
Notes on statistics and computing with
data using R

PhD course; Aalborg, Spring, 2019

Compilation: Tuesday 23rd April, 2019

Søren Højsgaard
Department of Mathematical Sciences

Aalborg University, Denmark
http://people.math.aau.dk/~sorenh/

© 2019

http://people.math.aau.dk/~sorenh/

2

Contents

1 Introduction to R 5

1.1 R as a calculator . 6

1.2 Vectors and indexing . 7

1.3 Data frames . 10

1.4 Using add–on packages . 11

1.5 Plotting . 12

1.6 Simple (linear) regression . 12

1.7 Getting help . 13

1.7.1 Getting help on a function that you know the name of 14

1.7.2 Finding a function that you do not know the name of 15

1.7.3 Finding packages . 15

1.7.4 Getting help on variables . 16

1.7.5 General learning about R . 17

1.8 Technicalities . 17

1.8.1 On calling functions . 17

1.8.2 Vectors, lists, and data frames . 18

1.8.3 Vectors . 18

1.8.4 Lists . 19

1.8.5 Dataframes . 21

1.8.6 Matrices . 22

1.8.7 Iterating over rows and columns of a matrix 23

1.8.8 Simulating random and systematic data 23

1.8.9 Getting data into functions . 24

1.8.10 R as a programming language . 25

2 Summarizing data 27

2.1 Notation . 27

2.2 Mesures of location . 28

2.3 Measures of spread . 28

2.4 A practical interpretation and an empirical rule 29

2.5 Covariance and correlation . 30

3

2.6 The measurement unit matters – sometimes 31

2.7 Correlation and regression . 32

3 Linear models 35

3.1 What is a linear model? . 35

3.1.1 Linear regression . 37

3.1.2 Parameter estimates, standard errors etc 40

3.1.3 Analysis of variance (ANOVA) models 43

3.1.4 Analysis of covariance (ANCOVA) models 48

3.2 Prediction, estimates and contrasts, LSmeans 52

3.2.1 Estimation averaged across linear predictors 53

3.2.2 Summary information – summary() . 54

3.3 Prediction and confidence intervals . 56

3.3.1 Confidence interval – confint() . 56

3.4 Testing hypotheses for linear models . 56

3.4.1 Dropping each term in turn using drop1() 59

3.4.2 Investigating parameter estimates using coef() 60

3.4.3 Which table to use? . 60

3.5 Underlying assumptions about linear models 61

3.5.1 Model checking – residuals etc . 62

3.6 Coefficient of determination etc . 64

3.7 Colinearity . 64

3.8 Model specification and model formulae . 64

3.8.1 Formulae with arithmetic expressions 66

3.9 Polynomial regression . 66

3.9.1 Summaries using broom . 70

3.10 What if the model assumptions are not satisfied? 71

3.10.1 Non–normality . 73

3.10.2 Non–constant variance . 73

3.10.3 Non–independence . 75

3.11 The mathematics of linear models . 77

3.11.1 What is a linear model (II) - the assumptions 77

3.11.2 Matrix representation of a linear model 78

3.11.3 Least squares – a minimization problem 79

4

Chapter 1

Introduction to R

After starting R we see a prompt (>) where commands are typed followed by hitting the enter
button. R will evaluate the commands and print the result.

Anything that exists in R is an object (sometimes also called a variable); anything we do in
R involves calling functions. A function take zero, one or more objects as input arguments and
returns an object as output.

We create two objects (or variables), m and n, holding the values 10 and 1.56. This can be
done in different ways:

m <- 10

n = 1.56

We say that “<-” and “=” are assignment operators. They can be used interchangably and
the effect is to create variables m and n and store some values in them. The “<-”–assignment
operator (mimicing an arrow) is perhaps the most intuitive: It reads: “Take whatever is on the
right hand side and store in the object on the left hand side”. Typing the names at the
command prompt causes R to print the values:

m

[1] 10

n

[1] 1.56

Objects can be modified. For example

m <- m * 10 + 7

m

[1] 107

n = n + m

n

[1] 108.6

5

Symbol Meaning

+ Addition
- Subtraction
* Multiplication
/ Division
< Less than
> Greater than
<= Less or equal
>= Greater or equal
== Logical equal
** or ^ Exponentiation
%% Remainder after division (modulo)
%/% Integer part
exp(x) Exponential function
log(x) Natural logarithm
sqrt(x) Square root
abs(x) Absolute value
sin(x) and cos(x) Sine and cosine functions

Table 1.1: Mathematical operators and functions.

