Analysis of Variance

The ASTA team

Contents

T	One	e way analysis of variance	1
	1.1	Example	1
	1.2	The ANOVA Model	2
2	Estimation of mean values		3
	2.1	Estimates	3
	2.2	Contrast coding	3
	2.3	Example	3
3	Overall test for effect		4
	3.1	Graphical representation of models	4
	3.2	Hypotheses and test statistic	5
	3.3	Interpretation of F statistic - Variance between/within groups	5
	3.4	Example	6
4	Two	o way analysis of variance	7
	4.1	Additive effects	7
	4.2	Dummy coding	8
	4.3	Main effect model in ${f R}$	8
	4.4	Testing effect of supp	9
	4.5	Testing effect of dose	9
5	Interaction		9
	5.1	Example	9
	5.2	Dummy coding	11
	5.3	Example	11

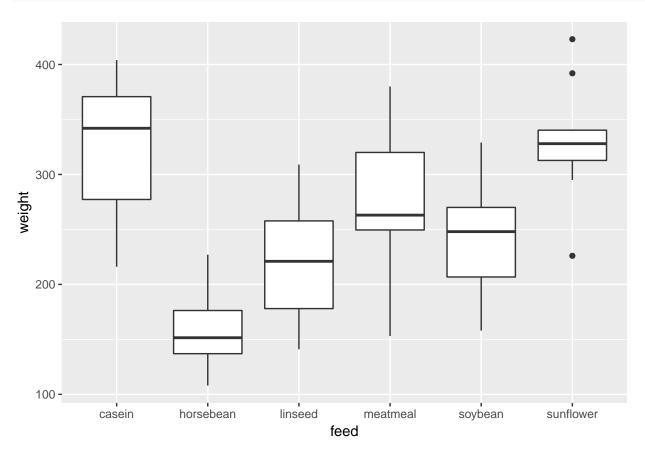
1 One way analysis of variance

1.1 Example

- The data set chickwts is available in R, and on the course webpage.
- Newly hatched chicks were randomly allocated into six groups, and each group was given a different feed supplement.

- Their weights in grams after six weeks are given along with feed types, i.e. we have a sample with corresponding measurements of 2 variables:
 - weight: a numeric variable giving the chick weight.
 - feed: a factor giving the feed type.
- Always start with some graphics:

```
library(mosaic)
gf_boxplot(weight ~ feed, data = chickwts)
```



1.2 The ANOVA Model

- We measure the response y which in this case is weight.
- We want to study the effect of the factor x on y. In this case x =feed and divides the sample in g = 6 groups.
- The mean responses within the groups are denoted $\mu_1, \mu_2, \dots, \mu_q$.
- We will assume that
 - $-y = \mu_x + \epsilon$, when y is a response in group x
 - $-\epsilon$ are a sample from a population with mean zero and standard deviation σ .
 - The standard deviation for the population in each group is the same and equals σ
 - $-\,$ The response variable, y, is normal distributed within each group.
- The ANOVA test is a *test of independence* between the quantitative response variable and the qualitative explanatory variables.

2 Estimation of mean values

2.1 Estimates

- Least squares estimates for population means $\hat{\mu}_x$ is given by the average of the response measurements in group x.
- For a given measured response y we let \hat{y} denote the model's prediction of y, i.e.

$$\widehat{y} = \widehat{\mu}_x$$

if y is a response for an observation in group x.

• We use mean to find the mean, for each group:

```
mean(weight ~ feed, data = chickwts)
```

```
## casein horsebean linseed meatmeal soybean sunflower
## 323.5833 160.2000 218.7500 276.9091 246.4286 328.9167
```

- We can e.g. see that $\hat{y}=323.6$, when feed=casein but $\hat{y}=160.2$, when feed=horsebean.
- Is it a significant difference?

2.2 Contrast coding

- In many cases there is a group corresponding to "no treatment" and we are interested in the effect of different treatments.
- In this example we only have different feeds, which are sorted in lexicographical order by R, so casein is the reference.
- We can specify the model via:
 - Intercept corresponding to the mean response for the reference (casein).
 - For each of the other groups we have a **contrast**, which measures **the difference** between the mean value for that group and the reference group.
- For a given contrast we can calculate standard error, t-score and p-value, and thereby investigate whether there is a difference between this group and the reference group.
- In Agresti this is referred to as using dummy variables.

