Data collection 1/2

The ASTA team

Contents

1	Dat	a collection	2
	1.1	Motivation	2
	1.2	Data collection	2
	1.3	Data collection	2
	1.4	Data collection	3
2	Pop	oulation and sample	3
	2.1	Population and sample	3
	2.2	Population and sample	4
3	Exa	mple: United States presidential election, 1936	4
	3.1	Example: United States presidential election, 1936	4
	3.2	Example: United States presidential election, 1936	5
	3.3	Example: United States presidential election, 1936	5
4	Exa	ample: Bullet holes of honor	5
	4.1	Example: Bullet holes of honor	5
	4.2	Example: Bullet holes of honor	5
5	The	eory: Biases / sampling	6
	5.1	Biases	6
	5.2	Sampling	6
6	The	eory: Contingency tables	6
	6.1	A contingency table	6
	6.2	A conditional distribution	7
7	Ind	ependence	7
	7.1	Independence	7
	7.2	The Chi-squared test for independence	8
	7.3	Calculation of expected table	8
	7.4	Chi-squared (χ^2) test statistic	8
	7.5	χ^2 -test template	9
	7.6	The function chisq.test	10

8	The	χ^2 -distribution	11
	8.1	The χ^2 -distribution	11
9	Agr	esti - Summary	12
	9.1	Summary	12
10	Star	ndardized residuals	12
	10.1	Residual analysis	12
	10.2	Residual analysis in R	13
11	Col	lecting data	13
	11.1	Sources	13
12	Imp	oortant take-home messages	13
	12.1	Important take-home messages	13

1 Data collection

1.1 Motivation

Case

1.2 Data collection

- Getting numbers to report is easy
- Getting sensible and trustworthy numbers to report is orders of magnitude more difficult
- Why important?
 - Difference between meaningless analysis and useful analysis
 - * Effect of drugs
 - * Economy
 - * Sales
 - * Climate
 - * Energy consumption

1.3 Data collection

Ronald Fisher (1890-1962):

To consult the statistician after an experiment is finished is often merely to ask him to conduct a post mortem examination. He can perhaps say what the experiment died of.

Said about Fisher:

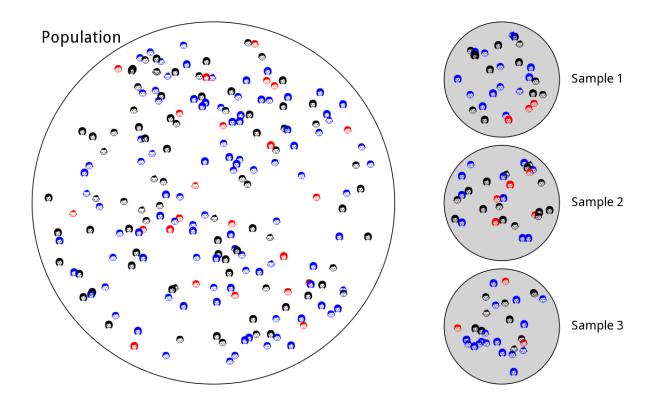
- Anders Hald (1913-2007), Danish statistician: "a genius who almost single-handedly created the foundations for modern statistical science"
- Bradley Efron (b. 1938): "the single most important figure in 20th century statistics"

1.4 Data collection

- Competences, ideally:
 - Statistics, both conceptually and analyses
 - Data wrangling (loading data; right format for analyses, tables, figures; ...)
 - Visualizations
 - Knowledge about subject (best with access to experts)
- Not just downloading a spreadsheet!
 - Population vs sample
 - Descriptives of the sample (e.g. mean)
 - Statistical inference about population (how close is sample's mean to population's mean)
- Do collect and analyze data, but know about pitfalls and limitations in generalisability!

