Penalised regression
Ridge, LASSO and elastic net regression

COWIDUR

Torben Tvedebrink
tvede@math.aau.dk

Department of Mathematical Sciences

«

AALBORG UNIVERSITY
DENMARK

Version: 08/05/2019 11:05


mailto:tvede@math.aau.dk

WEW GRg,,
S "o

Literature ((‘ *

Freely available online
o, <
Re yv®

Penalised
regression

Mono isti A Py 4.
raphs on Statistics and Applied Probapjjit 143
y

Statistica| Learn;

a arni

with Sparsity e

The Lasso ang
€neralizationg

n Statisties Torben Tvedebrink

| orTextst
Springer tvede@math.aau.dk

oth la“}es 1 ) Regularised
aW\\Fe“ regression

yor Hastie
T‘igbe(ﬂ‘\hsh\tam

with App\'\cat'\ons inR

Trevor Hastie
Robert Tibshiranj
Martin Wainwright

CRC pr

) Spring

Department of
25 |Mathematical Sciences


mailto:tvede@math.aau.dk
https://web.stanford.edu/~hastie/StatLearnSparsity/
http://www-bcf.usc.edu/~gareth/ISL/

SNV sn%

©
&

$

3

k(
&
’((:
% &

N

%¢ u“ﬂ‘

Penalised
regression

Torben Tvedebrink
tvede@math.aau.dk

Bet on sparsity principle

2 | Regularised

Use a procedure that does well in sparse problems
since no procedure does well in dense problems. _
regression

When p > n (the “short, fat data problem™), two things go

wrong:
» The Curse of Dimensionality is acute
» There are insufficient degrees of freedom to estimate

the fullmodel.
However, there is a substantial body of practical experience
which indicates that, insome circumstances, one can actually
make good statistical inferences and predictions.
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In linear regression we assume that the /th response, y;, can
be modelled using a linear relationship between some
covariates and the response with an additive error term with

constant variance

p
Yi=Po+ > xibj+ei
=1
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In linear regression we assume that the ith response, y;, can Torben Tvedebrink
be modelled using a linear relationship between some tvedeGmath. azu. dk
covariates and the response with an additive error term with (3 rR:ggr:':si'LS:d
constant variance

p
Yi=Po+ > xibj+ei

j=1

If we have observations, i = 1,...,n > p, we have that the
least squares estimator for By and 5 = (f1,. .., (p) is given
by

(Bo, B) = argg;m Z( — Bo — ZX,JJ
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Least squares

On a budget
regression
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Penalised

4 | Regularised
regression

Imagine that we only had a limited budget of regression
coefficients, t, such that the sum Zle (B;) was restricted
by t, then the solution should obey this constraint

p

n p
r}nr} Z(y,- — Bo — injgfij)z such that Z h(B;) <t
Bo, = =

1=
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Imagine that we only had a limited budget of regression regression
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coefficients, t, such that the sum Zle h(3;) was restricted
by t, then the solution should obey this constraint

4 | Regularised
regression

p

g;lg Z — Bo — ZXU such that Z h(B;)) <t

i=1 J=1

Constraint regions for ZJ i h(/3 ) =

q= ¢=05 q=0.1

} @ @ % -’- Depriment of

For all g < 1 the contraint region is non-convex. 25 Miathearion Sciances
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| 4 | Regularised

regression

coefficients, t, such that the sum Ele h
by t, then the solution should obey this constraint

p

p
Bo — Zx,-jgf3j)2 such that Z h(B;) <t
=1

n
min E (y, -
Bo,B 4 -

1 j=1

1=

For

> h(‘ﬁj) =
LASSO, and
» h(5;) = B2 we refer to the problem as ridge regression

|B;| we term the regression problem the
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» The prediction accuracy can sometimes be improved 5 ) Regularised
because even though least squares has zero bias, its regression
high variance may cause bad prediction ability. Hence,
shrinking some coefficients, or setting the noisy terms
to zero, may improve the accuracy.
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» The prediction accuracy can sometimes be improved 5 ) Regularised
because even though least squares has zero bias, its regression
high variance may cause bad prediction ability. Hence,
shrinking some coefficients, or setting the noisy terms
to zero, may improve the accuracy.

