{m} s_i$

When the sample is normal, it can be shown that \bar{s} is a biased estimate of the true standard deviation σ :

- $E(\bar{s}) = c_4(n)\sigma$
- $c_4(n)$ is tabulated in textbooks and available in the qcc package.

Unbiased estimate of σ :

$$\hat{\sigma}_1 = \frac{\bar{s}}{c_4(n)}$$

Furthermore \bar{s} has estimated standard error

$$se(\bar{s}) = \bar{s} \frac{\sqrt{1 - c_4(n)^2}}{c_4(n)}$$

2.2 xbar chart

UCL:
$$\bar{x} + 3\frac{\hat{\sigma}_1}{\sqrt{n}}$$

CL: \bar{x}
LCL: $\bar{x} - 3\frac{\hat{\sigma}_1}{\sqrt{n}}$

This corresponds to

• The probability of a measurement outside the control limits is 0.27%.

If we want to change this probability, we need another z-score. E.g if we want to lower this probability to 0.1%, then 3 should be substituted by 3.29.

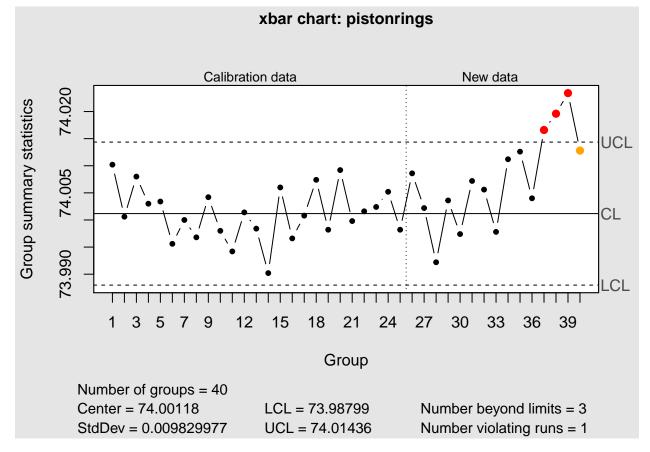
2.3 Example

- phaseI is a matrix with m = 25 rows, where each row is a sample of size n = 5.
- Similarly phaseII has 15 samples.

The function qcc calculates the necessary statistics and optionally makes a plot.

- phaseI and type= are the only arguments required.
- We want that the limits are based on the unweighted average of standard deviations UWAVE-SD. This is not the default.
- We also want to evaluate the phase II data: newdata=phaseII.
- Optionally, we can specify the title on the plot.

2.4 Example



Besides limits we are also told whether the process is above/below CL for 7 or more consecutive samples (yellow dots).

run.length=7 is default, but may be changed. If we e.g. want this to happen with probability 0.2%, then we specify run.length=10.

2.5 S chart: Monitoring variability

In most situations, it is crucial to monitor the process mean.

But it may also be a problem if the variability in "quality" gets too high.

In that respect, it is relevant to monitor the standard deviation, which is done by the S-chart:

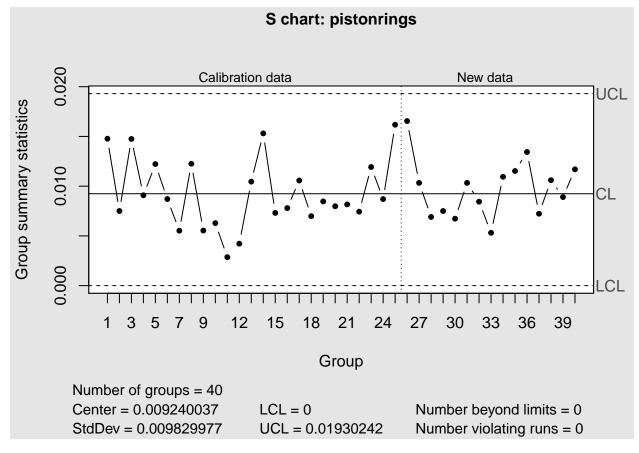
UCL:
$$\bar{s} + 3se(\bar{s})$$

CL: \bar{s}
LCL: $\bar{s} - 3se(\bar{s})$
 $se(\bar{s}) = \bar{s} \frac{\sqrt{1 - c_4(n)^2}}{c_4(n)}$

Where 3 may be substituted by some other z-score depending on the required confidence level.

h <- qcc(phaseI,type="S", newdata=phaseII, title="S chart: pistonrings")</pre>

2.6 S chart example



Remark that the plot does not allow values below zero.

Quite sensible when we are talking about standard deviations.

2.7 R chart: Range statistics

If the sample size is relatively small $(n \leq 10)$, it is custom to use the range R instead of the standard deviation. The range of a sample is simply the difference between the largest and smallest observation.

When the sample is normal, it can be shown that:

• $E(\bar{R}) = d_2(n)\sigma$, where \bar{R} is the average of the *m* sample ranges.

• $d_2(n)$ is tabulated in textbooks and available in the qcc package.

Unbiased estimate of $\sigma:$

$$\hat{\sigma}_2 = \frac{\bar{R}}{d_2(n)}$$

Furthermore \bar{R} has estimated standard error

$$se(\bar{R}) = \bar{R}\frac{d_3(n)}{d_2(n)}$$

 $d_3(n)$ is tabulated in textbooks and available in the qcc package.