2.3 Example

```
model <- lm(weight ~ feed, data = chickwts)
summary(model)</pre>
```

```
##
## Call:
## lm(formula = weight ~ feed, data = chickwts)
##
## Residuals:
## Min 1Q Median 3Q Max
## -123.909 -34.413 1.571 38.170 103.091
##
## Coefficients:
```

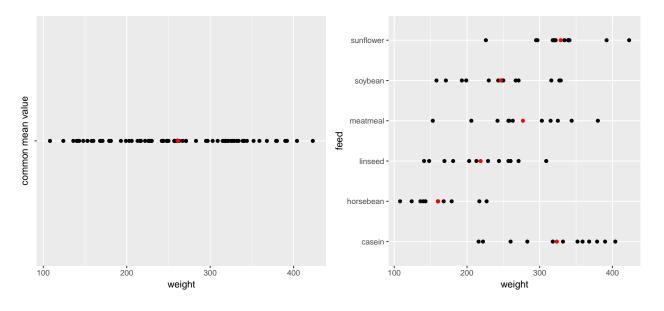
```
##
                 Estimate Std. Error t value Pr(>|t|)
                  323.583
                              15.834
                                      20.436 < 2e-16 ***
## (Intercept)
                                      -6.957 2.07e-09 ***
## feedhorsebean -163.383
                              23.485
                              22.393
                 -104.833
                                      -4.682 1.49e-05 ***
## feedlinseed
  feedmeatmeal
                  -46.674
                              22.896
                                      -2.039 0.045567 *
## feedsoybean
                  -77.155
                              21.578
                                      -3.576 0.000665 ***
## feedsunflower
                    5.333
                              22.393
                                       0.238 0.812495
##
## Signif. codes:
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 54.85 on 65 degrees of freedom
## Multiple R-squared: 0.5417, Adjusted R-squared: 0.5064
## F-statistic: 15.36 on 5 and 65 DF, p-value: 5.936e-10
```

- We get information about contrasts and their significance:
- Intercept corresponding to case in has weight different from zero $(p < 2 \times 10^{-16})$.
- Weight difference between casein and horsebean is extremely significant (p= 2×10^{-9}).
- There is no significant weight difference between casein and sunflower (p=81%).

3 Overall test for effect

3.1 Graphical representation of models

- We have two alternative explanations of the data.
- Simple model with one parameter (mean): "The feed type doesn't matter. The weight is just random around a common mean value".
- Complex model with six parameters (means): "The feed type is important. For each feed type we get a different mean value and the weights are random around these values."



3.2 Hypotheses and test statistic

• Is the complex model significantly better (i.e. is there any effect of the explanatory grouping variable)? We can write the corresponding hypotheses in two different ways

 $H_0: \mu_1 = \mu_2 = \ldots = \mu_q$ against $H_a:$ At least 2 of the population means are different

Alternatively

 H_0 : All contrasts are equal to zero. H_a : At least one contrast is non-zero.

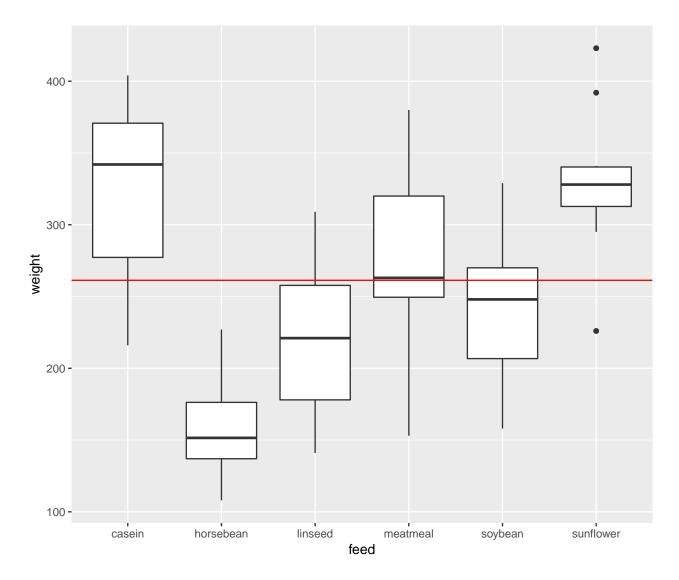
• We will (indirectly) use \mathbb{R}^2 to do the test. If it is large, the complex model has good predictive power compared to the simple model. To judge significance we use

