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1.1 Motivation
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1.2 Data collection

• Getting numbers to report is easy
• Getting sensible and trustworthy numbers to report is orders of magnitude more difficult
• Why important?

– Difference between meaningless analysis and useful analysis
∗ Effect of drugs
∗ Economy
∗ Sales
∗ Climate
∗ Energy consumption

1.3 Data collection

Ronald Fisher (1890-1962):

To consult the statistician after an experiment is finished is often merely to ask him to conduct a
post mortem examination. He can perhaps say what the experiment died of.

Said about Fisher:

• Anders Hald (1913-2007), Danish statistician: “a genius who almost single-handedly created the
foundations for modern statistical science”

• Bradley Efron (b. 1938): “the single most important figure in 20th century statistics”

1.4 Data collection

• Competences, ideally:

– Statistics, both conceptually and analyses
– Data wrangling (loading data; right format for analyses, tables, figures; . . . )
– Visualizations
– Knowledge about subject (best with access to experts)

• Not just downloading a spreadsheet!

– Population vs sample
– Descriptives of the sample (e.g. mean)
– Statistical inference about population (how close is sample’s mean to population’s mean)

• Do collect and analyze data, but know about pitfalls and limitations in generalisability!

2 Population and sample

2.1 Population and sample
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Sample 3 of size n = 30:

shape color n_sample p_sample p_pop p_diff
baby black 2 0.07 0.04 -0.02
baby blue 1 0.03 0.04 0.01
baby red 0 0.00 0.01 0.01
man black 5 0.17 0.12 -0.04
man blue 8 0.27 0.22 -0.04
man red 3 0.10 0.08 -0.02
woman black 3 0.10 0.23 0.13
woman blue 8 0.27 0.22 -0.05
woman red 0 0.00 0.02 0.02

• Descriptive vs statistical inference.

2.2 Population and sample
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3 Example: United States presidential election, 1936

3.1 Example: United States presidential election, 1936

(Based on Agresti, this and this.)

• Current president: Franklin D. Roosevelt
• Election: Franklin D. Roosevelt vs Alfred Landon (Republican governor of Kansas)
• Literary Digest: magazine with history of accurately predicting winner of past 5 presidential elections

3.2 Example: United States presidential election, 1936

• Literary Digest poll (π̂ and 1− π̂): Landon: 57%; Roosevelt: 43%
• Actual results (π and 1− π): Landon: 38%; Roosevelt: 62%
• Sampling error: 57%-38% = 19%

– Practically all of the sampling error was the result of sample bias
– Poll size of > 2 mio. individuals participated – extremely large poll

3.3 Example: United States presidential election, 1936

• Mailing list of about 10 mio. names was created

– Based on every telephone directory, lists of magasine subscribers, rosters of clubs and associations,
and other sources

– Each one of 10 mio. received a mock ballot and asked to return the marked ballot to the magazine

5

https://en.wikipedia.org/wiki/United_States_presidential_election,_1936
https://www.math.upenn.edu/~deturck/m170/wk4/lecture/case1.html


• “respondents who returned their questionnaires represented only that subset of the population with a
relatively intense interest in the subject at hand, and as such constitute in no sense a random sample
. . . it seems clear that the minority of anti-Roosevelt voters felt more strongly about the election than
did the pro-Roosevelt majority” (The American Statistician, 1976)

• Biases:

– Selection bias
∗ List generated towards middle- and upper-class voters (e.g. 1936 and telephones)
∗ Many unemployed (club memberships and magazine subscribers)

– Non-response bias
∗ Only responses from 2.3/2.4 mio out of 10 million people
∗ Cannot force people to participate: but mail may be junk (phone, interviews, online, pay/paid,
. . . )

4 Example: Bullet holes of honor

4.1 Example: Bullet holes of honor

(Based on this.)

• World War II
• Royal Air Force (RAF), UK

– Lost many planes to German anti-aircraft fire

• Armor up!