2.8 Charts based on R

xbar chart based on $\bar{R}:$

UCL:
$$\bar{x} + 3\frac{\hat{\sigma}_2}{\sqrt{n}}$$

CL: \bar{x}
LCL: $\bar{x} - 3\frac{\hat{\sigma}_2}{\sqrt{n}}$

This is actually the default in the qcc package.

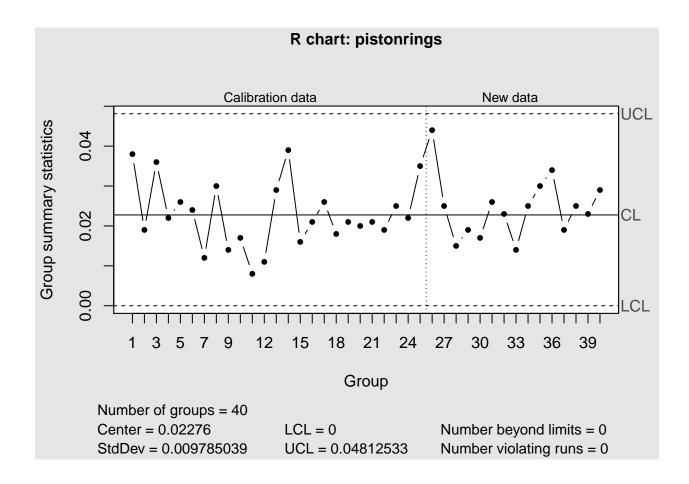
R chart to monitor variability:

UCL:
$$R + 3se(R)$$

CL: \bar{R}
LCL: $\bar{R} - 3se(\bar{R})$

2.9 R chart example

h <- qcc(phaseI, type="R", newdata=phaseII, title="R chart: pistonrings")</pre>



3 Binomial process variable

3.1 Binomial variation

Let us suppose that the production process operates in a stable manner such that

- the probability that an item is defect is *p*.
- successive items produced are independent

In a random sample of n items, the number D of defective items follows a binomial distribution with parameters n and p.

Unbiased estimate of p:

which has standard error

$$\hat{p} = \frac{D}{n}$$

$$se(\hat{p}) = \sqrt{\frac{p(1-p)}{n}}$$

3.2 p chart

Data from phase I:

• *m* samples with estimated proportions \hat{p}_i , i = 1, ..., m

- \bar{p} is the average of the estimated proportions.

p chart:

$$\begin{array}{lll} \text{UCL:} & \bar{p} + 3\sqrt{\frac{\bar{p}(1-\bar{p})}{n}} \\ \text{CL:} & \bar{p} \\ \text{LCL:} & \bar{p} - 3\sqrt{\frac{\bar{p}(1-\bar{p})}{n}} \end{array}$$

3.3 Example

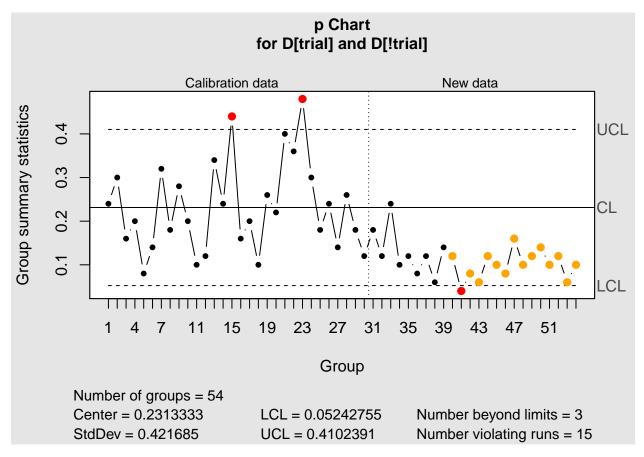
data(orangejuice)
head(orangejuice, 3)

##		sample	D	size	trial
##	1	1	12	50	TRUE
##	2	2	15	50	TRUE
##	3	3	8	50	TRUE

Production of orange juice cans.

- The data were collected as 30 samples of 50 cans.
- The number of defective cans ${\tt D}$ were observed.
- After the first 30 samples, a machine adjustment was made.
- Then further 24 samples were taken from the process.

3.4 Example



The machine adjustment after sample 30 has had an obvious effect.

The chart should be recalibrated.

4 Poisson process variable

4.1 Poisson variation

Let us suppose that the production process operates in a stable manner such that

• defective items are produced at a constant rate

The number D of defective items over a time interval of some fixed length follows a poisson distribution with mean value c.

Unbiased estimate of c:

 $\hat{c} = D$

which has standard error

 $se(\hat{c})=\sqrt{c}$

4.2 c chart

Data from phase I:

- m sampling periods with mean estimates ĉ_i, i = 1,...,m
 c̄ is the average of the estimated means.

c chart:

UCL:
$$\bar{c} + 3\sqrt{\bar{c}}$$

CL: \bar{c}
LCL: $\bar{c} - 3\sqrt{\bar{c}}$