Contingency tables

The ASTA team

Contents

1	Con	ntingency tables 1					
	1.1	A contingency table	1				
2	Inde	ependence	2				
	2.1	Independence	2				
	2.2	The Chi-squared test for independence	3				
	2.3	Calculation of expected table	3				
	2.4	Chi-squared (χ^2) test statistic	4				
	2.5	χ^2 -test template	4				
	2.6	The function chisq.test	5				
3	The	χ^2 -distribution	6				
	3.1	The χ^2 -distribution	6				
4	Agr	esti - Summary	7				
	4.1	Summary	7				
5	Star	ndardized residuals	7				
	5.1	Residual analysis	7				
	5.2	Residual analysis in R	8				
6	Mod	dels for table data in R	8				
	6.1	Example	8				
	6.2	Model specification	9				
	6.3	Model specification in ${f R}$	9				
	6.4	Expected values and standardized residuals	10				

1 Contingency tables

1.1 A contingency table

- We return to the dataset popularKids, where we study association between 2 factors: Goals and Urban.Rural.
- Based on a sample we make a cross tabulation of the factors and we get a so-called **contingency table** (krydstabel).

```
popKids <- read.delim("https://asta.math.aau.dk/datasets?file=PopularKids.txt")
library(mosaic)
tab <- tally(~Urban.Rural + Goals, data = popKids, margins = TRUE)
tab</pre>
```

##	Goals					
##	Urban.Rural	Grades	Popular	Sports	Total	
##	Rural	57	50	42	149	
##	Suburban	87	42	22	151	
##	Urban	103	49	26	178	
##	Total	247	141	90	478	

1.1.1 A conditional distribution

• Another representation of data is the percent-wise distribution of Goals for each level of Urban.Rural, i.e. the sum in each row of the table is 100 (up to rounding):

```
tab <- tally(~Urban.Rural + Goals, data = popKids)
addmargins(round(100 * prop.table(tab, 1)),margin = 1:2)</pre>
```

##	(Goals			
##	Urban.Rural	Grades	Popular	Sports	Sum
##	Rural	38	34	28	100
##	Suburban	58	28	15	101
##	Urban	58	28	15	101
##	Sum	154	90	58	302

- Here we will talk about the conditional distribution of Goals given Urban.Rural.
- An important question could be:
 - Are the goals of the kids different when they come from urban, suburban or rural areas? I.e. are the rows in the table significantly different?
- There is (almost) no difference between urban and suburban, but it looks like rural is different.

2 Independence

2.1 Independence

- Recall, that two factors are **independent**, when there is no difference between the population's distributions of one factor given the levels of the other factor.
- Otherwise the factors are said to be **dependent**.
- If we e.g. have the following conditional population distributions of Goals given Urban.Rural:

##	Goals					
##	Urban.Rural	Grades	Popular	Sports		
##	Rural	500	300	200		
##	Suburban	500	300	200		
##	Urban	500	300	200		

• Then the factors Goals and Urban.Rural are independent.

- We take a sample and "measure" the factors F_1 and F_2 . E.g. Goals and Urban.Rural for a random child.
- The hypothesis of interest today is:

 $H_0: F_1$ and F_2 are independent, $H_a: F_1$ and F_2 are dependent.

2.2 The Chi-squared test for independence

• Our best guess of the distribution of Goals is the relative frequencies in the sample:

```
n <- margin.table(tab)
pctGoals <- round(100 * margin.table(tab, 2)/n, 1)
pctGoals</pre>
```

Goals
Grades Popular Sports
51.7 29.5 18.8

- If we assume independence, then this is also a guess of the conditional distributions of Goals given Urban.Rural.
- The corresponding expected counts in the sample are then:

