Data collection 2/2

The ASTA team

Contents

1	Imp	portant take-home messages	1
	1.1	Important take-home messages	-
2	Brief overview of terminology		2
	2.1	Controlling (for)	2
	2.2	Confounders	2
	2.3	Multicolinearity	2
	2.4	Simpsons "paradox"	9
	2.5	Simpsons "paradox"	4
	2.6	Simpsons "paradox"	ŀ
	2.7	Summary	Ę
3	Dat	a wrangling	Ę
	3.1	Data wrangling	Ę
4	Cas	$ m e ext{-}study$	Ę
	4.1	Case: Questionnaire about biking habits in Region Sjælland	Ę
	4.2	Analysis	(

1 Important take-home messages

1.1 Important take-home messages

- Population vs sample:
 - What is the population?
 - Is the entire population known is statistics at all needed?
- Sampling
 - Sampling strategy must ensure random sampling
 - * Difficult to investigate it afterwards
 - Convenience sampling often used, dangerous!
 - Be honest with yourself, describe problems: Is the sample representative for the target group/population/market segment/...?
- Badly chosen big sample is much worse than a well-chosen small sample
- Watch out for biases
 - Sample/selection bias

- Response bias
- Non-response bias
- (Survivorship bias)
- Data collection
 - Privacy vs necessary information (< 50 or >= 50, age in years, birth date)

2 Brief overview of terminology

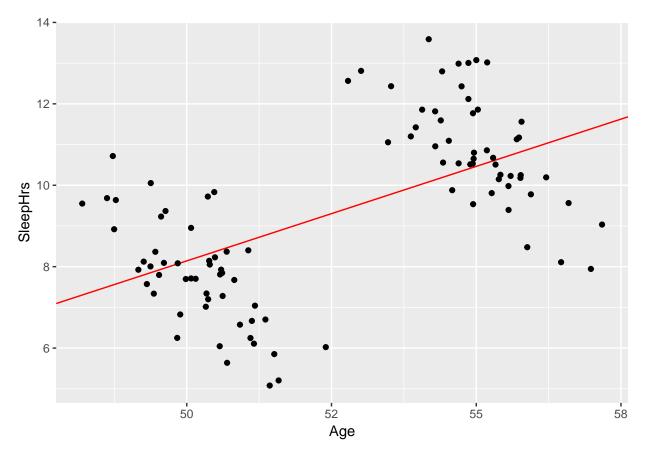
2.1 Controlling (for)

- Multivariate analysis: "Controlled (for)" means that it's influence is removed
 - Size of effect often not of interest
 - Module 4: Cadmium exposure's effect on vital capacity, controlled for age
- Randomized experiments vs observational studies
- Example [A] 10.1

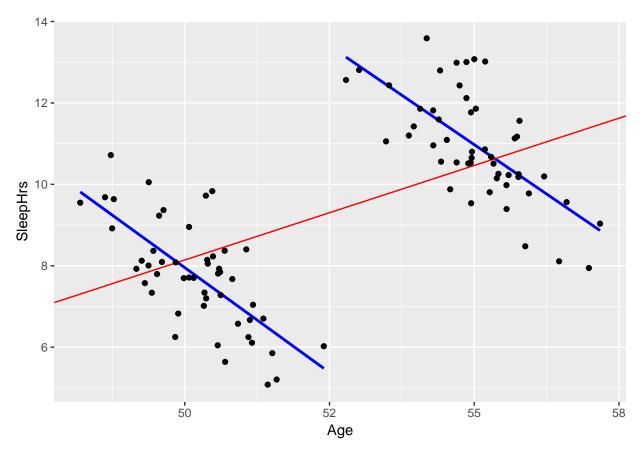
2.2 Confounders

- Which variables to control for?
- Effect on response variable cannot be distinguished from another (or more) of the explanatory variables
- Variables affecting the association studied, but not measured are sometimes called lurky
- Example: correlation between college GPA and income later in life
 - Potential lurking variables: IQ, tendency to work (hard), ...
- Example:
 - Plant cucumbers in a garden, some in sun some in shade.
 - Add fertilizer to those in sun.
 - Wait...
 - More cucumbers on those in sun: due to sun light or fertilizer?
 - Effect of fertilizer confounded with effect of sun light.
- Example:
 - Ice cream sale increases with number of shark attacks
 - Weather probably (!) has an impact?
- Analyze effect of explanatory variable: not observe a confounder explaining major part of effect
 - Omitted variable bias

2.3 Multicolinearity


• If one or more explanatory variables are linearly dependent (or close to)

2.4 Simpsons "paradox"


```
mylm <- lm(SleepHrs ~ Age, data = DF)
summary(mylm)</pre>
```

```
##
## Call:
## lm(formula = SleepHrs ~ Age, data = DF)
##
## Residuals:
##
     Min
             1Q Median
                           3Q
                                Max
## -3.728 -0.917 -0.102 1.338 3.505
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
                        3.4825 -4.33 3.6e-05 ***
## (Intercept) -15.0791
                0.4644
                          0.0661
                                  7.02 2.9e-10 ***
## Age
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.7 on 98 degrees of freedom
## Multiple R-squared: 0.335, Adjusted R-squared: 0.328
## F-statistic: 49.3 on 1 and 98 DF, p-value: 2.86e-10
```

2.5 Simpsons "paradox"

2.6 Simpsons "paradox"

2.7 Summary

• Some terms introduced, a lot more to it – but gives some ideas of potential problems

3 Data wrangling

3.1 Data wrangling

Read data:

- rio: A Swiss-Army Knife for Data I/O
 - rio: A Swiss-Army Knife for Data I/O
 - Excel: readxl (part of rio)
- R for Data Science

4 Case-study

4.1 Case: Questionnaire about biking habits in Region Sjælland

• Questionnaire:

- Shared in approx 30 different Facebook groups
- Questions:
 - Representative for the entire region?
 - $\ast\,$ Each municipality represented in sample proportional to its population size?
 - * Disabled people?
 - * People biking (municipalities' age distribution may vary)
- Important take-home messages:
 - Sampling strategy must ensure random sampling
 - * Difficult to investigate it afterwards
 - Convenience sampling often used, dangerous!

4.2 Analysis

Demo