Comparison of two groups

The ASTA team

Contents

0.1 Response variable and explanatory variable 1
0.2 Dependent/independent samples 1
0.3 Comparison of two means (Independent samples) 2
0.4 Comparison of two means (Independent samples) 2
0.5 Example: Comparing two means (independent samples) 2
0.6 Comparison of two means: confidence interval (independent samples) 4
0.7 Comparison of two means: paired t-test (dependent samples) 4
1 Comparison of two proportions 5
1.1 Comparison of two proportions 5
1.2 Comparison of two proportions: Independent samples 5
1.3 Approximate test for comparing two proportions (independent samples) 6
1.4 Example: Approximate confidence interval and test for comparing proportions 6
1.5 Fisher's exact test 7
1.6 Agresti: Overview of comparison of two groups 8

0.1 Response variable and explanatory variable

- We conduct an experiment, where we at random choose 50 IT-companies and 50 service companies and measure their profit ratio. Is there association between company type (IT/service) and profit ratio?
- In other words we compare samples from 2 different populations. For each company we register:
- The binary variable company type, which is called the explanatory variable and divides data in 2 groups.
- The quantitative variable profit ratio, which is called the response variable.

0.2 Dependent/independent samples

- In the example with profit ratio of 50 IT-companies and 50 service companies we have independent samples, since the same company cannot be in both groups.
- Now, think of another type of experiment, where we at random choose 50 IT-companies and measure their profit ratio in both 2009 and 2010. Then we may be interested in whether there is association between year and profit ratio?
- In this example we have dependent samples, since the same company is in both groups.
- Dependent samples may also be referred to as paired samples.

0.3 Comparison of two means (Independent samples)

- We consider the situation, where we have two quantitative samples:
- Population 1 has mean μ_{1}, which is estimated by $\hat{\mu}_{1}=\bar{y}_{1}$ based on a sample of size n_{1}.
- Population 2 has mean μ_{2}, which is estimated by $\hat{\mu}_{2}=\bar{y}_{2}$ based on a sample of size n_{2}.
- We are interested in the difference $\mu_{2}-\mu_{1}$, which is estimated by $d=\bar{y}_{2}-\bar{y}_{1}$.
- Assume that we can find the estimated standard error $s e_{d}$ of the difference and that this has degrees of freedom $d f$.
- Assume that the samples either are large or come from a normal population.
- Then we can construct a
- confidence interval for the unknown population difference of means $\mu_{2}-\mu_{1}$ by

$$
\left(\bar{y}_{2}-\bar{y}_{1}\right) \pm t_{c r i t} s e_{d}
$$

where the critical t-score, $t_{\text {crit }}$, determines the confidence level.

- significance test:
* for the null hypothesis $H_{0}: \mu_{2}-\mu_{1}=0$ and alternative hypothesis $H_{a}: \mu_{2}-\mu_{1} \neq 0$.
* which uses the test statistic: $t_{o b s}=\frac{\left(\bar{y}_{2}-\bar{y}_{1}\right)-0}{s e_{d}}$, that has to be evaluated in a t-distribution with $d f$ degrees of freedom.

0.4 Comparison of two means (Independent samples)

- In the independent samples situation it can be shown that

$$
s e_{d}=\sqrt{s e_{1}^{2}+s e_{2}^{2}}
$$

where $s e_{1}$ and $s e_{2}$ are estimated standard errors for the sample means in populations 1 and 2 , respectively.

- We recall, that for these we have $s e=\frac{s}{\sqrt{n}}$, i.e.

$$
s e_{d}=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}
$$

where s_{1} and s_{2} are estimated standard deviations for population 1 and 2 , respectively.

- The degrees of freedom $d f$ for $s e_{d}$ can be estimated by a complicated formula, which we will not present here.
- For the confidence interval and the significance test we note that:
- If both n_{1} and n_{2} are above 30, then we can use the standard normal distribution (z-score) rather than the t-distribution (t-score).
- If n_{1} or n_{2} are below 30 , then we let \mathbf{R} calculate the degrees of freedom and p-value/confidence interval.

