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Terminology

I Supervised learning (“labelled” training data)

I Classification
I Regression

I Unsupervised learning (describe hidden structure from
“unlabelled” data)

I PCA
I Clustering (K -means, . . . )
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Supervised learning

I Regression

I Explain/predict a number Y from
covariates/predictors/features/explanatory variables

I Classification

I Now Y is not a number, but a qualitative variable
I Y = Eye color ∈ {green, blue, brown}
I Y = E-mail type ∈ {Spam,Not spam}

I Supervised: Training data is label-ed (we know Y !!)
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Classification

I Given a feature vector x and a qualitative response Y
taking values in the set C , the classification task is to
build a function f (x) that takes as input the feature
vector x and predicts its value for Y ; i.e. f (x) ∈ C

I Often: interested in estimating the probabilities that X
belongs to each category in C

There are many methods for classification.

I Logistic regression

I Classification (and regression) trees

I Support Vector Machines

I (Artificial) Neural Networks

I k-Nearest Neighbours

I Discriminant analysis

I Näıve Bayes

I . . .
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Types of errors
Nomenclature

Predicted class
True Class – or Null + or Non-null Total

– or Null True Neg. (TN) False Pos. (FP) N
+ or Non-Null False Neg. (FN) True Pos. (TP) P

Total N∗ P∗

Name Definition Synonyms

False pos. rate FP/N Type I error, 1 – specificity
True pos. rate TP/N 1 – Type II error, power, sensitivity, recall
Pos. pred. value TP/P∗ Precision, 1 – false discovery proportion
Neg. predv̇alue TN/N∗
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ROC curves
Determining alternative threshold

The Receiver Operating Characteristic (ROC) curve is used
to assess the accuracy of a continuous measurement for
predicting a binary outcome.

The accuracy of a diagnostic test can be evaluated by
considering the two possible types of errors: false positives,
and false negatives.

For a continuous measurement that we denote as M,
convention dictates that a test positive is defined as M
exceeding some fixed threshold c : M > c.

In reference to the binary outcome that we denote as D, a
good outcome of the test is when the test is positive among
an individual who truly has a disease: D = 1. A bad outcome
is when the test is positive among an individual who does
not have the disease D = 0
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ROC curves
Determining alternative threshold

Formally, for a fixed cutoff c , the true positive fraction is the
probability of a test positive among the diseased population:

TPF (c) = P(M > c | D = 1)

and the false positive fraction is the probability of a test
positive among the healthy population:

FPF (c) = P(M > c | D = 0)

Since the cutoff c is not usually fixed in advance, we can
plot the TPF against the FPF for all possible values of c .

This is exactly what the ROC curve is, FPF (c) on the x axis
and TPF (c) along the y axis.
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ROC curves
Confidence regions

It is common to compute confidence regions for points on
the ROC curve using the Clopper and Pearson (1934) exact
method. Briefly, exact confidence intervals are calculated for
the FPF and TPF separately, each at level 1−

√
1− α.

Based on result 2.4 from Pepe (2003), the cross-product of
these intervals yields a 100%(1− α) rectangular confidence
region for the pair.

NB! The ROC curve is only defined for two-class problems
but has been ex- tended to handle three or more classes.
Hand and Till (2001), Lachiche and Flach (2003), and Li
and Fine (2008) use different approaches extending the
definition of the ROC curve with more than two classes.
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ROC curves in R

There are many packages for computing, plotting and
manúıpulating with ROC curves and other methods for
classifier visualisations.

A nice recent review by Joe Ricket (RStudio):
https://rviews.rstudio.com/2019/03/01/some-r-packages-
for-roc-curves/

Focus on the ROCR package:
https://rocr.bioinf.mpi-sb.mpg.de/
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AUC
Area under the curve

The overall performance of a classifier, summarised over all
possible thresholds, is given by the area under the (ROC)
curve (AUC). An ideal ROC curve will hug the top left
corner, so the larger the AUC the better the classifier.

To visually compare different models, their ROC curves can
be superimposed on the same graph. Comparing ROC curves
can be useful in contrasting two or more models with
different predictor sets (for the same model), different tuning
parameters (i.e., within model comparisons), or complete
different classifiers (i.e., between models).

There is a considerable amount of research on methods to
formally compare multiple ROC curves. See Hanley and
McNeil (1982), DeLong et al. (1988), Venkatraman (2000),
and Pepe et al. (2009) for more information.



37

Classification

Classification

9 Logistic regression

CART

Regression

Classification

Example

Estimation

Partitioning

Model complexity

Pruning

Surrogates

Random Forests

Torben Tvedebrink
tvede@math.aau.dk

Logistic regression
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Logistic regression
Intuition

Linear regression (ignoring error term):

y = β0 + β1x

Here, y ∈ (−∞,∞), unless β1 = 0.

logit(p) = log

(
p

1− p

)
,

logit(p) ∈ (−∞,∞) for p ∈ (0, 1).

Go from (−∞,∞) to (0, 1) (and back).

logit(p) = x ⇔ p =
exp(x)

1 + exp(x)
=

1

1 + exp(−x)
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Logistic regression
Intuition
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Intuition

Y ∈ {0, 1}. Model P(Y = 1). Linear regression?