$$F_{obs} = \frac{(n-g)R^2}{(g-1)(1-R^2)} = \frac{(TSS-SSE)/(g-1)}{SSE/(n-g)}.$$

- Large values of R^2 implies large values of F_{obs} , which points to the alternative hypothesis.
- I.e. when we have calculated the observed value F_{obs} , then we have to find the probability that a new experiment would result in a larger value.

3.3 Interpretation of F statistic - Variance between/within groups

- It can be shown that the numerator of F_{obs} is a measure of the variance between the groups, i.e. how much "boxes" vary around the total average (the red line).
- Likewise it can be shown the denominator of F_{obs} is a measure for the variance within groups, i.e. how "tall" the boxes in the boxplot are.



• If the boxes' deviations from the red line are to be explained by randomness, then the two types of variances should be of same magnitude. This is measured by the F-test statistic, which can be stated as

$$F_{obs} = \frac{\text{variance between groups}}{\text{variance within groups}}$$

3.4 Example

```
model <- lm(weight ~ feed, data = chickwts)
summary(model)</pre>
```

```
##
## Call:
## lm(formula = weight ~ feed, data = chickwts)
##
## Residuals:
## Min 1Q Median 3Q Max
```

```
## -123.909 -34.413
                       1.571
                               38.170 103.091
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 323.583
                             15.834 20.436
                                             < 2e-16 ***
## feedhorsebean -163.383
                             23.485
                                     -6.957 2.07e-09 ***
                -104.833
## feedlinseed
                             22.393 -4.682 1.49e-05 ***
## feedmeatmeal
                 -46.674
                             22.896
                                     -2.039 0.045567 *
## feedsoybean
                 -77.155
                             21.578
                                     -3.576 0.000665 ***
## feedsunflower
                   5.333
                             22.393
                                      0.238 0.812495
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 54.85 on 65 degrees of freedom
## Multiple R-squared: 0.5417, Adjusted R-squared: 0.5064
## F-statistic: 15.36 on 5 and 65 DF, p-value: 5.936e-10
```

• The last line gives us the value of $F_{obs} = 15.36$ and the corresponding p-value (5.9×10^{-10}) . Clearly there is a significant difference between the types of feed.

4 Two way analysis of variance

4.1 Additive effects

- The data set ToothGrowth is available in $\mathbf R$ and on the webpage. For more info about this data, use ?ToothGrowth.
- The data describes the tooth length in guinea pigs where some recvieve vitamin C treatment and others are given orange juice in different dosage.
- A total of 60 observations on 3 variables.
 - [,1] len The tooth length
 [,2] supp The type of the supplement (OJ or VC)
 [,3] dose The dosage (LO, ME, HI)
- We will study the response len with the predictors supp and dose.
- At first we look at the model with additive effects

```
- len=\mu + "effect of supp"+ "effect of dose" + error
```

- This is also called the main effects model since it does not contain interaction terms.
- The parameter μ corresponds to the Intercept and is the mean tooth length in the reference group (supp OJ, dose LO).
- The effect of supp is the difference in mean when changing from OJ to VC.
- The effect of dose is the difference in mean when changing from LO to either ME or HI.