We can have multiple computations/assignments on one line but then they must be separated
by semi colon (“;”). Anything after a hashmark (#) is regarded as comments in R. For example:

multiple instructions on the same line are separated by ";"

sqrt.n <- sqrt(n); sqrt.n # Another comment

[1] 10.42

In the code above the sqrt() function takes a single argument as input and computes the
square root.

Another example of a function in R is q() which is used for exititing (or quitting) R. If we
simply type q then we see how the function is defined (which is not of interest to us at this
stage). To actually invoke the function we must do

q()

1.1 R as a calculator

R functions nicely as a simple calculator. Table 1.1 shows examples of simple mathematical
operations and functions. Below is an example on how to do some of the calculations.

6

-3^2 ## power

[1] -9

sqrt(15) ## square root

[1] 3.873

sin(2) ## sine function

[1] 0.9093

log(5) ## natural log with base e

[1] 1.609

log(5, base=10) ## log with base 10 (alternative: log10(5)))

[1] 0.699

exp(5) ## exponential function

[1] 148.4

a <- 1/0; a ## Infinity

[1] Inf

b <- 0/0; b ## Not a number

[1] NaN

7 %/% 2 ## integer division

[1] 3

7 %% 2 ## modulo; remainder

[1] 1

pi ## pi

[1] 3.142

1e-6 ## 10^(-6)

[1] 1e-06

1.2 Vectors and indexing

R has several data structures and vectors is the most fundamental one. The variables m and n

created previously are actually vectors of length 1. Additional data structures will be discussed
in Chapter ??. We shall create more interesting vectors below: The function c() will
concatenate its input into a vector. For example we can register the production of oil in Norway
(in mio. tons) for different years as two different vectors.

year <- c(1971, 1976, 1981, 1986, 1991, 1996, 2001, 2005)

year

[1] 1971 1976 1981 1986 1991 1996 2001 2005

production <- c(.3, 9.3, 24.0, 42.5, 93.3, 156.8, 162.1, 138.1)

production

[1] 0.3 9.3 24.0 42.5 93.3 156.8 162.1 138.1

Computations in R are vectorized which has as a consequence that we can easily convert the
production to tons or calculate the square root of all elements in prod as

7

production * 100

[1] 30 930 2400 4250 9330 15680 16210 13810

sqrt(production)

[1] 0.5477 3.0496 4.8990 6.5192 9.6592 12.5220 12.7318 11.7516

One main virtue of R is that it is so easy to work with data using a simple indexing mechanism.
For example, on the square root scale, oil production grows approximately linearly until the end
of the 20th century. Suppose that we want to create new vectors only with the data from the
20th century by extracting sub-vectors of year and production.

A very simple approach is to notice that the relevant data are in the first 6 entries in the two
data vectors. We can extract these data by creating a vector with the entries we want and put
this into square brackets:

entries <- 1:6 # same as c(1, 2, 3, 4, 5, 6) but much shorter.

entries

[1] 1 2 3 4 5 6

production2 <- production[entries]

production2

[1] 0.3 9.3 24.0 42.5 93.3 156.8

This works fine in this small example but pinpointing specific entries in a longer vector becomes
tedious and error prone. We can therefore do the following:

b <- year < 2000

b

[1] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE

The statement year < 2000 means that for each element in year it is checked whether the
year is larger than 2000 or not. Hence this is another example of a vectorized computation. The
result is a logical vector which is stored in the variable b.