Logistic regression (ignoring error term):

logit(P(Y = 1)) = β0 + β1x

Here, logit(P(Y = 1)) ∈ (−∞,∞), unless β1 = 0, and

logit(P(Y = 1)) = log

(
P(Y = 1)

1− P(Y = 1)

)
,

such that

P(Y = 1) =
exp(β0 + β1x)

1 + exp(β0 + β1x)
=

1

1 + exp (−(β0 + β1x))

and P(Y = 1) ∈ (0, 1).

In R: glm(y ~ x, family = binomial).
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Iris Flowers

This famous (Fisher’s or Anderson’s) iris data set gives the
measurements in centimetres of the variables sepal length
and width and petal length and width, respectively, for 50
flowers from each of 3 species of iris. The species are Iris
setosa, versicolor, and virginica.

Logistic regression only works for binary outcome (extensions
exist: multinomial regression, nnet::multinom)
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Iris flowers
Example
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Iris flowers
Example

AUC: 0.997
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Classification and Regression Trees
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CART: Classification And Regression Trees
Link: Introduction to rpart

https://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf
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CART: Regression

For regression the CART methodology fits a piece-wise
constant prediction for each region Rj ,

ŶCART(x) =
R∑
j=1

βjI(x ∈ Rj),

where βj is the constant level for region Rj .

Hence, the expression for Ŷ can be determined if

a) the partition (i.e. the regions R1, . . . ,RR) are known

b) the estimated parameters βj are known

These are chosen such that they minimises the expected
squared loss for future observations (x , y),

E[(Y − Ŷ )2]



37

Classification

Classification

Logistic regression

CART

Regression

17 Classification

Example

Estimation

Partitioning

Model complexity

Pruning

Surrogates

Random Forests

Torben Tvedebrink
tvede@math.aau.dk

CART: Classification

Assume that y ∈ {0, 1} and CART once again constructs a
piece-wise constant function

ŶCART(x) =
R∑
j=1

βjI(x ∈ Rj),

where βj ∈ [0, 1]. Standard classification uses

YCART(x) =

{
0, if ŶCART ≤ 0.5

1, if ŶCART > 0.5

A good choice of ŶCART leads to a small mis-classification
rate, P(YCART(x) 6= y).
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Example
Iris data – three species

> iris[c(1:2,51:52,101:102),]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

51 7.0 3.2 4.7 1.4 versicolor

52 6.4 3.2 4.5 1.5 versicolor

101 6.3 3.3 6.0 2.5 virginica

102 5.8 2.7 5.1 1.9 virginica
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Example
Iris data

We can classify the species in the Iris dataset using CART
classification.

library(rpart)

data(iris)

(cart.iris <- rpart(Species~.,data=iris))

n= 150

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 150 100 setosa (0.33 0.33 0.33)

2) Petal.Length< 2.45 50 0 setosa (1.00 0.00 0.00) *

3) Petal.Length>=2.45 100 50 versicolor (0.00 0.50 0.50)

6) Petal.Width< 1.75 54 5 versicolor (0.00 0.91 0.09) *

7) Petal.Width>=1.75 46 1 virginica (0.00 0.02 0.98) *
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Example
Iris data – Cont’d

Classification tree

Petal.Length < 2.5

Petal.Width < 1.8

setosa
50  50  50

setosa
50  0  0

versicolor
0  50  50

versicolor
0  49  5

virginica
0  1  45

yes no

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Induced regions

Petal.Length

P
et

al
.W

id
th

setosa
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Parameter estimation

From the model

ŶCART(x) =
R∑
j=1

βjI(x ∈ Rj),

we have that when the partitions/regions Rj are given, the
MLE for βj is given by

β̂j =

∑n
i=1 yi I(xi ∈ Rj)∑n
i=1 I(xi ∈ Rj)

= ȳRj
.

where β̂j for regression just is the average of the ys with
x ∈ Rj and for classification the fraction of “y = 1”-samples.
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Partitioning

Ideally we wants a partitioning which given the smallest
expected loss (regression: sum of squares, classification: error
rate).

The number of partitions is to vast, why an exhaustive
search is infeasible.

Hence, we use a greedy algorithm to search for partitions
with good splits.

Note! The r in rpart stands for recursive. Hence, what
applies to the root is used recursively down the tree.
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Method to generate splits

In the training data we have {(x1, y1), . . . , (xn, yn)}, where
xi = (xi1, . . . , xip) is p-dimensional.

For a numeric predictor vector x we search for the partition:

1. Start by R1 = Rp

2. Given R1, . . . ,Rr , split each Rj into Rj1 and Rj2 where

Rj1 = {x ∈ Rp : x ∈ Rj and xk ≤ c}
Rj2 = {x ∈ Rp : x ∈ Rj and xk > c},

and the variable xk with splitting points c is chosen such

arg min
k,c

min
β1,β2

 ∑
i :xi∈Rj1

(yi − β1)2 +
∑

i :xi∈Rj2

(yi − β2)2


Let R11 ,R12 , . . . ,Rr1 ,Rr2 be new partitions.