4.2 Dummy coding

- Let us introduce dummy variables:
 - $-s_C=1$ if supp VC and zero otherwise.
 - $-d_{M}=1$ if dose is ME and zero otherwise.
 - $-d_H=1$ if dose is HI and zero otherwise.
- Then we state the model

length =
$$\mu + \beta_1 s_C + \beta_2 d_M + \beta_3 d_H + \text{error.}$$

- Interpretation:
 - $-\mu$ is the expected tooth length when supp is OJ and dose is LO $(s_C = d_M = d_H = 0)$).
 - $-\beta_1$ is the effect of supplement OJ to VC $(s_C=1)$.
 - $-\beta_2$ is the effect of increasing dosage from LO to ME $(d_M=1)$.
 - $-\beta_3$ is the effect of increasing dosage from LO to HI $(d_H=1)$.

4.3 Main effect model in R

• The main effects model is fitted by

```
MainEff <- lm(len ~ supp + dose, data = ToothGrowth)
summary(MainEff)</pre>
```

```
##
## lm(formula = len ~ supp + dose, data = ToothGrowth)
##
## Residuals:
##
     Min
             1Q Median
                            3Q
                                 Max
  -7.085 -2.751 -0.800 2.446
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 12.4550
                           0.9883 12.603 < 2e-16 ***
## suppVC
                -3.7000
                                   -3.744 0.000429 ***
                           0.9883
## doseME
                9.1300
                           1.2104
                                    7.543 4.38e-10 ***
               15.4950
                           1.2104 12.802 < 2e-16 ***
## doseHI
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.828 on 56 degrees of freedom
## Multiple R-squared: 0.7623, Adjusted R-squared: 0.7496
## F-statistic: 59.88 on 3 and 56 DF, p-value: < 2.2e-16
```

- The model has 4 parameters.
- The F test at the end compares with the (null) model with only one overall mean parameter. Does it seem like supp and dose has an additive effect?

4.4 Testing effect of supp

• Alternative model without effect of supp:

```
doseEff <- lm(len ~ dose, data = ToothGrowth)</pre>
```

• We can compare R^2 to see if doseEff (Model 1) is sufficent to explain the data compared to MainEff (Model 2). This is done by converting to F-statistic:

$$F_{obs} = \frac{(R_2^2 - R_1^2)/(df_1 - df_2)}{(1 - R_2^2)/df_2} = \frac{(SSE_1 - SSE_2)/(df_1 - df_2)}{(SSE_2)/df_2}.$$

• In **R** the calculations are done using anova:

```
anova(doseEff, MainEff)
```

```
## Analysis of Variance Table
##
## Model 1: len ~ dose
## Model 2: len ~ supp + dose
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 57 1025.78
## 2 56 820.43 1 205.35 14.017 0.0004293 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

4.5 Testing effect of dose

• Alternative model without effect of dose:

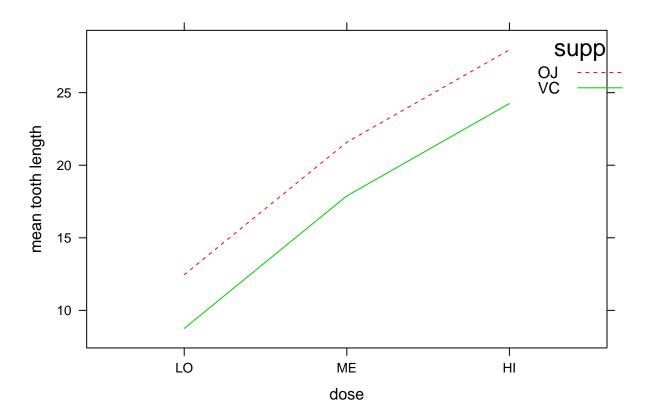
```
suppEff <- lm(len ~ supp, data = ToothGrowth)
anova(suppEff, MainEff)</pre>
```