To extract the year and production corresponding to the condition that year is smaller than
2000 we can do

year[b]

[1] 1971 1976 1981 1986 1991 1996

production[b]

[1] 0.3 9.3 24.0 42.5 93.3 156.8

So we have seen that we can index a vector by specifying entries or via a logical vector (of the
same length as the vector we want to index). We notice that we can easily get from the latter
to the former using which().1

1FiXme Note: Need any, all, NA, is.na(); need also saplly and lapply; also class and is()/as()...

8

which(b)

[1] 1 2 3 4 5 6

The steps above do not change year and production, they only extract sub vectors of these
vectors. Let us create new variables containing these vectors:

year2 <- year[b]

production2 <- production[b]

To continue with the indexing, consider this:

production

[1] 0.3 9.3 24.0 42.5 93.3 156.8 162.1 138.1

b <- production > 150; b

[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE

The statement production > 150 implies that for each element in production it is checked
whether it is larger than 150 or not.

which(b) ## where in 'production' are these values

[1] 6 7

production[b] ## what are these values

[1] 156.8 162.1

year[b] ## in which year was this production

[1] 1996 2001

We can find the productions and years for the cases where the production is smaller than 150
using logical negation ! (which turns TRUE into FALSE and vice versa):

production[!b]

[1] 0.3 9.3 24.0 42.5 93.3 138.1

year[!b]

[1] 1971 1976 1981 1986 1991 2005

We can find data for production over 50 before the turn of the 20th century by combining
logical expressions:

b <- (production > 50) & (year < 2000); b ## '&' is logical AND

[1] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE

production[b]; year[b]

[1] 93.3 156.8

[1] 1991 1996

Similarly, we can find production data before 1980 and after 2000:

9

b <- (year < 1980) | (year > 2000); b ## '|' is logical OR

[1] TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE

production[b]; year[b]

[1] 0.3 9.3 162.1 138.1

[1] 1971 1976 2001 2005

Suppose we discover that all years before the end of the 20th century is off by one year. This is
easy to repair by replacing some elements of a vector

b <- year < 2000

b

[1] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE

year[b] ## The wrong years

[1] 1971 1976 1981 1986 1991 1996

year[b] + 1 ## The correct years

[1] 1972 1977 1982 1987 1992 1997

Replace the relevant entries of year by the correct values:

year[b] <- year[b] + 1; year

[1] 1972 1977 1982 1987 1992 1997 2001 2005

1.3 Data frames

A data frame is a list of vectors all of the same length and can be viewed as the “spreadsheet”
of R. Data frames are usually formed by importing data from a file into R (more about this in
Chapter ??), but a data frame can also be created from vectors using the data.frame()

function; for example:

oil <- data.frame(yr=year, prod=production)

Hence, a dataframe provides a handle on many vectors at one time. The first rows of oil are
displayed with

head(oil, 4)

yr prod

1 1972 0.3

2 1977 9.3

3 1982 24.0

4 1987 42.5

The indexing mechanism applies to dataframes as well; but here we use two indices:

10

oil[2:4, c(2,1)]

prod yr

2 9.3 1977

3 24.0 1982

4 42.5 1987

The first index refers to rows and the second to columns. If we do not write anything for the
first index then all rows are selected and likewise for columns.

We can extract a column in a data frame in different ways: either by through the $

operator or by indexing the column number.

oil$prod # Get the 'prod' variable from the 'oil' data frame

[1] 0.3 9.3 24.0 42.5 93.3 156.8 162.1 138.1

oil[["prod"]] ## same

oil[,2] # Get the 2nd column from the 'oil' data frame

[1] 0.3 9.3 24.0 42.5 93.3 156.8 162.1 138.1

oil[[2]] ## same

We can add a column and delete a column with

oil$extra <- 1:8

oil$extra <- NULL

1.4 Using add–on packages

We can use a scatter plot to visuaize the relationship between year and production. Much of R’s
versatility comes from the many add-on packages available from CRAN (the Comprehensive R

Archive Network), see www.r-project.org (at the time of writing this, there are some 10.000
packages on CRAN). One package which we shall use extensively is the ggplot2 package. This
package does not come with the default installation of R, so it must be installed separately on
the computer which can be done as

install.packages("ggplot2")

