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Bet on sparsity principle

Use a procedure that does well in sparse problems,
since no procedure does well in dense problems.

When p � n (the “short, fat data problem”), two things go
wrong:

I The Curse of Dimensionality is acute.

I There are insufficient degrees of freedom to estimate
the fullmodel.

However, there is a substantial body of practical experience
which indicates that, insome circumstances, one can actually
make good statistical inferences and predictions.

mailto:tvede@math.aau.dk


25

Penalised
regression

Torben Tvedebrink
tvede@math.aau.dk

3 Regularised
regression

Ridge regression

LASSO regression

Extensions

Department of
Mathematical Sciences

Our point of departure

In linear regression we assume that the ith response, yi , can
be modelled using a linear relationship between some
covariates and the response with an additive error term with
constant variance

yi = β0 +

p∑
j=1

xijβj + εi

If we have observations, i = 1, . . . , n > p, we have that the
least squares estimator for β0 and β = (β1, . . . , βp) is given
by

(β̂0, β̂) = arg min
β0,β

n∑
i=1

(
yi − β0 −

p∑
j=1

xijβj
)2
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Least squares
On a budget

Imagine that we only had a limited budget of regression
coefficients, t, such that the sum

∑p
j=1 h(βj) was restricted

by t, then the solution should obey this constraint

min
β0,β

n∑
i=1

(
yi − β0 −

p∑
j=1

xijβj
)2

such that

p∑
j=1

h(βj) ≤ t
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Least squares
On a budget

Imagine that we only had a limited budget of regression
coefficients, t, such that the sum

∑p
j=1 h(βj) was restricted

by t, then the solution should obey this constraint

min
β0,β

n∑
i=1

(
yi − β0 −

p∑
j=1

xijβj
)2

such that

p∑
j=1

h(βj) ≤ t

Constraint regions for
∑p

j=1 h(βj) = |βj |q ≤ 1.

For all q < 1 the contraint region is non-convex.
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Least squares
On a budget

Imagine that we only had a limited budget of regression
coefficients, t, such that the sum

∑p
j=1 h(βj) was restricted

by t, then the solution should obey this constraint

min
β0,β

n∑
i=1

(
yi − β0 −

p∑
j=1

xijβj
)2

such that

p∑
j=1

h(βj) ≤ t

For

I h(βj) = |βj | we term the regression problem the
LASSO, and

I h(βj) = β2j we refer to the problem as ridge regression.
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Reasons for abandoning least squares

I The prediction accuracy can sometimes be improved
because even though least squares has zero bias, its
high variance may cause bad prediction ability. Hence,
shrinking some coefficients, or setting the noisy terms
to zero, may improve the accuracy.

I The second reason is interpretation. The fewer terms to
interpret the easier it gets.

I The third reason being that it fails for wide data, i.e.
data for which p � n

mailto:tvede@math.aau.dk


25

Penalised
regression

Torben Tvedebrink
tvede@math.aau.dk

5 Regularised
regression

Ridge regression

LASSO regression

Extensions

Department of
Mathematical Sciences

Reasons for abandoning least squares

I The prediction accuracy can sometimes be improved
because even though least squares has zero bias, its
high variance may cause bad prediction ability. Hence,
shrinking some coefficients, or setting the noisy terms
to zero, may improve the accuracy.

I The second reason is interpretation. The fewer terms to
interpret the easier it gets.

I The third reason being that it fails for wide data, i.e.
data for which p � n

mailto:tvede@math.aau.dk


25

Penalised
regression

Torben Tvedebrink
tvede@math.aau.dk

5 Regularised
regression

Ridge regression

LASSO regression

Extensions

Department of
Mathematical Sciences

Reasons for abandoning least squares

I The prediction accuracy can sometimes be improved
because even though least squares has zero bias, its
high variance may cause bad prediction ability. Hence,
shrinking some coefficients, or setting the noisy terms
to zero, may improve the accuracy.

I The second reason is interpretation. The fewer terms to
interpret the easier it gets.