2 Population and sample

2.1 Population and sample



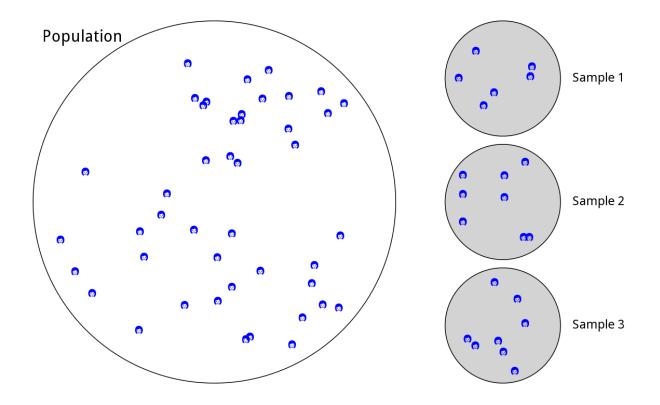
Sample 3 of size n = 30:

shape	color	n_sample	p_sample	p_pop	p_diff
baby	black	2	0.07	0.04	-0.02
baby	blue	1	0.03	0.04	0.01
baby	red	0	0.00	0.01	0.01

shape	color	n_sample	p_sample	p_pop	p_diff
man	black	5	0.17	0.12	-0.04
man	blue	8	0.27	0.22	-0.04
man	red	3	0.10	0.08	-0.02
woman	black	3	0.10	0.23	0.13
woman	blue	8	0.27	0.22	-0.05
woman	red	0	0.00	0.02	0.02

• Descriptive vs statistical inference.

2.2 Population and sample



3 Example: United States presidential election, 1936

3.1 Example: United States presidential election, 1936

(Based on Agresti, this and this.)

- Current president: Franklin D. Roosevelt
- Election: Franklin D. Roosevelt vs Alfred Landon (Republican governor of Kansas)
- Literary Digest: magazine with history of accurately predicting winner of past 5 presidential elections

3.2 Example: United States presidential election, 1936

- Literary Digest poll ($\hat{\pi}$ and $1 \hat{\pi}$): Landon: 57%; Roosevelt: 43%
- Actual results (π and 1π): Landon: 38%; Roosevelt: 62%
- Sampling error: 57%-38% = 19%
 - Practically all of the sampling error was the result of sample bias
 - Poll size of > 2 mio. individuals participated extremely large poll

3.3 Example: United States presidential election, 1936

- Mailing list of about 10 mio. names was created
 - Based on every telephone directory, lists of magasine subscribers, rosters of clubs and associations, and other sources
 - Each one of 10 mio. received a mock ballot and asked to return the marked ballot to the magazine
- "respondents who returned their questionnaires represented only that subset of the population with a relatively intense interest in the subject at hand, and as such constitute in no sense a random sample ... it seems clear that the minority of anti-Roosevelt voters felt more strongly about the election than did the pro-Roosevelt majority" (*The American Statistician*, 1976)
- Biases:
 - Selection bias
 - * List generated towards middle- and upper-class voters (e.g. 1936 and telephones)
 - * Many unemployed (club memberships and magazine subscribers)
 - Non-response bias
 - * Only responses from 2.3/2.4 mio out of 10 million people
 - * Cannot force people to participate: but mail may be junk (phone, interviews, online, pay/paid, ...)

4 Example: Bullet holes of honor

4.1 Example: Bullet holes of honor

(Based on this.)

- World War II
- Royal Air Force (RAF), UK
 - Lost many planes to German anti-aircraft fire
- Armor up!
 - Where?
 - Count up all the bullet holes in planes that returned from missions
 - * Put extra armor in the areas that attracted the most fire

4.2 Example: Bullet holes of honor

- Hungarian-born mathematician Abraham Wald:
 - If a plane makes it back safely with a bunch of bullet holes in its wings: holes in the wings aren't very dangerous

* Survivorship bias

- Armor up the areas that (on average) don't have any bullet holes
 - * They never make it back, apparently dangerous

5 Theory: Biases / sampling

5.1 Biases

Agresti section 2.3:

- Sampling/selection bias
 - Probability sampling: each sample of size n has same probability of being sampled
 - * Still problems: undercoverage, groups not represented (inmates, homeless, hospitalized, ...)
 - Non-probability sampling: probability of sample not possible to determine
 - * E.g. volunteer sampling
- Response bias
 - E.g. poorly worded, confusing or even order of questions
 - Lying if think socially unacceptable
- Non-response bias
 - Non-response rate high; systematic in non-responses (age, health, believes)

5.2 Sampling

Agresti section 2.4:

- Random sampling schemes:
 - Simple sampling: each possible sample equally probable
 - Systematic sampling
 - Stratified sampling
 - Cluster sampling
 - Multistage sampling
 - ...

