Linear regression and correlation

The ASTA team

Contents

1	The	regression problem	1
	1.1	We want to predict	1
	1.2	Initial graphics	2
	1.3	Simple linear regression	2
	1.4	Model for linear regression	3
	1.5	Least squares	3
	1.6	The prediction equation and residuals	4
	1.7	Estimation of conditional standard deviation	4
	1.8	Example in R	4
	1.9	Test for independence	5
	1.10	Example	6
	1.11	Confidence interval for slope	6
	1.12	Correlation	7
_	ъ		0
2 R-squared: Reduction in prediction error		quared: Reduction in prediction error	8
	2.1	R-squared: Reduction in prediction error	8
	2.2	Graphical illustration of sums of squares	8
	2.3	r^2 : Reduction in prediction error	9

1 The regression problem

1.1 We want to predict

• We will study the dataset trees, which is on the course website (and actually also already available in R).

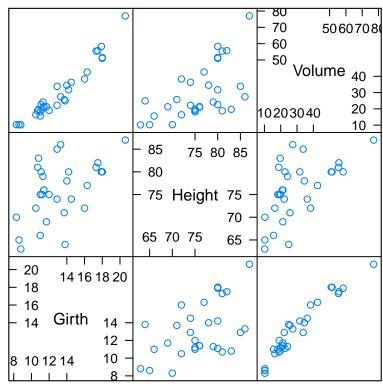
trees <- read.delim("https://asta.math.aau.dk/datasets?file=trees.txt")</pre>

- In this experiment we have measurements of 3 variables for 31 randomly chosen trees:
- [,1] Girth numeric. Tree diameter in inches.
- [,2] Height numeric. Height in ft.
- [,3] Volume numeric. Volume of timber in cubic ft.
- We want to predict the tree volume, if we measure the tree height and/or the tree girth (diameter).
- This type of problem is called **regression**.
- Relevant terminology:
 - We measure a quantitative **response** y, e.g. Volume.
 - In connection with the response value y we also measure one (later we will consider several) potential **explanatory** variable x. Another name for the explanatory variable is **predictor**.

1.2 Initial graphics

• Any analysis starts with relevant graphics.

library(mosaic)
splom(trees) # Scatter PLOt Matrix



Scatter Plot Matrix

- For each combination of the variables we plot the (x, y) values.
- It looks like Girth is a good predictor for Volume.
- If we only are interested in the association between two (and not three or more) variables we use the usual gf_point function.

1.3 Simple linear regression

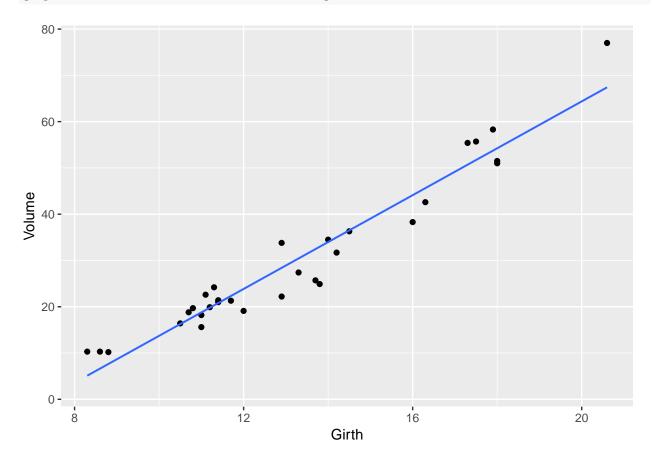
- We choose to use x=Girth as predictor for y=Volume. When we only use one predictor we are doing simple regression.
- The simplest model to describe an association between response y and a predictor x is simple linear regression.
- I.e. ideally we see the picture

$$y(x) = \alpha + \beta x$$

where

- $-\alpha$ is called the Intercept the line's intercept with the y-axis, corresponding to the response for x=0.
- $-\beta$ is called Slope the line's slope, corresponding to the change in response, when we increase the predictor by one unit.

gf_point(Volume ~ Girth, data = trees) %>% gf_lm()



1.4 Model for linear regression

- Assume we have a sample with joint measurements (x,y) of predictor and response.
- Ideally the model states that

$$y(x) = \alpha + \beta x,$$

but due to random variation there are deviations from the line.

• What we observe can then be described by

$$y = \alpha + \beta x + \varepsilon$$
,

where ε is a random error, which causes deviations from the line.

- We will continue under the following fundamental assumption:
 - The errors ε are normally distributed with mean zero and standard deviation $\sigma_{y|x}$.
- We call $\sigma_{y|x}$ the **conditional standard deviation** given x, since it describes the variation in y around the regression line, when we know x.

1.5 Least squares

- In summary, we have a model with 3 parameters:
 - $-(\alpha, \beta)$ which determine the line
 - $-\sigma_{y|x}$ which is the standard deviation of the deviations from the line.