– Where?
– Count up all the bullet holes in planes that returned from missions

∗ Put extra armor in the areas that attracted the most fire

4.2 Example: Bullet holes of honor

• Hungarian-born mathematician Abraham Wald:

– If a plane makes it back safely with a bunch of bullet holes in its wings: holes in the wings aren’t
very dangerous

∗ Survivorship bias
– Armor up the areas that (on average) don’t have any bullet holes

∗ They never make it back, apparently dangerous

5 Theory: Biases / sampling

5.1 Biases

Agresti section 2.3:

• Sampling/selection bias

– Probability sampling: each sample of size n has same probability of being sampled
∗ Still problems: undercoverage, groups not represented (inmates, homeless, hospitalized, . . . )
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– Non-probability sampling: probability of sample not possible to determine
∗ E.g. volunteer sampling

• Response bias

– E.g. poorly worded, confusing or even order of questions
– Lying if think socially unacceptable

• Non-response bias

– Non-response rate high; systematic in non-responses (age, health, believes)

5.2 Sampling

Agresti section 2.4:

• Random sampling schemes:

– Simple sampling: each possible sample equally probable
– Systematic sampling
– Stratified sampling
– Cluster sampling
– Multistage sampling
– . . .

6 Theory: Contingency tables

6.1 A contingency table

• We return to the dataset popularKids, where we study association between 2 factors: Goals and
Urban.Rural.

• Based on a sample we make a cross tabulation of the factors and we get a so-called contingency table
(krydstabel).

popKids <- read.delim("https://asta.math.aau.dk/datasets?file=PopularKids.txt")
library(mosaic)
tab <- tally(~Urban.Rural + Goals, data = popKids, margins = TRUE)
tab

## Goals
## Urban.Rural Grades Popular Sports Total
## Rural 57 50 42 149
## Suburban 87 42 22 151
## Urban 103 49 26 178
## Total 247 141 90 478

6.2 A conditional distribution

• Another representation of data is the percent-wise distribution of Goals for each level of Urban.Rural,
i.e. the sum in each row of the table is 100 (up to rounding):
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tab <- tally(~Urban.Rural + Goals, data = popKids)
addmargins(round(100 * prop.table(tab, 1)),margin = 1:2)

## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 38 34 28 100
## Suburban 58 28 15 101
## Urban 58 28 15 101
## Sum 154 90 58 302

• Here we will talk about the conditional distribution of Goals given Urban.Rural.
• An important question could be:

– Are the goals of the kids different when they come from urban, suburban or rural areas? I.e. are
the rows in the table significantly different?

• There is (almost) no difference between urban and suburban, but it looks like rural is different.

7 Independence

7.1 Independence

• Recall, that two factors are independent, when there is no difference between the population’s
distributions of one factor given the levels of the other factor.

• Otherwise the factors are said to be dependent.
• If we e.g. have the following conditional population distributions of Goals given Urban.Rural:

## Goals
## Urban.Rural Grades Popular Sports
## Rural 500 300 200
## Suburban 500 300 200
## Urban 500 300 200

• Then the factors Goals and Urban.Rural are independent.
• We take a sample and “measure” the factors F1 and F2. E.g. Goals and Urban.Rural for a random

child.
• The hypothesis of interest today is:

H0 : F1 and F2 are independent, Ha : F1 and F2 are dependent.

7.2 The Chi-squared test for independence

• Our best guess of the distribution of Goals is the relative frequencies in the sample:

n <- margin.table(tab)
pctGoals <- round(100 * margin.table(tab, 2)/n, 1)
pctGoals

## Goals
## Grades Popular Sports
## 52 30 19
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• If we assume independence, then this is also a guess of the conditional distributions of Goals given
Urban.Rural.

• The corresponding expected counts in the sample are then:

## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 77 (51.7%) 44 (29.5%) 28 (18.8%) 149 (100%)
## Suburban 78 (51.7%) 44 (29.5%) 28 (18.8%) 151 (100%)
## Urban 92 (51.7%) 52 (29.5%) 34 (18.8%) 178 (100%)
## Sum 247 (51.7%) 141 (29.5%) 90 (18.8%) 478 (100%)

7.3 Calculation of expected table

pctexptab

## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 77 (51.7%) 44 (29.5%) 28 (18.8%) 149 (100%)
## Suburban 78 (51.7%) 44 (29.5%) 28 (18.8%) 151 (100%)
## Urban 92 (51.7%) 52 (29.5%) 34 (18.8%) 178 (100%)
## Sum 247 (51.7%) 141 (29.5%) 90 (18.8%) 478 (100%)

• We note that
– The relative frequency for a given column is columnTotal divided by tableTotal. For example

Grades, which is 247
478 = 51.7%.