```
## Analysis of Variance Table
##
## Model 1: len ~ supp
## Model 2: len ~ supp + dose
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 58 3246.9
## 2 56 820.4 2 2426.4 82.811 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1</pre>
```

5 Interaction

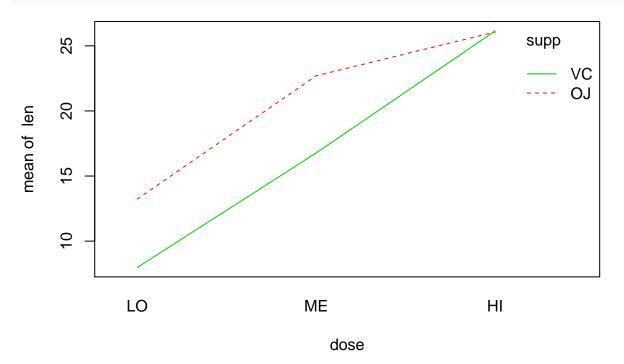
5.1 Example

- We will extend the model by introducing an interaction between supp and dose.
- A graphical check for no interaction in the main effects model:



• Interaction plot:

with(ToothGrowth, interaction.plot(dose, supp, len, col = 2:3))



- For each of the supplement types we plot the average number of tooth length as a function of dosage.
- If the main effects model is correct then the difference between supplements is the same for all levels of dosage, i.e. the curves should be parallel except for noise.

• This does not seem to be the case.

5.2 Dummy coding

• The extended model can be formulated as

```
length = \mu + \beta_1 s_C + \beta_2 d_M + \beta_3 d_H + \beta_4 s_C d_M + \beta_5 s_C d_H + error
```

- Interpretation:
 - $-\mu$ is the expected tooth length for supp OJ and dose LO ($s_C=d_M=d_H=0$).
 - $-\beta_1$ is the effect of changing from supp OJ to VC, dose is LO $(s_C=1,d_M=d_H=0)$.
 - β_2 is the effect of increasing dose from LO to ME, when supp is OJ $(s_C=0,d_M=1)$.
 - $-\beta_3$ is the effect of increasing dose from LO to HI, when supp is OJ $(s_C=0,d_H=1)$.
 - $-\beta_4$ is an additional effect of both changing from supp OJ to VC and increasing dose from LO to ME $(s_C=1,d_M=1)$
 - β_5 is an additional effect of both changing from supp OJ to VC and increasing dose from LO to HI $(s_C=1,d_H=1)$

5.3 Example

• We fit the interaction model by changing plus to multiply in the model expression from before:

```
Interaction <- lm(len ~ supp*dose, data = ToothGrowth)</pre>
```

- Now we can think of an experiment with 6 groups corresponding to each combination of the predictors.
- Looking at the group averages it looks like, the supplement types behave quite differently depending on dose:

```
mean(len ~ supp + dose, data = ToothGrowth)

## OJ.LO VC.LO OJ.ME VC.ME OJ.HI VC.HI

## 13.23 7.98 22.70 16.77 26.06 26.14
```

• But is that significant?

```
anova(MainEff, Interaction)
```

```
## Analysis of Variance Table
##
## Model 1: len ~ supp + dose
## Model 2: len ~ supp * dose
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 56 820.43
## 2 54 712.11 2 108.32 4.107 0.02186 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

• With a p-value of 2.1860269% there is a significant interaction supp:dose, i.e. the lack of parallel curves in the interaction plot is significant.

summary(Interaction)

```
##
## Call:
## lm(formula = len ~ supp * dose, data = ToothGrowth)
##
## Residuals:
##
    Min
            1Q Median
                           3Q
                                Max
   -8.20 -2.72 -0.27
                         2.65
                                8.27
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
                             1.148 11.521 3.60e-16 ***
## (Intercept)
                 13.230
## suppVC
                  -5.250
                              1.624 -3.233 0.00209 **
## doseME
                  9.470
                              1.624 5.831 3.18e-07 ***
## doseHI
                 12.830
                             1.624
                                     7.900 1.43e-10 ***
## suppVC:doseME
                 -0.680
                              2.297 -0.296 0.76831
## suppVC:doseHI
                  5.330
                              2.297
                                     2.321 0.02411 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.631 on 54 degrees of freedom
## Multiple R-squared: 0.7937, Adjusted R-squared: 0.7746
## F-statistic: 41.56 on 5 and 54 DF, p-value: < 2.2e-16
```

• The additional effect of both changing from supp OJ to VC and increasing dose from LO to HI $(\beta_5 = \text{suppVC:doseHI})$ is highly significant.