##	(Goals					
##	Urban.Rural	Grades	Popula	r	Sports	Sum	
##	Rural	77.0 (51.)	7%) 44.0	(29.5%)	28.1 (18.8%) 149.0	(100%)
##	Suburban	78.0 (51.)	"%) 44.5	(29.5%)	28.4 (18.8%) 151.0	(100%)
##	Urban	92.0 (51.)	7%) 52.5	(29.5%)	33.5 (18.8%) 178.0	(100%)
##	Sum	247.0 (51.)	7%) 141.0	(29.5%)	90.0 (18.8%) 478.0	(100%)

2.3 Calculation of expected table

pctexptab

Goals ## Urban.Rural Grades Popular Sports Sum ## Rural 77.0 (51.7%) 44.0 (29.5%) 28.1 (18.8%) 149.0 (100%) ## Suburban 78.0 (51.7%) 44.5 (29.5%) 28.4 (18.8%) 151.0 (100%) ## 92.0 (51.7%) 52.5 (29.5%) 33.5 (18.8%) 178.0 (100%) Urban ## Sum 247.0 (51.7%) 141.0 (29.5%) 90.0 (18.8%) 478.0 (100%)

- We note that
 - The relative frequency for a given column is column Total divided by tableTotal. For example Grades, which is $\frac{247}{478} = 51.7\%$.
 - The expected value in a given cell in the table is then the cell's relative column frequency multiplied by the cell's rowTotal. For example Rural and Grades: $149 \times 51.7\% = 77.0$.
- This can be summarized to:
 - The expected value in a cell is the product of the cell's rowTotal and columnTotal divided by tableTotal.

Chi-squared (χ^2) test statistic $\mathbf{2.4}$

• We have an **observed table**:

tab

##	(Goals		
##	Urban.Rural	Grades	Popular	Sports
##	Rural	57	50	42
##	Suburban	87	42	22
##	Urban	103	49	26

• And an **expected table**, if H_0 is true:

##	(
##	Urban.Rural	Grades	Popular	Sports	Sum
##	Rural	77.0	44.0	28.1	149.0
##	Suburban	78.0	44.5	28.4	151.0
##	Urban	92.0	52.5	33.5	178.0
##	Sum	247.0	141.0	90.0	478.0

- If these tables are "far from each other", then we reject H_0 . We want to measure the distance via the Chi-squared test statistic:

 - $\begin{array}{l} \ X^2 = \sum \frac{(f_o f_e)^2}{f_e} \text{: Sum over all cells in the table} \\ \ f_o \text{ is the frequency in a cell in the observed table} \\ \ f_e \text{ is the corresponding frequency in the expected table.} \end{array}$
- We have:

$$X_{obs}^2 = \frac{(57 - 77)^2}{77} + \ldots + \frac{(26 - 33.5)^2}{33.5} = 18.8$$

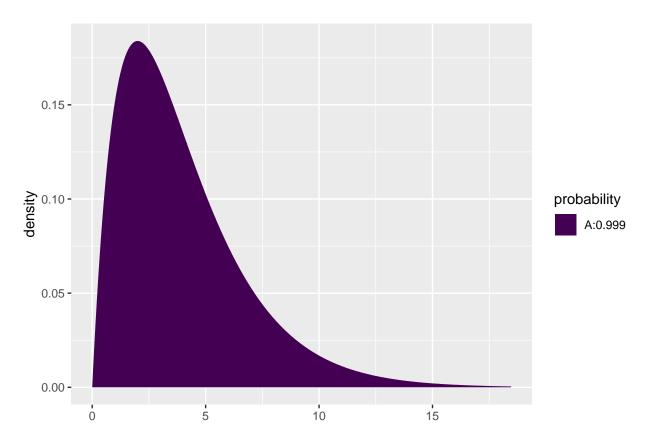
• Is this a large distance??

2.5 χ^2 -test template.