– The expected value in a given cell in the table is then the cell’s relative column frequency multiplied
by the cell’s rowTotal. For example Rural and Grades: 149× 51.7% = 77.0.

• This can be summarized to:
– The expected value in a cell is the product of the cell’s rowTotal and columnTotal divided by

tableTotal.

7.4 Chi-squared (χ2) test statistic

• We have an observed table:

tab

## Goals
## Urban.Rural Grades Popular Sports
## Rural 57 50 42
## Suburban 87 42 22
## Urban 103 49 26

• And an expected table, if H0 is true:

## Goals
## Urban.Rural Grades Popular Sports Sum
## Rural 77 44 28 149
## Suburban 78 44 28 151
## Urban 92 52 34 178
## Sum 247 141 90 478
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• If these tables are “far from each other”, then we reject H0. We want to measure the distance via the
Chi-squared test statistic:

– X2 =
∑ (fo−fe)2

fe
: Sum over all cells in the table

– fo is the frequency in a cell in the observed table
– fe is the corresponding frequency in the expected table.

• We have:
X2

obs = (57− 77)2

77 + . . .+ (26− 33.5)2

33.5 = 18.8

• Is this a large distance??

7.5 χ2-test template.

• We want to test the hypothesis H0 of independence in a table with r rows and c columns:

– We take a sample and calculate X2
obs - the observed value of the test statistic.

– p-value: Assume H0 is true. What is then the chance of obtaining a larger X2 than X2
obs, if we

repeat the experiment?

• This can be approximated by the χ2-distribution with df = (r − 1)(c− 1) degrees of freedom.
• For Goals and Urban.Rural we have r = c = 3, i.e. df = 4 and X2

obs = 18.8, so the p-value is:

1 - pdist("chisq", 18.8, df = 4)

0.00

0.05

0.10

0.15

0 5 10 15

de
ns

ity probability

A:0.999

## [1] 0.00086

• There is clearly a significant association between Goals and Urban.Rural.

10



7.6 The function chisq.test.

• All of the above calculations can be obtained by the function chisq.test.

tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)
testStat

##
## Pearson's Chi-squared test
##
## data: tab
## X-squared = 20, df = 4, p-value = 8e-04

testStat$expected

## Goals
## Urban.Rural Grades Popular Sports
## Rural 77 44 28
## Suburban 78 45 28
## Urban 92 53 34

• The frequency data can also be put directly into a matrix.

data <- c(57, 87, 103, 50, 42, 49, 42, 22, 26)
tab <- matrix(data, nrow = 3, ncol = 3)
row.names(tab) <- c("Rural", "Suburban", "Urban")
colnames(tab) <- c("Grades", "Popular", "Sports")
tab

## Grades Popular Sports
## Rural 57 50 42
## Suburban 87 42 22
## Urban 103 49 26

chisq.test(tab)

##
## Pearson's Chi-squared test
##
## data: tab
## X-squared = 20, df = 4, p-value = 8e-04

8 The χ2-distribution

8.1 The χ2-distribution

• The χ2-distribution with df degrees of freedom:
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– Is never negative. And X2 = 0 only happens if fe = fo.
– Has mean µ = df
– Has standard deviation σ =

√
2df

– Is skewed to the right, but approaches a normal distribution when df grows.
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9 Agresti - Summary

9.1 Summary

• For the the Chi-squared statistic, X2, to be appropriate we require that the expected values have to be
fe ≥ 5.

• Now we can summarize the ingredients in the Chi-squared test for independence.
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10 Standardized residuals

10.1 Residual analysis

• If we reject the hypothesis of independence it can be of interest to identify the significant deviations.
• In a given cell in the table, fo − fe is the deviation between data and the expected values under the

null hypothesis.
• We assume that fe ≥ 5.
• If H0 is true, then the standard error of fo − fe is given by

se =
√
fe(1− rowProportion)(1− columnProportion)

• The corresponding z-score
z = fo − fe

se

should in 95% of the cells be between ±2. Values above 3 or below -3 should not appear.
• In popKids table cell Rural and Grade we got fe = 77.0 and fo = 57. Here columnProportion= 51.7%

and rowProportion= 149/478 = 31.2%.
• We can then calculate

z = 57− 77√
77(1− 0.517)(1− 0.312)

= −3.95

.
• Compared to the null hypothesis there are way too few rural kids who find grades important.
• In summary: The standardized residuals allow for cell-by-cell (fe vs fo) comparison.