0.5 Example: Comparing two means (independent samples)

We return to the Chile data. We study the association between the variables sex and statusquo (scale of support for the status-quo). So, we will perform a significance test to test for difference in the mean of statusquo for male and females.

```
Chile <- read.delim("https://asta.math.aau.dk/datasets?file=Chile.txt")
library(mosaic)
fv <- favstats(statusquo ~ sex, data = Chile)
fv
```

```
## sex min Q1 median Q3 max mean sd n missing
## 1 F -1.80 -0.975 0.121 1.033 2.02 0.0657 1.003 1368 11
## 2 M -1.74 -1.032 -0.216 0.861 2.05 -0.0684 0.993 1315 6
```

- Difference: $d=0.0657-(-0.0684)=0.1341$.
- Estimated standard deviations: $s_{1}=1.0032$ (females) and $s_{2}=0.9928$ (males).
- Sample sizes: $n_{1}=1368$ and $n_{2}=1315$
- Estimated standard error of difference: $s e_{d}=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}=\sqrt{\frac{1.0032^{2}}{1368}+\frac{0.9928^{2}}{1315}}=0.0385$.
- Observed t-score for $H_{0}: \mu_{1}-\mu_{2}=0$ is: $t_{o b s}=\frac{d-0}{s e_{d}}=\frac{0.1341}{0.0385}=3.4786$.
- Since both sample sizes are "pretty large" (>30), we can use the z-score instead of the t-score for finding the p-value (i.e. we use the standard normal distribution):

1 - pdist("norm", $q=3.4786$, $x \lim =c(-4,4))$

\#\# [1] 0.0002520202

- Then the p-value is $2 \cdot 0.00025=0.0005$, so we reject the null hypothesis.
- We can leave all the calculations to \mathbf{R} by using t.test:

```
t.test(statusquo ~ sex, data = Chile)
##
## Welch Two Sample t-test
##
## data: statusquo by sex
```

```
## t = 3.4786, df = 2678.7, p-value = 0.0005121
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.05849179 0.20962982
## sample estimates:
## mean in group F mean in group M
## 0.06570627 -0.06835453
```

- We recognize the t-score 3.4786 and the p-value 0.0005 . The estimated degrees of freedom $d f=2679$ is so large that we can not tell the difference between results obtained using z-score and t-score.

0.6 Comparison of two means: confidence interval (independent samples)

- We have already found all the ingredients to construct a confidence interval for $\mu_{2}-\mu_{1}$:
- $d=\bar{y}_{2}-\bar{y}_{1}$ estimates $\mu_{2}-\mu_{1}$.
$-s e_{d}=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$ estimates the standard error of d.
- Then:

$$
d \pm t_{c r i t} s e_{d}
$$

is a confidence interval for $\mu_{2}-\mu_{1}$.

- The critical t-score, $t_{\text {crit }}$ is chosen corresponding to the wanted confidence level. If n_{1} and n_{2} both are greater than 30 , then $t_{c r i t}=2$ yields a confidence level of approximately 95%.

0.7 Comparison of two means: paired t-test (dependent samples)

- Experiment:
- You choose 10 Netto stores at random, where you measure the average expedition time by the cash registers over some period of time.
- Now, new cash registers are installed in all 10 stores, and you repeat the experiment.
- It is interesting to investigate whether or not the new cash registers have changed the expedition time.
- So we have 2 samples corresponding to old/new technology. In this case we have dependent samples, since we have 2 measurement in each store.
- We use the following strategy for analysis:
- For each store calculate the change in average expedition time when we change from old to new technology.
- The changes $d_{1}, d_{2}, \ldots, d_{10}$ are now considered as ONE sample from a population with mean μ.
- Test the hypothesis $H_{0}: \mu=0$ as usual (using a t-test for testing the mean as in the previous lecture).

0.7.1 Netto store example

- Data is organized in a data frame with 2 variables, before and after, containing the average expedition time before and after installation of the new technology. Instead of doing manual calculations we let \mathbf{R} perform the significance test (using t.test with paired = TRUE as our samples are paired/dependent):

```
Netto <- read.delim("https://asta.math.aau.dk/datasets?file=Netto.txt")
head(Netto, n = 3)
## before after
## 1 3.730611 3.440214
## 2 2.623338 2.314733
## 3 3.795295 3.586334
t.test(Netto$before, Netto$after, paired = TRUE)
##
## Paired t-test
##
## data: Netto$before and Netto$after
## t = 5.7204, df = 9, p-value = 0.0002868
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.1122744 0.2591578
## sample estimates:
## mean of the differences
## 0.1857161
```

- With a p-value of 0.00029 we reject that the expedition time is the same after installing new technology.