- How are these estimated, when we have a sample of (x, y) values??
- To do this we focus on the errors

$$\varepsilon = y - \alpha - \beta x$$

which should be as close to 0 as possible in order to fit the data best possible.

• We will chose the line, which minimizes the sum of squares of the errors:

$$\sum \varepsilon^2 = \sum (y - \alpha - \beta x)^2.$$

• If we set the partial derivatives to zero we obtain two linear equations for the unknowns (α, β) , where the solution (a, b) is given by:

$$b = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2} \quad \text{and} \quad a = \bar{y} - b\bar{x}$$

1.6 The prediction equation and residuals

• The equation for the estimates $(\hat{\alpha}, \hat{\beta}) = (a, b)$,

$$\hat{y} = a + bx$$

is called **the prediction equation**, since it can be used to predict y for any value of x.

- Note: The prediction equation is determined by the current sample. I.e. there is an uncertainty attached to it. A new sample would without any doubt give a different prediction equation.
- Our best estimate of the errors is

$$e = y - \hat{y} = y - a - bx,$$

i.e. the vertical deviations from the prediction line.

- These quantities are called **residuals**.
- We have that
 - The prediction line passes through the point (\bar{x}, \bar{y}) .
 - The sum of the residuals is zero.

1.7 Estimation of conditional standard deviation

• To estimate $\sigma_{y|x}$ we need Sum of Squared Errors

$$SSE = \sum e^2 = \sum (y - \hat{y})^2,$$

which is the squared distance between the model and data.

• We then estimate $\sigma_{y|x}$ by the quantity

$$s_{y|x} = \sqrt{\frac{SSE}{n-2}}$$

- Instead of n we divide SSE with the degrees of freedom df = n 2. Theory shows, that this is reasonable.
- The degrees of freedom df are determined as the sample size minus the number of parameters in the regression equation.
- In the current setup we have 2 parameters: (α, β) .

1.8 Example in R

```
model <- lm(Volume ~ Girth, data = trees)
summary(model)</pre>
```

```
##
## Call:
## lm(formula = Volume ~ Girth, data = trees)
##
## Residuals:
##
             1Q Median
     Min
                           3Q
                                 Max
## -8.065 -3.107 0.152 3.495
                               9.587
##
  Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36.9435
                           3.3651
                                  -10.98 7.62e-12 ***
## Girth
                5.0659
                           0.2474
                                    20.48 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.252 on 29 degrees of freedom
## Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331
## F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16
```

- The estimated residuals vary from -8.065 to 9.578 with median 0.152.
- The estimate of Intercept is a = -36.9435
- The estimate of slope of Girth is b = 5.0659
- The estimate of the conditional standard deviation (called residual standard error in **R**) is $s_{y|x} = 4.252$ with 31 2 = 29 degrees of freedom.

1.9 Test for independence

• We consider the regression model

$$y = \alpha + \beta x + \varepsilon$$

where we use a sample to obtain estimates (a, b) of (α, β) , an estimate $s_{y|x}$ of $\sigma_{y|x}$ and the degrees of freedom df = n - 2.

• We are going to test

$$H_0: \beta = 0$$
 against $H_a: \beta \neq 0$

- The null hypothesis specifies, that y doesn't depend linearly on x.
- In other words the question is: Is the value of b far away from zero?
- It can be shown that b has standard error

$$se_b = \frac{s_{y|x}}{\sqrt{\sum (x - \bar{x})^2}}$$

with df degrees of freedom.

• So, we want to use the test statistic

$$t_{\rm obs} = \frac{b}{se_b}$$

which has to be evaluated in a t-distribution with df degrees of freedom.

1.10 Example

• Recall the summary of our example:

summary(model)

```
##
## Call:
## lm(formula = Volume ~ Girth, data = trees)
##
## Residuals:
##
     Min
             10 Median
                           30
                                 Max
  -8.065 -3.107 0.152 3.495
                               9.587
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
  (Intercept) -36.9435
                           3.3651 -10.98 7.62e-12 ***
## Girth
                5.0659
                           0.2474
                                    20.48 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.252 on 29 degrees of freedom
## Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331
## F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16
```

- As we noted previously b=5.0659 and $s_{y|x}=4.252$ with df=29 degrees of freedom.
- In the second column(Std. Error) of the Coefficients table we find $se_b = 0.2474$.
- The observed t-score (test statistic) is then

$$t_{\text{obs}} = \frac{b}{se_b} = \frac{5.0659}{0.2474} = 20.48$$

which also can be found in the third column(t value).

- The corresponding p-value is found in the usual way by using the t-distribution with 29 degrees of freedom.
- In the fourth column(Pr(>|t|)) we see that the p-value is less than 2×10^{-16} . This is no surprise since the t-score was way above 3.

1.11 Confidence interval for slope

• When we have both the standard error and the reference distribution, we can construct a confidence interval in the usual way:

$$b \pm t_{crit} s e_b$$
,

where the t-score is determined by the confidence level and we find this value using qdist in R.