I The third reason being that it fails for wide data, i.e.
data for which p � n

mailto:tvede@math.aau.dk


25

Penalised
regression

Torben Tvedebrink
tvede@math.aau.dk

6 Regularised
regression

Ridge regression

LASSO regression

Extensions

Department of
Mathematical Sciences

Standardisation of X

As the numerical value of coefficients is sensitive to the scale
of the covariates, it is typically preferred to standardise the
X matrix before estimating the coefficients. That is,

n∑
i=1

xij = 0 and
n∑

i=1

x2ij = n

And in order to discard the intercept, β0, from the
regularisation in the case of linear regression we center the
response

n∑
i=1

yi = 0
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Standardisation of X
and centering of y

As the numerical value of coefficients is sensitive to the scale
of the covariates, it is typically preferred to standardise the
X matrix before estimating the coefficients. That is,

n∑
i=1

xij = 0 and
n∑

i=1

x2ij = n

And in order to discard the intercept, β0, from the
regularisation in the case of linear regression we center the
response

n∑
i=1

yi = 0
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The wide data problem

In the case where p � n, the least squares estimator is
undefined as (X>X) isn’t invertible because X is not of full
rank. Hence, β̂ols = (X>X)−1X>y cannot be evaluated.

A solution to this is to add an invertible matrix to X>X to
obtain an invertible matrix. The simplest such candidate is
λIp, for some positive λ ∈ R:

β̂ridge = (X>X + λIp)−1X>y ,

which is what is referred to as the ridge regression estimator.
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Ridge regression

For the least squares regression problem with a budget on
the squared entries of β we have

min
β

n∑
i=1

(
yi −

p∑
j=1

βjxij
)2

such that

p∑
j=1

β2j ≤ t.

This can also be stated as

min
β

n∑
i=1

(
yi −

p∑
j=1

βjxij
)2

+ λ

p∑
j=1

β2j .
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Visual representation of β̂ridge

Compared to β̂ols (in two dimensions)
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LASSO regression

Now, what happens if we instead of using a squared penalty,
β2j , uses the absolute penalty, |β|?

Well – we obtain the LASSO

min
β

n∑
i=1

(
yi −

p∑
j=1

βjxij
)2

such that

p∑
j=1

|βj | ≤ t.

and again an equivalent form

min
β

n∑
i=1

(
yi −

p∑
j=1

βjxij
)2

+ λ

p∑
j=1

|βj |.
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Visual representation of β̂ lasso

Compared to β̂ols (in two dimensions)
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LASSO solution
Comparison to Least Sqaures solution

With a standardized predictor, the LASSO solution is a
soft-thresholded version of the ordinary least-squares (OLS)
estimate β̂

β̂j =


β̂
(OLS)
j + λ, β̂

(OLS)
j < −λ

0, −λ ≤ β̂(OLS)
j ≤ λ

β̂
(OLS)
j − λ, β̂

(OLS)
j > λ.

This relationship also holds (in a slightly modified way) in
case where the β̂(OLS) do not exists.
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Soft thresholding
Modifications of the OLS estimates (if they exists)
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Elastic Net
The best from two worlds?

A downside with the Lasso is that it may have difficulties
when several variables are collinear, such that linear
combinations of them are hard to distinguish.

In such a case the Ridge Regression is better as it will
typically form an average of the variables. Hence, for stable
selection of variables in this case Ridge Regression may be
preferred.

However, Ridge Regression seldom sets any parameters to
zero, i.e. no variable selection which is what we would like in
the end...
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Elastic Net
The best from two worlds?

The solution to the problem is Elastic Net, which
incorporates both the Lasso and Ridge penalties in a convex
way:

min
β

2∑
i=1

(
yi −

p∑
j=1

βjxij
)2

+ λ

p∑
j=1

{
α|βj |+ (1− α)β2j

}
,

where α is yet another tuning parameter deciding the
amount of Lasso (α = 1) and Ridge (α = 0) penalty that
goes into the solution.

Both α and λ are selected based on cross-validation.
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Elastic Net
The best from two worlds?

In the Figure below we see the three types of regularisation
discussed above. The shape of the Elastic Net solution area
depends on α - the closer to 1 the more square it is, and the
closer to 0 the more spherical.
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A brief history of LASSO algorithms
And practical limits (in terms of number of covariates, p)

As mentioned earlier, the lasso penalty lacks a closed form
solution in general.

As a result, optimisation algorithms must be employed to
find the minimising solution

The historical efficiency of algorithms to fit lasso models can
be summarized as follows:

Year Algorithm Operations Practical limit

1996 QP† O(n2p) ∼ 100
2003 LARS‡ O(np2) ∼ 10, 000
2008 Coordinate descent O(np) ∼ 1, 000, 000

†: Quadratic Programming

‡: Least Angle Regression
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Group LASSO
Setting groups of coefficients to zero

The LASSO penalises each βj coefficient individually by
assessing the correlation between the partial residuals and
the explanatory variable.

However, in the case of regression involving factors, the
usual dummy variable encoding implies that the different
derived dummy variables are penalised individually.