1 Comparison of two proportions

1.1 Comparison of two proportions

- We consider the situation, where we have two qualitative samples and we investigate whether a given property is present or not:
- Let the proportion of population 1 which has the property be π_{1}, which is estimated by $\hat{\pi}_{1}$ based on a sample of size n_{1}.
- Let the proportion of population 2 which has the property be π_{2}, which is estimated by $\hat{\pi}_{2}$ based on a sample of size n_{2}.
- We are interested in the difference $\pi_{2}-\pi_{1}$, which is estimated by $d=\hat{\pi}_{2}-\hat{\pi}_{1}$.
- Assume that we can find the estimated standard error $s e_{d}$ of the difference.
- Then we can construct
- an approximate confidence interval for the difference, $\pi_{2}-\pi_{1}$.
- a significance test.

1.2 Comparison of two proportions: Independent samples

- In the situation where we have independent samples we know that

$$
s e_{d}=\sqrt{s e_{1}^{2}+s e_{2}^{2}}
$$

where $s e_{1}$ and $s e_{2}$ are the estimated standard errors for the sample proportion in population 1 and 2 , respectively.

- We recall, that these are given by $s e=\sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}$, i.e.

$$
s e_{d}=\sqrt{\frac{\hat{\pi}_{1}\left(1-\hat{\pi}_{1}\right)}{n_{1}}+\frac{\hat{\pi}_{2}\left(1-\hat{\pi}_{2}\right)}{n_{2}}} .
$$

- A (approximate) confidence interval for $\pi_{2}-\pi_{1}$ is obtained by the usual construction:

$$
\left(\hat{\pi}_{2}-\hat{\pi}_{1}\right) \pm z_{c r i t} s e_{d}
$$

where the critical z-score determines the confidence level.

1.3 Approximate test for comparing two proportions (independent samples)

- We consider the null hypothesis $H_{0}: \pi_{1}=\pi_{2}$ (equivalently $H_{0}: \pi_{1}-\pi_{2}=0$) and the alternative hypothesis $H_{a}: \pi_{1} \neq \pi_{2}$.
- Assuming H_{0} is true, we have a common proportion π, which is estimated by

$$
\hat{\pi}=\frac{n_{1} \hat{\pi}_{1}+n_{2} \hat{\pi}_{2}}{n_{1}+n_{2}}
$$

i.e. we aggregate the populations and calculate the relative frequency of the property (with other words: we estimate the proportion, π, as if the two samples were one).

- Rather than using the estimated standard error of the difference from previous, we use the following that holds under H_{0} :

$$
s e_{0}=\sqrt{\hat{\pi}(1-\hat{\pi})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}
$$

- The observed test statistic $/ z$-score for H_{0} is then:

$$
z_{o b s}=\frac{\left(\hat{\pi}_{2}-\hat{\pi}_{1}\right)-0}{s e_{0}}
$$

which is evaluated in the standard normal distribution.

- The p-value is calculated in the usual way.

WARNING: The approximation is only good, when $n_{1} \hat{\pi}, n_{1}(1-\hat{\pi}), n_{2} \hat{\pi}, n_{2}(1-\hat{\pi})$ all are greater than 5 .

1.4 Example: Approximate confidence interval and test for comparing proportions

We return to the Chile dataset. We make a new binary variable indicating whether the person intends to vote no or something else (and we remember to tell \mathbf{R} that it should think of this as a grouping variable, i.e. a factor):

```
Chile$voteNo <- relevel(factor(Chile$vote == "N"), ref = "TRUE")
```

We study the association between the variables sex and voteNo:

```
tab <- tally( ~ sex + voteNo, data = Chile, useNA = "no")
tab
```

```
## voteNo
## sex TRUE FALSE
## F 363 946
## M 526 697
```

This gives us all the ingredients needed in the hypothesis test:

- Estimated proportion of men that vote no: $\hat{\pi}_{1}=\frac{526}{526+697}=0.430$
- Estimated proportion of women that vote no: $\hat{\pi}_{2}=\frac{363}{363+946}=0.277$
- Estimated common proportion: $\hat{\pi}=\frac{1223 \times 0.430+1309 \times 0.277}{1309+1223}=\frac{526+363}{1309+1223}=0.351$.
- Estimated difference $d=\hat{\pi}_{2}-\hat{\pi}_{1}=0.277-0.430=-0.153$