- We want to test the hypothesis H_0 of independence in a table with r rows and c columns:

 - We take a sample and calculate X_{obs}^2 the observed value of the test statistic. p-value: Assume H_0 is true. What is then the chance of obtaining a larger X^2 than X_{obs}^2 , if we repeat the experiment?
- This can be approximated by the χ^2 -distribution with df = (r-1)(c-1) degrees of freedom.
- For Goals and Urban.Rural we have r = c = 3, i.e. df = 4 and $X_{obs}^2 = 18.8$, so the p-value is:

1 - pdist("chisq", 18.8, df = 4)



```
## [1] 0.00086
```

• There is clearly a significant association between Goals and Urban.Rural.

2.6 The function chisq.test.

• All of the above calculations can be obtained by the function chisq.test.

```
tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)
testStat</pre>
```

```
##
## Pearson's Chi-squared test
##
## data: tab
## X-squared = 20, df = 4, p-value = 8e-04
```

```
testStat$expected
```

##	Goals						
##	Urban.Rural	Grades	Popular	Sports			
##	Rural	77	44.0	28.1			
##	Suburban	78	44.5	28.4			
##	Urban	92	52.5	33.5			

• The frequency data can also be put directly into a matrix.

```
data <- c(57, 87, 103, 50, 42, 49, 42, 22, 26)
tab <- matrix(data, nrow = 3, ncol = 3)
row.names(tab) <- c("Rural", "Suburban", "Urban")
colnames(tab) <- c("Grades", "Popular", "Sports")
tab
## Grades Popular Sports</pre>
```

Rural 57 50 42 ## Suburban 87 42 22 ## Urban 103 49 26

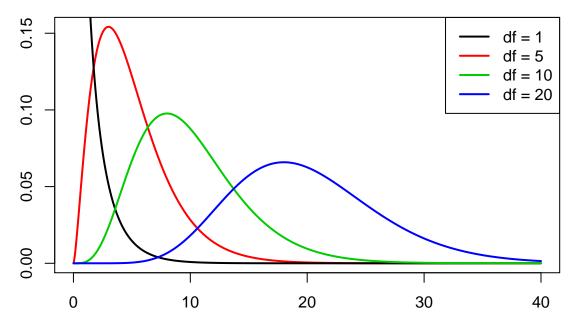
```
chisq.test(tab)
```

```
##
## Pearson's Chi-squared test
##
## data: tab
## X-squared = 20, df = 4, p-value = 8e-04
```

3 The χ^2 -distribution

3.1 The χ^2 -distribution

- The χ^2 -distribution with df degrees of freedom:
 - Is never negative. And $X^2 = 0$ only happens if $f_e = f_o$.
 - Has mean $\mu = df$
 - Has standard deviation $\sigma = \sqrt{2df}$
 - Is skewed to the right, but approaches a normal distribution when df grows.



4 Agresti - Summary

4.1 Summary

- For the Chi-squared statistic, X^2 , to be appropriate we require that the expected values have to be $f_e \geq 5$.
- Now we can summarize the ingredients in the Chi-squared test for independence.

TABLE 8.5: The Five Parts of the Chi-Squared Test of Independence

- 1. Assumptions: Two categorical variables, random sampling, $f_e \ge 5$ in all cells
- 2. Hypotheses: H_0 : Statistical independence of variables
 - H_a : Statistical dependence of variables
- 3. Test statistic: $\chi^2 = \sum \frac{(f_o f_e)^2}{f_e}$, where $f_e = \frac{(\text{Row total})(\text{Column total})}{\text{Total sample size}}$ 4. *P*-value: $P = \text{right-tail probability above observed } \chi^2 \text{ value,}$ for chi-squared distribution with df = (r - 1)(c - 1)
- 5. Conclusion: Report P-value
 - If decision needed, reject H_0 at α -level if $P \leq \alpha$

5 Standardized residuals

5.1 Residual analysis

- If we reject the hypothesis of independence it can be of interest to identify the significant deviations.
- In a given cell in the table, $f_o f_e$ is the deviation between data and the expected values under the null hypothesis.
- We assume that $f_e \geq 5$.
- If H_0 is true, then the standard error of $f_o f_e$ is given by

$$se = \sqrt{f_e(1 - \text{rowProportion})(1 - \text{columnProportion})}$$

• The corresponding *z*-score

$$z = \frac{f_o - f_e}{se}$$

should in 95% of the cells be between ± 2 . Values above 3 or below -3 should not appear.