» The second reason is interpretation. The fewer terms to
interpret the easier it gets.
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» The prediction accuracy can sometimes be improved 5 ) Regularised
because even though least squares has zero bias, its regression
high variance may cause bad prediction ability. Hence,
shrinking some coefficients, or setting the noisy terms
to zero, may improve the accuracy.

» The second reason is interpretation. The fewer terms to
interpret the easier it gets.

» The third reason being that it fails for wide data, i.e.
data for which p > n
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Standardisation of X

Torben Tvedebrink
tvede@math.aau.dk

As the numerical value of coefficients is sensitive to the scale
of the covariates, it is typically preferred to standardise the Regularsed
regression

X matrix before estimating the coefficients. That is,

n n
g xj =0 and E xg =n
i=1 i=1
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Standardisation of X

and centering of y
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As the numerical value of coefficients is sensitive to the scale
of the covariates, it is typically preferred to standardise the Regularsed
regression

X matrix before estimating the coefficients. That is,

n n
g xj =0 and E x,-? =n
i=1 i=1

And in order to discard the intercept, [y, from the
regularisation in the case of linear regression we center the
n

> vi=0

i=1

response

Department of
25 |Mathematical Sciences


mailto:tvede@math.aau.dk

WEW GRg,,
o /1/0

K

&

$

3

m(

&

’((:

v,

% 5
$'4

o,
%R ¥

Penalised
regression

The wide data problem

Torben Tvedebrink
tvede@math.aau.dk

In the case where p > n, the least squares estimator is
undefined as (X" X) isn't invertible because X is not of full N

~ 7 | Ridge regression
rank. Hence, 3°° = (XTX)™1X "y cannot be evaluated. =
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In the case where p > n, the least squares estimator is
undefined as (X" X) isn't invertible because X is not of full
rank. Hence, 3°° = (XTX)™1X "y cannot be evaluated.

7 | Ridge regression

A solution to this is to add an invertible matrix to X" X to
obtain an invertible matrix. The simplest such candidate is
Alp, for some positive A € R:

Bridge _ (XTX + /\Ip)iley

which is what is referred to as the ridge regression estimator.
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Ridge regression

8 | Ridge regression

For the least squares regression problem with a budget on

the squared entries of 3 we have
P ) P
) n2
such that Zdj < t.
j=1

m{in Z(y,- — Z*‘SJ'X"J')

Jj=1

This can also be stated as

n p
mdlnz Z X,J —{—)\Zdz.
‘ i=1 j=1
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LASSO regression

Now, what happens if we instead of using a squared penalty,

g7

B2, uses the absolute penalty,

Well — we obtain the LASSO
P

such that Z 16| < t.

mlnz Z jx,J
j=1

B 4
i=1
and again an equivalent form

mlnz Zﬁxu —&—)\2]6’\

B
i=1
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LASSO solution

Comparison to Least Sqaures solution
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With a standardized predictor, the LASSO solution is a
soft-thresholded version of the ordinary least-squares (OLS)
12 |LASSO regression

estimate 9

B 4+, B <
Bi=10, A< B <
BJ(OLS) A s‘gj(OLS) Y
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Comparison to Least Sqaures solution
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With a standardized predictor, the LASSO solution is a
soft-thresholded version of the ordinary least-squares (OLS)
12 |LASSO regression

estimate 9

‘é(OLS) A, BJ(OLS) < )\
Bj=<o, A< B <
BJ(OLS) Y 331(OLS) Y

This relationship also holds (in a slightly modified way)

case where the 3(OL5) do not exists.
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Best Subset Ridge Lasso
yd . B\ 13 |LASSO regression
. il . e
NERYS) &~ -
(0,0) .~ |(0.0) e (0,0)
) ’
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The best from two worlds?

®,

A downside with the Lasso is that it may have difficulties
when several variables are collinear, such that linear
combinations of them are hard to distinguish.

In such a case the Ridge Regression is better as it will
typically form an average of the variables. Hence, for stable
selection of variables in this case Ridge Regression may be
preferred.