10.2 Residual analysis in R

• In R we can extract the standardized residuals from the output of chisq.test:

tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)
testStat$stdres

## Goals
## Urban.Rural Grades Popular Sports
## Rural -3.95 1.31 3.52
## Suburban 1.77 -0.55 -1.62
## Urban 2.09 -0.73 -1.82

11 Collecting data

11.1 Sources

• Open data
• Questionnaires

– Google Analyse
– SurveyXact?

• User panels (often online)
• . . .
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12 Important take-home messages

12.1 Important take-home messages

• Population vs sample:

– What is the population?
– Is the entire population known – is statistics at all needed?

• Sampling

– Sampling strategy must ensure random sampling
∗ Difficult to investigate it afterwards

– Convenience sampling often used, dangerous!
– Be honest with yourself, describe problems: Is the sample representative for the target

group/population/market segment/. . . ?

• Badly chosen big sample is much worse than a well-chosen small sample
• Watch out for biases

– Sample/selection bias
– Response bias
– Non-response bias
– (Survivorship bias)

• Data collection

– Privacy vs necessary information (< 50 or >= 50, age in years, birth date)
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14 Brief overview of terminology

14.1 Controlling (for)

• Multivariate analysis: “Controlled (for)” means that it’s influence is removed

– Size of effect often not of interest
– Module 4: Cadmium exposure’s effect on vital capacity, controlled for age

• Randomized experiments vs observational studies
• Example [A] 10.1

14.2 Confounders

• Which variables to control for?
• Effect on response variable cannot be distinguished from another (or more) of the explanatory variables
• Variables affecting the association studied, but not measured are sometimes called lurky
• Example: correlation between college GPA and income later in life

– Potential lurking variables: IQ, tendency to work (hard), . . .

• Example:

– Plant cucumbers in a garden, some in sun some in shade.
– Add fertilizer to those in sun.
– Wait. . .
– More cucumbers on those in sun: due to sun light or fertilizer?
– Effect of fertilizer confounded with effect of sun light.

• Example:

– Ice cream sale increases with number of shark attacks
– Weather probably (!) has an impact?

• Analyze effect of explanatory variable: not observe a confounder explaining major part of effect

– Omitted variable bias

14.3 Multicolinearity

• If one or more explanatory variables are linearly dependent (or close to)

14.4 Simpsons “paradox”

mylm <- lm(SleepHrs ~ Age, data = DF)
summary(mylm)

##
## Call:
## lm(formula = SleepHrs ~ Age, data = DF)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.728 -0.917 -0.102 1.338 3.505
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##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -15.0791 3.4825 -4.33 3.6e-05 ***
## Age 0.4644 0.0661 7.02 2.9e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.7 on 98 degrees of freedom
## Multiple R-squared: 0.335, Adjusted R-squared: 0.328
## F-statistic: 49.3 on 1 and 98 DF, p-value: 2.86e-10

14.5 Simpsons “paradox”
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14.6 Simpsons “paradox”
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14.7 Summary

• Some terms introduced, a lot more to it – but gives some ideas of potential problems

15 Data wrangling

15.1 Data wrangling

Read data:

• rio: A Swiss-Army Knife for Data I/O
– rio: A Swiss-Army Knife for Data I/O
– Excel: readxl (part of rio)

• R for Data Science

16 Case-study

16.1 Case: Questionnaire about biking habits in Region Sjælland

• Questionnaire:
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– Shared in approx 30 different Facebook groups

• Questions:

– Representative for the entire region?
∗ Each municipality represented in sample proportional to its population size?
∗ Disabled people?
∗ People biking (municipalities’ age distribution may vary)

• Important take-home messages:

– Sampling strategy must ensure random sampling
∗ Difficult to investigate it afterwards

– Convenience sampling often used, dangerous!

16.2 Analysis

Demo
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