- In popKids table cell Rural and Grade we got $f_e = 77.0$ and $f_o = 57$. Here columnProportion= 51.7% and rowProportion= 149/478 = 31.2%.
- We can then calculate

$$z = \frac{57 - 77}{\sqrt{77(1 - 0.517)(1 - 0.312)}} = -3.95$$

- Compared to the null hypothesis there are way too few rural kids who find grades important.
- In summary: The standardized residuals allow for cell-by-cell $(f_e \text{ vs } f_o)$ comparision.

5.2 Residual analysis in R

• In R we can extract the standardized residuals from the output of chisq.test:

```
tab <- tally(~ Urban.Rural + Goals, data = popKids)
testStat <- chisq.test(tab, correct = FALSE)
testStat$stdres</pre>
```

Goals
Urban.Rural Grades Popular Sports
Rural -3.951 1.310 3.523
Suburban 1.767 -0.548 -1.619
Urban 2.087 -0.727 -1.819

6 Models for table data in R

6.1 Example

• We will study the dataset HairEyeColor.

```
HairEyeColor <- read.delim("https://asta.math.aau.dk/datasets?file=HairEyeColor.txt")
head(HairEyeColor)</pre>
```

Hair Eye Sex Freq 32 ## 1 Black Brown Male ## 2 Brown Brown Male 53 ## 3 Red Brown Male 10 ## 4 Blond Brown Male 3 ## 5 Black Blue Male 11 ## 6 Brown Blue Male 50

- Data is organized such that the variable Freq gives the frequency of each combination of the factors Hair, Eye and Sex.
- For example: 32 observations are men with black hair and brown eyes.
- We are interested in the association between eye color and hair color ignoring the sex
- We aggregate data, so we have a table with frequencies for each combination of Hair and Eye.

```
HairEye <- aggregate(Freq ~ Eye + Hair, FUN = sum, data = HairEyeColor)
HairEye
```

Eye Hair Freq Blue Black ## 1 20 ## 2 Brown Black 68 ## 3 Green Black 5 ## 4 Hazel Black 15 Blue Blond ## 5 94 ## 6 Brown Blond 7 ## 7 Green Blond 16 ## 8 Hazel Blond 10 ## 9 Blue Brown 84

##	10	Brown	Brown	119
##	11	${\tt Green}$	Brown	29
##	12	Hazel	Brown	54
##	13	Blue	Red	17
##	14	Brown	Red	26
##	15	${\tt Green}$	Red	14
##	16	Hazel	Red	14

6.2 Model specification

- We can write down a model for (the logarithm of) the expected frequencies by using dummy variables z_{e1}, z_{e2}, z_{e3} and z_{h1}, z_{h2}, z_{h3}
- To denote the different levels of Eye and Hair (the reference level has all dummy variables equal to 0):

 $\log(f_e) = \alpha + \beta_{e1} z_{e1} + \beta_{e2} z_{e2} + \beta_{e3} z_{e3} + \beta_{h1} z_{h1} + \beta_{h2} z_{h2} + \beta_{h3} z_{h3}.$

- Note that we haven't included an interaction term, which is this case implies, that we assume independence between Eye and Hair in the model.
- Since our response variable now is a count it is no longer a linear model (lm) as we have been used to (linear regression).
- Instead it is a so-called generalized linear model and the relevant R command is glm.