This installation must be done only once. To make the package available in an R session the
package must be loaded with the library() function

library(ggplot2)

11

www.r-project.org

1.5 Plotting

Once the ggplot2 package is loaded functions in the package can be used, e.g.

qplot(yr, prod, data=oil)

Sometimes one does not wish to load an entire package just to call one function once. In this
case one can use :: as

ggplot2::qplot(yr, prod, data=oil)

1.6 Simple (linear) regression

Next we look at a simple dataset: Age and fat percentage in 9 adults:

age <- c(23, 28, 38, 44, 50, 53, 57, 59, 60)

fatpct <- c(19.2, 16.6, 32.5, 29.1, 32.8, 42, 32, 34.6, 40.5)

Data is shown as dots in Figure 1.1. By linear regression we find the best approximating
straight line, using the method of ordinary least squares (OLS). The function in R is
lm() (short for linear model).

reg <- lm(fatpct ~ age)

summary(reg)

##

Call:

lm(formula = fatpct ~ age)

##

Residuals:

Min 1Q Median 3Q Max

-5.115 -3.599 -0.521 1.759 7.053

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.225 5.711 1.09 0.3118

age 0.542 0.120 4.51 0.0028 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 4.61 on 7 degrees of freedom

Multiple R-squared: 0.744,Adjusted R-squared: 0.707

F-statistic: 20.3 on 1 and 7 DF, p-value: 0.00277

12

●

●

●

●

●

●

●

●

●

20

25

30

35

40

30 40 50 60

age

fa
tp

ct

Figure 1.1:

The column Estimate shows the estimated regression coefficients. The interpretation is that
when year increases by one year then the square root of the production increases by 0.54.

The plot in Figure 1.1 shows estimated regression line added on top of the data points. The
plot is created as:

qplot(age, fatpct) +

geom_line(aes(age, predict(reg)), color="red")

1.7 Getting help

Commands in R are really function calls. Example: R can be terminated by the function q().

Help about a command is obtained with help() or ?. Example: rnorm() simulates data from
a normal distribution and help is obtained with

help(rnorm)

The possible arguments to a function are shown with

args(rnorm)

function (n, mean = 0, sd = 1)

NULL

The command help(help) will give you an overview over the help facilitites and
help.start() will open a web–browser with the help facilities.

Most help pages have an examples-section at the end and these examples are often worthwhile
to study for inspiration.

13

1.7.1 Getting help on a function that you know the name of

Use ? or, equivalently, help():

?mean

help(mean) # same

args shows you the arguments for a function.

args(mean)

function (x, ...)

NULL

args(mean.default)

function (x, trim = 0, na.rm = FALSE, ...)

NULL

args(read.csv)

function (file, header = TRUE, sep = ",", quote = "\"", dec = ".",

fill = TRUE, comment.char = "", ...)

NULL

For non-standard names use quotes or backquotes:

?`if`

?"if" # same

help("if") # same

There are also help pages for datasets, general topics and some packages:

?iris

?Syntax

?lubridate

Use the example() function to see examples of how to use it.

example(paste)

example(`for`)

The demo() function gives longer demonstrations of how to use a function.

demo() # all demos in loaded pkgs

demo(package = .packages(all.available = TRUE)) # all demos

demo(plotmath)

demo(graphics)

14

1.7.2 Finding a function that you do not know the name of

Use ?? or, equivalently, help.search:

??regression

help.search("regression")

Again, non-standard names and phrases need to be quoted.

??"logistic regression"

apropos finds functions and variables that match a regular expression.

apropos("z$") # all fns ending with "z"

RSiteSearch() searches several sites directly from R. findFn() in sos wraps RSiteSearch()
returning the results as a HTML table.

RSiteSearch("logistic regression")

library(sos)

findFn("logistic regression")

rseek.org is an R search engine with a Firefox plugin.

1.7.3 Finding packages

available.packages() tells you all the packages that are available in the repositories that
you set via setRepositories().

installed.packages() tells you all the packages that you have installed in all the libraries
specified in .libPaths. library() (without any arguments) is similar, returning the names
and tag-line of installed packages.