This causes some problems as we prefer that all dummy
variables are set to zero, i.e. all levels of the factor are
insignificant.
– This why we in ordinary regression use anova(lm(...))

to test for significance of factors and not the individual
t-tests reported in summary(lm(...)).
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Group LASSO
Adjusting the penalty

SLS use θ for the group LASSO in order to avoid confusion
between the LASSO with penalty on the individual β
parameters. Hence, we may reformulate the minimisation
problem as

min
θ0,θ

1

2

n∑
i=1

(
yi − θ0 −

J∑
j=1

z>ij θj
)2

+ λ

J∑
j=1

‖θj‖2

 ,

where ‖θj‖2 =
√∑pj

k=1 θ
2
jk

is the `2-norm.

For pj = 1 we have that ‖θj‖2 =
√
θ2j1 = |θj1 |, which is just

the LASSO penalty.

For pj > 1, the `2-penalty will imply that either θj = 0 or
non-zero.
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The group LASSO ball
In R3

THE GROUP LASSO 59

takes the form θ0 +
∑J
j=1 Z

T
j θj , where θj ∈ Rpj represents a group of pj

regression coefficients.2
Given a collection of N samples {(yi, zi1, zi,2, . . . , zi,J)}Ni=1, the group lasso

solves the convex problem

minimize
θ0∈R,θj∈Rpj





1
2

N∑

i=1

(
yi − θ0 −

J∑

j=1
zTijθj

)2 + λ

J∑

j=1
‖θj‖2



 , (4.5)

where ‖θj‖2 is the Euclidean norm of the vector θj .
This is a group generalization of the lasso, with the properties:

• depending on λ ≥ 0, either the entire vector θ̂j will be zero, or all its
elements will be nonzero;3

• when pj = 1, then we have ‖θj‖2 = |θj |, so if all the groups are singletons,
the optimization problem (4.5) reduces to the ordinary lasso.

Figure 4.3 compares the constraint region for the group lasso (left image) to
that of the lasso (right image) when there are three variables. We see that the
group lasso ball shares attributes of both the `2 and `1 balls.

β1

β3

β2

1

β1

β2

β3

1

Figure 4.3 The group lasso ball (left panel) in R3, compared to the `1 ball (right
panel). In this case, there are two groups with coefficients θ1 = (β1, β2) ∈ R2 and
θ2 = β3 ∈ R1.

In the formulation (4.5), all groups are equally penalized, a choice which
leads larger groups to be more likely to be selected. In their original pro-
posal, Yuan and Lin (2006) recommended weighting the penalties for each
group according to their size, by a factor √pj . In their case, the group ma-
trices Zj were orthonormal; for general matrices one can argue for a factor

2To avoid confusion, we use Zj and θj to represent groups of variables and their coeffi-
cients, rather than the Xj and βj we have used for scalars.

3Nonzero for generic problems, although special structure could result in some coefficients
in a group being zero, just as they can for linear or ridge regression.

Left: Group LASSO; Right: LASSO; θj = βj
θ1 = (β1, β2) and θ2 = β3
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Bayesian perspective
The Bridge and BLASSO priors – Marginal priors for βj

Normal prior Laplacian prior
Ridge regression LASSO
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Interpretation:
For the LASSO we a priori expect more parameters (due to
the peaked nature of the Laplace prior) to be zero than for
the normal ridge regression prior.
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Bootstrap
Yet another handy application of the resampling technique

The bootstrap procedure may be one of the most important
contributions to modern statistics – simple and yet powerful.

We may use the bootstrap as a non-parametric alternative to
the Bayesian LASSO in order to assess the coefficient
variability.

By permuting the data the parameter estimates may differ
substantially. Hence, in order to capture this repetition of
the experiment over and over again, resampling the data
with replacement reflects this uncertainty.
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Example
Diabetes – non-parametric Bootstrapped parameters

THE BOOTSTRAP 143
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Figure 6.4 [Left] Boxplots of 1000 bootstrap realizations of β̂∗(λ̂CV ) obtained by the
nonparametric bootstrap, which corresponds to re-sampling from the empirical CDF
F̂N . Comparing with the corresponding Bayesian posterior distribution in Figure 6.3,
we see a close correspondence in this case. [Right] Proportion of times each coefficient
is zero in the bootstrap distribution.