6.3 Model specification in R

model <- glm(Freq ~ Hair + Eye, family = poisson, data = HairEye)</pre>

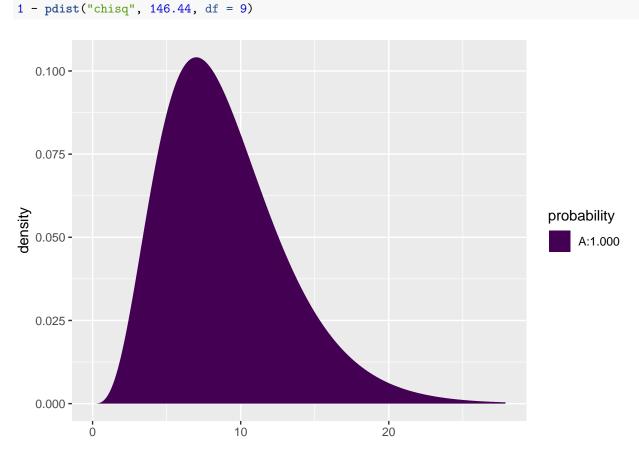
• The argument family = poisson ensures that R knows that data should be interpreted as discrete counts and not a continuous variable.

```
summary(model)
```

```
##
## Call:
## glm(formula = Freq ~ Hair + Eye, family = poisson, data = HairEye)
##
## Deviance Residuals:
##
      Min
               1Q Median
                                3Q
                                       Max
##
  -7.326 -2.065 -0.212
                             1.235
                                     6.172
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                 3.6693
                             0.1105
                                      33.19
                                            < 2e-16 ***
                                       1.24
## HairBlond
                 0.1621
                             0.1309
                                               0.216
## HairBrown
                 0.9739
                             0.1129
                                       8.62
                                             < 2e-16 ***
## HairRed
                                      -2.75
                                               0.006 **
                -0.4195
                             0.1528
## EyeBrown
                 0.0230
                             0.0959
                                       0.24
                                               0.811
## EyeGreen
                -1.2118
                             0.1424
                                      -8.51
                                             < 2e-16 ***
## EyeHazel
                -0.8380
                                      -6.75 1.5e-11 ***
                             0.1241
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 453.31 on 15 degrees of freedom
## Residual deviance: 146.44 on 9 degrees of freedom
## AIC: 241
##
##
## Number of Fisher Scoring iterations: 5
```

• A value of $X^2 = 146.44$ with df = 9 shows that there is very clear significance and we reject the null hypothesis of independence between hair and eye color.



```
## [1] 0
```

6.4 Expected values and standardized residuals

- We also want to look at expected values and standardized (studentized) residuals.
- The null hypothesis predicts $e^{3.67+0.02} = 40.1$ with brown eyes and black hair, but we have observed 68.
- This is significantly too many, since the standardized residual is 5.86.
- The null hypothesis predicts 47.2 with brown eyes and blond hair, but we have seen 7. This is significantly too few, since the standardized residual is -9.42.

HairEye\$fitted <- fitted(model) HairEye\$resid <- rstudent(model) HairEye

##		Eye	Hair	Freq	fitted	resid
##	1	Blue	Black	20	39.22	-4.492
##	2	Brown	Black	68	40.14	5.856
##	3	${\tt Green}$	Black	5	11.68	-2.508
##	4	Hazel	Black	15	16.97	-0.583
##	5	Blue	${\tt Blond}$	94	46.12	9.368
##	6	Brown	Blond	7	47.20	-9.423
##	7	${\tt Green}$	Blond	16	13.73	0.719
##	8	Hazel	Blond	10	19.95	-2.936
##	9	Blue	Brown	84	103.87	-3.437
##	10	Brown	${\tt Brown}$	119	106.28	2.151
##	11	${\tt Green}$	${\tt Brown}$	29	30.92	-0.511
##	12	Hazel	${\tt Brown}$	54	44.93	2.023
##	13	Blue	Red	17	25.79	-2.399
##	14	Brown	Red	26	26.39	-0.101
##	15	${\tt Green}$	Red	14	7.68	2.368
##	16	Hazel	Red	14	11.15	0.961