Further,

- Standard error of difference:
$s e_{d}=\sqrt{\frac{\hat{\pi}_{1}\left(1-\hat{\pi}_{1}\right)}{n_{1}}+\frac{\hat{\pi}_{2}\left(1-\hat{\pi}_{2}\right)}{n_{2}}}=\sqrt{\frac{0.430(1-0.430)}{1223}+\frac{0.277(1-0.277)}{1309}}=0.0188$.
- Approximate 95% confidence interval for difference: $d \pm 1.96 s e_{d}=(-0.190,-0.116)$.
- Standard error of difference when $H_{0}: \pi_{1}=\pi_{2}$ is true:
$s e_{0}=\sqrt{\hat{\pi}(1-\hat{\pi})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}=0.0190$.
- The observed test statistic/z-score: $z_{o b s}=\frac{d}{s e_{0}}=-8.06$. The test for H_{0} against $H_{a}: \pi_{1} \neq \pi_{2}$ yields a p-value that is practically zero, i.e. we can reject that the proportions are equal.

1.4.1 Automatic calculation in R

```
Chile2 <- subset(Chile, !is.na(voteNo))
prop.test(voteNo ~ sex, data = Chile2, correct = FALSE)
##
## 2-sample test for equality of proportions without continuity
## correction
##
## data: tally(voteNo ~ sex)
## X-squared = 64.777, df = 1, p-value = 8.389e-16
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.1896305 -0.1159275
## sample estimates:
## prop 1 prop 2
## 0.2773109 0.4300899
```


1.5 Fisher's exact test

- If $n_{1} \hat{\pi}, n_{1}(1-\hat{\pi}), n_{2} \hat{\pi}, n_{2}(1-\hat{\pi})$ are not all greater than 5 , then the approximate test cannot be trusted. Instead you can use Fisher's exact test:

```
fisher.test(tab)
```

```
##
## Fisher's Exact Test for Count Data
##
## data: tab
## p-value = 1.04e-15
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.4292768 0.6021525
## sample estimates:
## odds ratio
## 0.5085996
```

- Again the p-value is seen to be extremely small, so we definitely reject the null hypothesis of equal voteNo proportions for women and men.

1.6 Agresti: Overview of comparison of two groups

TABLE 7.10: Summary of Comparison Methods for Two Groups, for Independent Random Samples

	Type of Response Variable	
	Categorical	Quantitative
Estimation 1. Parameter 2. Point estimate 3. Standard error 4. Confidence interval	$s e=\sqrt{\pi_{2}-\pi_{1}} \begin{gathered} \frac{\hat{\pi}_{1}\left(1-\hat{\pi}_{1}\right)}{n_{1}}+\frac{\hat{\pi}_{2}\left(1-\hat{\pi}_{2}\right)}{n_{2}} \\ \left(\hat{\pi}_{2}-\hat{\pi}_{1}\right) \pm z(s e) \end{gathered}$	$\begin{gathered} \mu_{2}-\mu_{1} \\ \bar{y}_{2}-\bar{y}_{1} \\ s e=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}} \\ \left(\bar{y}_{2}-\bar{y}_{1}\right) \pm t(s e) \end{gathered}$
Significance testing		
1. Assumptions	Randomization ≥ 10 observations in each category, for each group	Randomization Normal population dist.'s (robust, especially for large n 's)
2. Hypotheses	$\begin{gathered} H_{0}: \pi_{1}=\pi_{2} \\ \left(\pi_{2}-\pi_{1}=0\right) \\ H_{a}: \pi_{1} \neq \pi_{2} \end{gathered}$	$\begin{aligned} & H_{0}: \mu_{1}=\mu_{2} \\ & \left(\mu_{2}-\mu_{1}=0\right) \\ & H_{a}: \mu_{1} \neq \mu_{2} \end{aligned}$
3. Test statistic 4. P-value	$z=\frac{\hat{\pi}_{2}-\hat{\pi}_{1}}{s e_{0}}$ Two-tail probability (Use one tail for	$\begin{aligned} & \qquad t=\frac{\overline{\bar{y}}_{2}-\bar{y}_{1}}{s e} \\ & \text { a standard normal or } t \\ & \text {-sided alternative) } \end{aligned}$