6 Theory: Contingency tables

6.1 A contingency table

- We return to the dataset popularKids, where we study association between 2 factors: Goals and Urban.Rural.
- Based on a sample we make a cross tabulation of the factors and we get a so-called **contingency table** (*krydstabel*).

```
popKids <- read.delim("https://asta.math.aau.dk/datasets?file=PopularKids.txt")
library(mosaic)
tab <- tally(~Urban.Rural + Goals, data = popKids, margins = TRUE)
tab</pre>
```

##	(
##	Urban.Rural	Grades	Popular	Sports	Total
##	Rural	57	50	42	149
##	Suburban	87	42	22	151
##	Urban	103	49	26	178
##	Total	247	141	90	478

6.2 A conditional distribution

• Another representation of data is the percent-wise distribution of Goals for each level of Urban.Rural, i.e. the sum in each row of the table is 100 (up to rounding):

```
tab <- tally(~Urban.Rural + Goals, data = popKids)
addmargins(round(100 * prop.table(tab, 1)),margin = 1:2)</pre>
```

##	Goals						
##	Urban.Rural	Grades	Popular	Sports	${\tt Sum}$		
##	Rural	38	34	28	100		
##	Suburban	58	28	15	101		
##	Urban	58	28	15	101		
##	Sum	154	90	58	302		

- Here we will talk about the conditional distribution of Goals given Urban.Rural.
- An important question could be:
 - Are the goals of the kids different when they come from urban, suburban or rural areas? I.e. are the rows in the table significantly different?
- There is (almost) no difference between urban and suburban, but it looks like rural is different.

7 Independence

7.1 Independence

- Recall, that two factors are **independent**, when there is no difference between the population's distributions of one factor given the levels of the other factor.
- Otherwise the factors are said to be **dependent**.
- If we e.g. have the following conditional population distributions of Goals given Urban.Rural:

##	(Goals		
##	Urban.Rural	Grades	Popular	Sports
##	Rural	500	300	200
##	Suburban	500	300	200
##	Urban	500	300	200

• Then the factors Goals and Urban.Rural are independent.

- We take a sample and "measure" the factors F_1 and F_2 . E.g. Goals and Urban.Rural for a random child.
- The hypothesis of interest today is:

 $H_0: F_1$ and F_2 are independent, $H_a: F_1$ and F_2 are dependent.

7.2 The Chi-squared test for independence

• Our best guess of the distribution of Goals is the relative frequencies in the sample:

```
n <- margin.table(tab)
pctGoals <- round(100 * margin.table(tab, 2)/n, 1)
pctGoals</pre>
```

Goals
Grades Popular Sports
52 30 19

- If we assume independence, then this is also a guess of the conditional distributions of Goals given Urban.Rural.
- The corresponding expected counts in the sample are then:

##	t# Goals								
##	Urban.Rural	Grad	les	Ρορι	ılar	Spoi	rts	\mathtt{Sum}	
##	Rural	77	(51.7%)	44	(29.5%)	28	(18.8%)	149	(100%)
##	Suburban	78	(51.7%)	44	(29.5%)	28	(18.8%)	151	(100%)
##	Urban	92	(51.7%)	52	(29.5%)	34	(18.8%)	178	(100%)
##	Sum	247	(51.7%)	141	(29.5%)	90	(18.8%)	478	(100%)

7.3 Calculation of expected table

pctexptab

##	# Goals								
##	Urban.Rural	Grad	les	Ρορι	ılar	Spoi	rts	\mathtt{Sum}	
##	Rural	77	(51.7%)	44	(29.5%)	28	(18.8%)	149	(100%)
##	Suburban	78	(51.7%)	44	(29.5%)	28	(18.8%)	151	(100%)
##	Urban	92	(51.7%)	52	(29.5%)	34	(18.8%)	178	(100%)
##	Sum	247	(51.7%)	141	(29.5%)	90	(18.8%)	478	(100%)

- We note that
 - The relative frequency for a given column is column Total divided by tableTotal. For example Grades, which is $\frac{247}{478} = 51.7\%$.
 - The expected value in a given cell in the table is then the cell's relative column frequency multiplied by the cell's rowTotal. For example **Rural** and **Grades**: $149 \times 51.7\% = 77.0$.
- This can be summarized to:
 - The expected value in a cell is the product of the cell's rowTotal and columnTotal divided by tableTotal.