- In our example we have 29 degrees of freedom and with a confidence level of 95% we get $t_{crit} = \text{qdist("t", 0.975, df = 29)} = 2.045$.
- If you are lazy (like most statisticians are):

```
confint(model)
```

```
## 2.5 % 97.5 %
## (Intercept) -43.825953 -30.060965
## Girth 4.559914 5.571799
```

• i.e. (4.56, 5.57) is a 95% confidence interval for the slope of Girth.

1.12 Correlation

- The estimated slope b in a linear regression doesn't say anything about the strength of association between y and x.
- Girth was measured in inches, but if we rather measured it in kilometers the slope is much larger: An increase of 1km in Girth yield an enormous increase in Volume.
- Let s_y and s_x denote the sample standard deviation of y and x, respectively.
- The corresponding t-scores

$$y_t = \frac{y}{s_y}$$
 and $x_t = \frac{x}{s_x}$

are independent of the chosen measurement scale.

• The corresponding prediction equation is then

$$\hat{y}_t = \frac{a}{s_y} + \frac{s_x}{s_y} b x_t$$

• i.e. the standardized regression coefficient (slope) is

$$r = \frac{s_x}{s_y}b$$

which also is called **the correlation** between y and x.

• It can be shown that:

```
-1 \le r \le 1
```

- The absolute value of r measures the (linear) strength of dependence between y and x.
- When r=1 all the points are on the prediction line, which has positive slope.
- When r = -1 all the points are on the prediction line, which has negative slope.
- To calculate the correlation in **R**:

cor(trees)

```
## Girth Girth Height Volume
## Girth 1.0000000 0.5192801 0.9671194
## Height 0.5192801 1.0000000 0.5982497
## Volume 0.9671194 0.5982497 1.0000000
```

- There is a strong positive correlation between Volume and Girth (r=0.967).
- Note, calling cor on a data.frame (like trees) only works when all columns are numeric. Otherwise the relevant numeric columns should be extracted like this:

```
cor(trees[,c("Height", "Girth", "Volume")])
```

which produces the same output as above.

Alternatively, one can calculate the correlation between two variables of interest like:

[1] 0.5982497

2 R-squared: Reduction in prediction error

2.1 R-squared: Reduction in prediction error

- We want to compare two different models used to predict the response y.
- Model 1: We do not use the knowledge of x, and use \bar{y} to predict any y-measurement. The corresponding prediction error is defined as

$$TSS = \sum (y - \bar{y})^2$$

and is called the Total Sum of Squares.

• Model 2: We use the prediction equation $\hat{y} = a + bx$ to predict y. The corresponding prediction error is then the Sum of Squared Errors

$$SSE = \sum (y - \hat{y})^2.$$

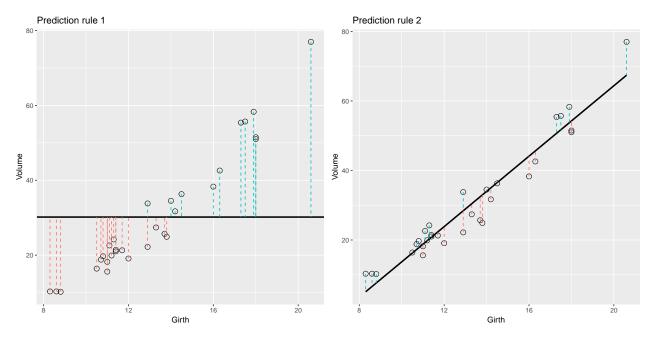
• We then define

$$r^2 = \frac{TSS - SSE}{TSS}$$

which can be interpreted as the relative reduction in the prediction error, when we include x as explanatory variable.

- This is also called the fraction of explained variation, coefficient of determination or simply r-squared.
- For example if $r^2 = 0.65$, the interpretation is that x explains about 65% of the variation in y, whereas the rest is due to other sources of random variation.

2.2 Graphical illustration of sums of squares



• Note the data points are the same in both plots. Only the prediction rule changes.

- The error of using Rule 1 is the total sum of squares $E_1 = TSS = \sum (y \bar{y})^2$.
- The error of using Rule 2 is the residual sum of squares (sum of squared errors) $E_2 = SSE = \sum (y \hat{y})^2$.

2.3 r^2 : Reduction in prediction error

• For the simple linear regression we have that

$$r^2 = \frac{TSS - SSE}{TSS}$$

is equal to the square of the correlation between y and x, so it makes sense to denote it r^2 .

• Towards the bottom of the output below we can read off the value $r^2 = 0.9353 = 93.53\%$, which is a large fraction of explained variation.

summary(model)

```
##
## Call:
## lm(formula = Volume ~ Girth, data = trees)
##
## Residuals:
##
     Min
             1Q Median
                           3Q
                                 Max
## -8.065 -3.107 0.152 3.495 9.587
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -36.9435
                           3.3651 -10.98 7.62e-12 ***
                                    20.48 < 2e-16 ***
## Girth
                5.0659
                           0.2474
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.252 on 29 degrees of freedom
## Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331
## F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16
```