How do we assess the sampling distribution of β̂(λ̂CV )? That is, we are inter-
ested in the distribution of the random estimate β̂(λ̂CV ) as a function of the
N i.i.d. samples {(xi, yi)}Ni=1. The nonparametric bootstrap is one method
for approximating this sampling distribution: in order to do so, it approxi-
mates the cumulative distribution function F of the random pair (X,Y ) by
the empirical CDF F̂N defined by the N samples. We then draw N sam-
ples from F̂N , which amounts to drawing N samples with replacement from
the given dataset. Figure 6.4[left] shows boxplots of 1000 bootstrap realiza-
tions β̂∗(λ̂CV ) obtained in this way, by repeating steps 1–6 on each bootstrap
sample.2 There is a reasonable correspondence between this figure, and the
corresponding Bayesian results in Figure 6.3. The right plot shows the propor-
tion of times that each variable was exactly zero in the bootstrap distribution.
None of the Bayesian posterior realizations are exactly zero, although often
some are close to zero. (The blasso function has an argument that allows
for variable selection via “reversible jump” MCMC, but this was not used
here.) Similar to the right-hand plot, Meinshausen and Bühlmann (2010) pro-

2On a technical note, we implement the bootstrap with observation weights w∗i = k/N ,
with k = 0, 1, 2, . . .. In cross-validation, the units are again the original N observations,
which carry along with them their weights w∗i .

Figure 6.4 in SLS based on 1,000 bootstrap samples for fixed
λ̂CV. Left: Parameter estimates β̂∗; Right: “Significance” of
each covariate.
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Figure 6.3 Posterior distributions for the βj and ‖β‖1 for the diabetes data. Sum-
mary of 10, 000 MCMC samples, with the first 1000 “burn-in” samples discarded.

this 442×10 problem it took 5 seconds on a 2.3 GHz Macbook Pro. However,
Bayesian computations do not scale well; experiments in the next section show
that the computational cost scales roughly as O(p2).

6.2 The Bootstrap

The bootstrap is a popular nonparametric tool for assessing the statistical
properties of complex estimators (Efron 1979, Efron and Tibshirani 1993). To
motivate its use, suppose that we have obtained an estimate β̂(λ̂CV ) for a
lasso problem according to the following procedure:
1. Fit a lasso path to (X,y) over a dense grid of values Λ = {λ`}L`=1.
2. Divide the training samples into 10 groups at random.
3. With the kth group left out, fit a lasso path to the remaining 9/10ths, using

the same grid Λ.
4. For each λ ∈ Λ compute the mean-squared prediction error for the left-out

group.
5. Average these errors to obtain a prediction error curve over the grid Λ.
6. Find the value λ̂CV that minimizes this curve, and then return the coeffi-

cient vector from our original fit in step (1) at that value of λ.

Figure 6.3 in SLS based on 10,000 samples from the
posterior distributions (left) and ‖β‖1 (right).
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seems to scale as O(p2). In contrast, the scaling of the bootstrap seems to be
closer to O(p), because it exploits the sparseness and convexity of the lasso.

The above procedure used the nonparametric bootstrap, in which we esti-
mate the unknown population F by the empirical distribution function F̂N ,
the nonparametric maximum likelihood estimate of F . Sampling from F̂N
corresponds to sampling with replacement from the data. In contrast, the
parametric bootstrap samples from a parametric estimate of F , or its corre-
sponding density function f . In this example, we would fix X and obtain
estimates β̂ and σ̂2 either from the full least-squares fit, or from the fitted
lasso with parameter λ. We would then sample y values from the Gaussian
model (6.1a), with β and σ2 replaced by β̂ and σ̂2.

Using the full least-squares estimates for β̂ and σ̂2, the parametric boot-
strap results for our example are shown in Figure 6.7. They are similar to both
the nonparametric bootstrap results and those from the Bayesian lasso. In
general, we might expect that the parametric bootstrap would likely produce
results even closer to the Bayesian lasso as compared to the nonparametric
bootstrap, since the parametric bootstrap and Bayesian lasso both use the
assumed parametric form for data distribution (6.1a). Note also that the use
of the full least squares estimates for β̂ and σ̂2 would not work when p� N ,
and we would need to generate a different dataset for each value of λ. This
would slow down the computations considerably.
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Figure 6.7 [Left] Boxplots of 1000 parametric bootstrap realizations of β̂∗(λ̂CV ).
Comparing with the corresponding Bayesian posterior distribution in Figure 6.3, we
again see a close correspondence. [Right] Proportion of times each coefficient is zero
in the bootstrap distribution.

Figure 6.7 in SLS. y∗ is sampled from the estimated model
with (β̂, σ̂2) from the full data, and estimated for (y∗,X).
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