View(available.packages())

View(installed.packages())

library()

.libPaths()

Similarly, data() with no arguments tells you which datasets are available on your machine.

15

data()

search() tells you which packages have been loaded.

search()

packageDescription() shows you the contents of a package’s DESCRIPTION file. Likewise
news read the NEWS file.

packageDescription("utils")

news(package = "ggplot2")

For finding which packages are loaded sessionInfo is quite nice.

sessionInfo()

Help on a specific package is achieved with help():

help(package="sos")

1.7.4 Getting help on variables

ls lists the variables in an environment.

ls() # global environment

ls(all.names = TRUE) # including names beginning with '.'

ls("package:sp") # everything for the sp package

Most variables can be inspected using str or summary:

str(sleep)

summary(sleep)

ls.str is like a combination of ls and str.

ls.str()

ls.str("package:grDevices")

lsf.str("package:grDevices") # only functions

For large variables (particularly data frames), the head function is useful for displaying the first
few rows.

16

head(sleep)

extra group ID

1 0.7 1 1

2 -1.6 1 2

3 -0.2 1 3

4 -1.2 1 4

5 -0.1 1 5

6 3.4 1 6

1.7.5 General learning about R

The Info page https://stackoverflow.com/tags/r/info is a very comprehensive set of
links to free R resources.

Many topics in R are documented via vignettes, listed with browseVignettes():

browseVignettes()

vignette("intro_sp", package = "sp")

By combining vignette with edit, you can get its code chunks in an editor.

edit(vignette("intro_sp",package="sp"))

1.8 Technicalities

1.8.1 On calling functions

Everything we do in R amounts to calling functions. For example addition of two numbers can
be done as:

"+"(7, 9)

and typing 7 + 9 is just syntactic sugar on top of the function call above.

Consider this example: Add 10 to the value of elements number 1, 2 and 4 in the vector v
below:

v <- c(7, 9, 0, 4, 8)

v[c(1, 2, 4)] <- v[c(1, 2, 4)] + 10

v

[1] 17 19 0 14 8

17

https://stackoverflow.com/tags/r/info

The “square brackets” above have two meanings, so to speak and that can cause confusion.
Extracting elements is done with the “square bracket extractor function” while replacement is
done with the “square bracket assignment function”:

v <- c(7, 9, 0, 4, 8)

z <- v[c(1, 2, 4)]

v[c(1, 2, 4)] <- z + 10

v

[1] 17 19 0 14 8

Under the hood, there is a call to the “square bracket extractor function” "[" and the “square
bracket assignment function” "[<":

v <- c(7, 9, 0, 4, 8)

z <- "["(v, c(1, 2, 4))

v <- "[<-"(v, c(1, 2, 4), z + 10)

v

[1] 17 19 0 14 8

Therefore, the calls below are equivalent

v <- c(7, 9, 0, 4, 8)

v[c(1, 2, 4)] <- v[c(1, 2, 4)] + 10

v

[1] 17 19 0 14 8

v <- c(7, 9, 0, 4, 8)

v <- "[<-"(v, c(1, 2, 4), "["(v, c(1, 2, 4)) + 10)

v

[1] 17 19 0 14 8

1.8.2 Vectors, lists, and data frames

Here we give some more information about data structures in R.

1.8.3 Vectors

The basic data structure in R is a vector. Think of a vector as a train wagon in which all
passengers are of the same type.

Vectors can be created using the c() function (short for concatenate)

18

v1 <- c("here", "comes", "the", "sun") # Character vector

v2 <- c(7, 9, 13) # Numeric vector

v3 <- c(T, F, T) # Logical vector

v1; v2; v3

[1] "here" "comes" "the" "sun"

[1] 7 9 13

[1] TRUE FALSE TRUE

Elements of vectors can be named (and used for indexing)

x <- c(a=123, b=234, c=345); x

a b c

123 234 345

x[c("a", "c")]

a c

123 345

Elements are coerced to the least restrictive type:

x <- c(1, 2, 3, "hello world"); x

[1] "1" "2" "3" "hello world"

In this case the vector contains a character string and a string can represent both a number and
a string so the full vector is coerced to a character vector.