7.4 Chi-squared (χ^2) test statistic

• We have an observed table:

tab

##	Goals							
##	Urban.Rural	Grades	Popular	Sports				
##	Rural	57	50	42				
##	Suburban	87	42	22				
##	Urban	103	49	26				

• And an **expected table**, if H_0 is true:

##	(Goals			
##	Urban.Rural	Grades	Popular	Sports	Sum
##	Rural	77	44	28	149
##	Suburban	78	44	28	151
##	Urban	92	52	34	178
##	Sum	247	141	90	478

• If these tables are "far from each other", then we reject H_0 . We want to measure the distance via the Chi-squared test statistic:

 $-X^2 = \sum \frac{(f_o - f_e)^2}{f_e}$: Sum over all cells in the table - f_o is the frequency in a cell in the observed table - f_e is the corresponding frequency in the expected table.

- We have:

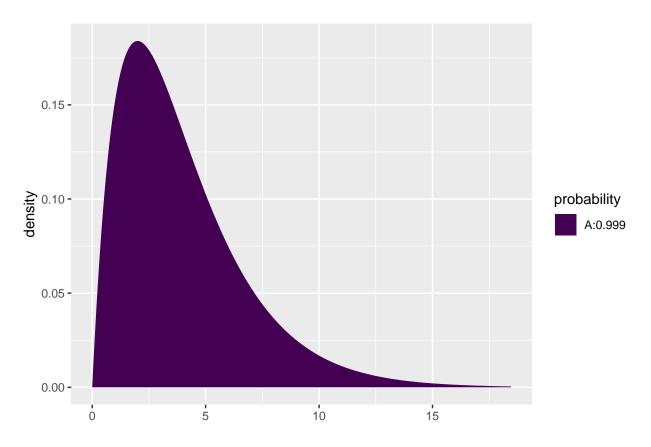
$$X_{obs}^2 = \frac{(57 - 77)^2}{77} + \ldots + \frac{(26 - 33.5)^2}{33.5} = 18.8$$

• Is this a large distance??

7.5 χ^2 -test template.

- We want to test the hypothesis H_0 of independence in a table with r rows and c columns:
 - We take a sample and calculate X^2_{obs} the observed value of the test statistic.
 - p-value: Assume H_0 is true. What is then the chance of obtaining a larger X^2 than X_{obs}^2 , if we repeat the experiment?
- This can be approximated by the χ²-distribution with df = (r 1)(c 1) degrees of freedom.
 For Goals and Urban.Rural we have r = c = 3, i.e. df = 4 and X²_{obs} = 18.8, so the p-value is:

1 - pdist("chisq", 18.8, df = 4)



```
## [1] 0.00086
```

• There is clearly a significant association between Goals and Urban.Rural.

7.6 The function chisq.test.

• All of the above calculations can be obtained by the function chisq.test.

```
tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)
testStat</pre>
```

```
##
## Pearson's Chi-squared test
##
## data: tab
## X-squared = 20, df = 4, p-value = 8e-04
```

```
testStat$expected
```

##	(Goals		
##	Urban.Rural	Grades	Popular	Sports
##	Rural	77	44	28
##	Suburban	78	45	28
##	Urban	92	53	34

• The frequency data can also be put directly into a matrix.

```
data <- c(57, 87, 103, 50, 42, 49, 42, 22, 26)
tab <- matrix(data, nrow = 3, ncol = 3)
row.names(tab) <- c("Rural", "Suburban", "Urban")
colnames(tab) <- c("Grades", "Popular", "Sports")
tab
## Grades Popular Sports</pre>
```