However, Ridge Regression seldom sets any parameters to
zero, i.e. no variable selection which is what we would like in
the end...
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The solution to the problem is Elastic Net, which Coedotmath. s

incorporates both the Lasso and Ridge penalties in a convex
way:

15 ) Elastic Net

2 p p
min > (vi = Y Bxi)” +AY_{alf] + (1 - a)5F ),
7=t j=1 J=1

where « is yet another tuning parameter deciding the
amount of Lasso (v = 1) and Ridge (o = 0) penalty that
goes into the solution.

Both o and \ are selected based on cross-validation.
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In the Figure below we see the three types of regularisation Torben Tvedebrink

tvedeCmath.aau.dk

discussed above. The shape of the Elastic Net solution area
depends on « - the closer to 1 the more square it is, and the
closer to 0 the more spherical.

B2

- Ridge
16 ) Elastic Net

-- Lasso
~—— Elastic Net
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A brief history of LASSO algorithms (((

And practical limits (in terms of number of covariates, p)

kg u“ﬂ‘
Penalised
As mentioned earlier, the lasso penalty lacks a closed form regression
. . Torben Tvedebrink
SO|UtIOn n general tvede@math.aau.dk

As a result, optimisation algorithms must be employed to
find the minimising solution

The historical efficiency of algorithms to fit lasso models can
be summarized as follows:

17 ) Estimation

Year  Algorithm Operations  Practical limit
1996 QPf 0O(n?p) ~ 100

2003 LARS* O(np?) ~ 10,000
2008 Coordinate descent  O(np) ~ 1,000,000

t: Quadratic Programming

1: Least Angle Regression Department of

25 |Mathematical Sciences
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Setting groups of coefficients to zero
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The LASSO penalises each f3; coefficient individually by o
assessing the correlation between the partial residuals and
the explanatory variable.

However, in the case of regression involving factors, the
usual dummy variable encoding implies that the different

derived dummy variables are penalised individually.
18 ) Group LASSO

This causes some problems as we prefer that all dummy
variables are set to zero, i.e. all levels of the factor are
insignificant.

— This why we in ordinary regression use anova(1lm(...))
to test for significance of factors and not the individual
t-tests reported in summary(1m(...)).
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Adjusting the penalty

N

Penalised
SLS use 0 for the group LASSO in order to avoid confusion regression
between the LASSO with penalty on the individual 8 e
parameters. Hence, we may reformulate the minimisation
problem as
1 J
min { — — 6y — z;; +)\ 0; ,
mir Zl 0 Z le ill2 ¢ s
1= j:

19 ) Group LASSO

where [|60)]2 = />7_; J is the £p-norm.

For pj = 1 we have that ||0;]]> = 1/0121 = |6;
the LASSO penalty.

, Which is just

For pj > 1, the />-penalty will imply that either 6; = 0 or
non-zero. Department of
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In R3
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20 ) Group LASSO

Right: LASSO; 9j = ﬂj

Left: Group LASSO;
01 = (51, B2) and O = 33
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B; Bj

Interpretation:

For the LASSO we a priori expect more parameters (due to
the peaked nature of the Laplace prior) to be zero than for
the normal ridge regression prior.
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The bootstrap procedure may be one of the most important
contributions to modern statistics — simple and yet powerful.

We may use the bootstrap as a non-parametric alternative to
the Bayesian LASSO in order to assess the coefficient
variability.

22 ) Bootstrap

By permuting the data the parameter estimates may differ
substantially. Hence, in order to capture this repetition of
the experiment over and over again, resampling the data
with replacement reflects this uncertainty.
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Diabetes — non-parametric Bootstrapped parameters
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Figure 6.4 in SLS based on 1,000 bootstrap samples for fixed

Acv. Left: Parameter estimates (3*; Right: “Significance” of
each covariate. Department of

25 |Mathematical Sciences
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Diabetes — Bayesian posteriors
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Figure 6.3 in SLS based on 10,000 samples from the
posterior distributions (left) and ||5||1 (right).
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Diabetes — parametric Bootstrapped parameters
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Coefficients

Figure 6.7 in SLS. y* is sampled from the estimated model
with (3, 52) from the full data, and estimated for (y*, X). Department of
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