3. Repeat step 2. d times to get a tree of depth d .
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Model complexity

What size of tree is optimal?

We can grow the tree until each observations has its own
leaf (terminal node). This gives an error rate of null, but not
very enlightening!.

Hence, stop before that, but when?
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Example
Spam

Can be predict which email are spam and which are not?

library(ElemStatLearn)

data(spam, package = "ElemStatLearn")

We have 57 explanatory variables, two classes (spam/ham)
on 4601 observations.
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Bias vs. variance

Which of the two previous trees for the spam data was
better? The difference is controlled by a tuning parameter
that decides the size of the tree (its complexity).

The larger the tree, the less bias but also a higher variance
for the test data. Conversely, smaller trees gives larger bias,
but little variance for test data.

In general, a bigger tree gives a better prediction for training
data. However, an increased model complexity may result in
a the model too specific for the training data (over-fitting!),
which makes it less applicable for test data and prediction
for new data. It has a poor generalisation ability.
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Choosing the optimal tree
Tuning parameter α

We wants to search for the optimal tree T ∗, that minimises
the true test error, ErrorTest. This quantity is unknown, but
may be approximated using cross-validation.

The estimate/approximation is used to identify T ∗, such that

T ∗ = arg min
T

ErrorTest(T )

This, however, would require an exhaustive search over all
possible trees T – which obviously is infeasible.

Using a tuning parameter α the problem can be translated
into a one-dimensional problem.
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Pruning

The tuning parameter α penalises large trees,

ErrorTrain(T ) + α|T |, (1)

where |T | is the number of leafs in the tree.

Two approaches:

I Grow the tree until (1) increases.

I Grow a full tree and prune it until (1) increases.
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Selecting α

What value of α should be used? Given α ∈ R+, let Tα be
the tree that minimises

Tα = arg min
T

ErrorTrain(T ) + α|T |

We wants α∗ such that the resulting tree has the minimal
test error

Tα∗ = arg min
Tα, α∈R+

ˆErrorTest(Tα),

where ˆErrorTest is the estimate of the test error.
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Selecting α
Cont’d

We may plot the generalisation error ˆErrorTest for the
optimal tree using the criterion

ErrorTrain(T ) + α|T |

as a function of α.

It holds that Tα is constant in intervals I1 = [0, α1],
I2 = (α1, α2], . . . , Im = (αm−1,∞]. Hence, all values α′ ∈ Ij
gives the same tree, i.e. αj , Tα′ ≡ Tαj

Note, T0 og T∞ are special cases – T0 receives no penalty
for its size (the full tree), T∞ gives the empty tree T∅.
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How in rpart

To decide on α, in rpart we use printcp or plotcp.

These functions use a rewritten version of the above:

Errorα(T )

Error∞(T )
=

Error(T ) + α|T |
Error(T∅)

=
Error(T )

Error(T∅)
+

α

Error(T∅)
|T |

= rel error + cp|T |,

where the error is relative to T∞ = T∅ – i.e. the ’total’
variance as we don’t have any splits in T∞

The variable cp is short for ’complexity parameter’.
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Choice of cp

There are (at least) two criteria to select α∗ that decides the
complexity of Tα∗ :

1. Choose cp where xerror (CV estimate of rel error)
is smallest,

2. Choose cp giving xerror within one standard deviation
of the smallest xerror.

In the plotcp-plot the dotted line shows xerror+xstd

relative to the cp-value with smallest xerror.

Note! xerror and xstd changes with the CV and is
recomputed for each run of rpart.

In practice we use 2. since this gives the more parsimonious
model (and we consider models within one standard
deviation as equally good).
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Example
Spam emails – Cont’d
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Example
Spam emails – Cont’d

library(ElemStatLearn)

data(spam, package = "ElemStatLearn")

spam_rpart <- rpart(spam ~ ., data = spam, cp = 0)

rpart.plot(spam_rpart)

plotcp(spam_rpart)

printcp(spam_rpart)

spam_rpart_prune <- prune(spam_rpart, cp = 0.004)

rpart.plot(spam_rpart_prune)
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Surrogates

A nice feature of the CART methodology are the so called
surrogates. These are variables in the data that are not
chosen as primary splitting variables, but assemples the
splitting properties of the primary split.

They are in particularly important when missing
observations exists in the primary split variables.
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Random Forests
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Random forests

An “extension” of CART (or any tree algorithm) are
Random Forests.

Random Forests are a relatively simple, but efficient
application of classification trees.

Random Forests use “bagging”, which is short for
“bootstrap” and “aggregation”. That is, take average (or
majority decision) over many trees based on different
bootstrap samples.
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Random forests

To construct a Random Forest:

1. Make a bootstrap sample of the data and use it as
training data.

2. Of the p covariates, select randomly m variables and
find the best splitting variable.

I Default for classification: m =
√
p

I Default for regression: m =
⌊p

3

⌋
3. Grow each tree to maximal size (no pruning)

To classify a new observation we use majority voting among
the trees in the Random Forest – for regression we take the
average.
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