Rural 57 50 42 ## Suburban 87 42 22 ## Urban 103 49 26

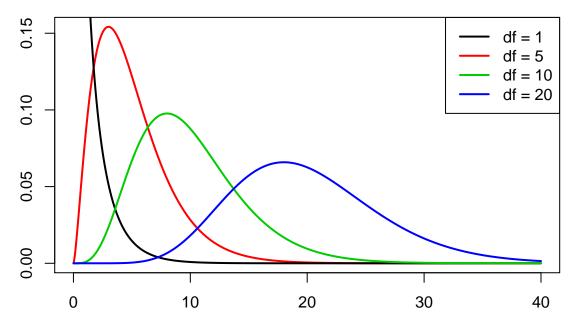
```
chisq.test(tab)
```

```
##
## Pearson's Chi-squared test
##
## data: tab
## X-squared = 20, df = 4, p-value = 8e-04
```

8 The χ^2 -distribution

8.1 The χ^2 -distribution

- The χ^2 -distribution with df degrees of freedom:
 - Is never negative. And $X^2 = 0$ only happens if $f_e = f_o$.
 - Has mean $\mu = df$
 - Has standard deviation $\sigma = \sqrt{2df}$
 - Is skewed to the right, but approaches a normal distribution when df grows.



9 Agresti - Summary

9.1 Summary

- For the Chi-squared statistic, X^2 , to be appropriate we require that the expected values have to be $f_e \geq 5$.
- Now we can summarize the ingredients in the Chi-squared test for independence.

TABLE 8.5: The Five Parts of the Chi-Squared Test of Independence

- 1. Assumptions: Two categorical variables, random sampling, $f_e \ge 5$ in all cells
- 2. Hypotheses: H_0 : Statistical independence of variables
 - H_a : Statistical dependence of variables
- 3. Test statistic: χ² = Σ (f_o f_e)²/f_e, where f_e = (Row total)(Column total) Total sample size
 4. P-value: P = right-tail probability above observed χ² value, for chi-squared distribution with df = (r 1)(c 1)
 5. Conclusion: Report P-value If decision needed, reject H₀ at α-level if P ≤ α

Standardized residuals

10.1 Residual analysis

10

- If we reject the hypothesis of independence it can be of interest to identify the significant deviations.
- In a given cell in the table, $f_o f_e$ is the deviation between data and the expected values under the null hypothesis.
- We assume that $f_e \geq 5$.
- If H_0 is true, then the standard error of $f_o f_e$ is given by

$$se = \sqrt{f_e(1 - \text{rowProportion})(1 - \text{columnProportion})}$$

• The corresponding *z*-score

$$z = \frac{f_o - f_e}{se}$$

should in 95% of the cells be between ± 2 . Values above 3 or below -3 should not appear.

- In popKids table cell Rural and Grade we got $f_e = 77.0$ and $f_o = 57$. Here columnProportion= 51.7% and rowProportion= 149/478 = 31.2%.
- We can then calculate

$$z = \frac{57 - 77}{\sqrt{77(1 - 0.517)(1 - 0.312)}} = -3.95$$

- Compared to the null hypothesis there are way too few rural kids who find grades important.
- In summary: The standardized residuals allow for cell-by-cell $(f_e \text{ vs } f_o)$ comparison.

10.2 Residual analysis in R

• In R we can extract the standardized residuals from the output of chisq.test:

```
tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)
testStat$stdres</pre>
```

Goals
Urban.Rural Grades Popular Sports
Rural -3.95 1.31 3.52
Suburban 1.77 -0.55 -1.62
Urban 2.09 -0.73 -1.82

11 Collecting data

11.1 Sources

- Open data
- Questionnaires
 - Google Analyse
 - SurveyXact?
- User panels (often online)
- ...

12 Important take-home messages

12.1 Important take-home messages

- Population vs sample:
 - What is the population?
 - Is the entire population known is statistics at all needed?
- Sampling
 - Sampling strategy must ensure random sampling
 - * Difficult to investigate it afterwards
 - Convenience sampling often used, dangerous!
 - Be honest with yourself, describe problems: Is the sample representative for the target group/population/market segment/...?
- Badly chosen big sample is much worse than a well-chosen small sample
- Watch out for biases
 - Sample/selection bias
 - Response bias
 - Non-response bias
 - (Survivorship bias)
- Data collection
 - Privacy vs necessary information (< 50 or >= 50, age in years, birth date)