1.8.4 Lists

If a vector is a train wagon in which all passengers have the same type, then a list is a train
consisting of a sequence of train wagons. Wagons can be named.

x <- list(a=c(2, 3), b="hello world", c(T, F))

x

$a

[1] 2 3

##

$b

[1] "hello world"

##

[[3]]

[1] TRUE FALSE

Indexing:

19

x[c(1, 2)] # The train consisting of wagons 1 and 2

$a

[1] 2 3

##

$b

[1] "hello world"

x[c("a", "b")]

$a

[1] 2 3

##

$b

[1] "hello world"

x[1] # The train consisting of wagon 1 only

$a

[1] 2 3

x["a"]

$a

[1] 2 3

x[[1]] # Wagon 1

[1] 2 3

x$a

[1] 2 3

Remove and add wagons:

x$a <- NULL; x

$b

[1] "hello world"

##

[[2]]

[1] TRUE FALSE

x$h <- 2:4; x # Wagons are added at the end

$b

[1] "hello world"

##

[[2]]

[1] TRUE FALSE

##

$h

[1] 2 3 4

x[5] <- 1000; x # Empty wagons are added too

$b

[1] "hello world"

##

[[2]]

[1] TRUE FALSE

##

20

$h

[1] 2 3 4

##

[[4]]

NULL

##

[[5]]

[1] 1000

The train analogy does not carry through all the way: An element of a list can be a list itself
(i.e. a wagon can be a train itself):

x <- list(a=c(2, 3), b="hello world",

c=c(T, F), d=list(g=23, 45)); x

$a

[1] 2 3

##

$b

[1] "hello world"

##

$c

[1] TRUE FALSE

##

$d

dg

[1] 23

##

$d[[2]]

[1] 45

str(x)

List of 4

$ a: num [1:2] 2 3

$ b: chr "hello world"

$ c: logi [1:2] TRUE FALSE

$ d:List of 2

..$ g: num 23

..$: num 45

1.8.5 Dataframes

A dataframe is basically a list in which each element has the same length.

21

d <- data.frame(x=5:8, y=c("here", "comes", "the", "sun"),

z=c(T, F, T, T))

d

x y z

1 5 here TRUE

2 6 comes FALSE

3 7 the TRUE

4 8 sun TRUE

Operate on dataframes as on lists. In addition, subscript as for matrices:

d[c(1, 4), c(1, 3)]

x z

1 5 TRUE

4 8 TRUE

1.8.6 Matrices

Matrices can be constructed with the matrix() function. For example, a 3× 3 matrix with the
integers from one to nine is defined as follows.

A <- matrix(1:9, nrow=3, ncol=3); A;

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

dim(A)

[1] 3 3

The numbers are read column-wise; if this is not what you want, use the optional argument
byrow=TRUE to matrix(). Indexing matrices is simlar to indexing vectors except that an index
vector defining rows and an index vector defining columns are needed.

A[1:2, c(1,3)] ## extract submatrix by some rows and cols

[,1] [,2]

[1,] 1 7

[2,] 2 8

A[1:2,] ## extract submatrix by some rows and and all cols

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

A[2,] ## no longer a matrix, but a vector

[1] 2 5 8

22

A[2, , drop=FALSE] ## still a matrix

[,1] [,2] [,3]

[1,] 2 5 8

1.8.7 Iterating over rows and columns of a matrix

To calculate e.g. the sum of each row we can use apply() or rowSums()

rs <- apply(A, 1, sum) ## or rs <- rowSums(A)

rs

[1] 12 15 18

Say we want to subtract from each column the mean of that column. We can use e.g. sweep

cm <- colMeans(A)

sweep(A, 2, cm, FUN="-")

[,1] [,2] [,3]

[1,] -1 -1 -1

[2,] 0 0 0

[3,] 1 1 1

1.8.8 Simulating random and systematic data

In addition to c(), vectors can be created in other ways, for example using : and seq() which
both cretes sequences of numbers, and rep() which replicates a vector.

1:4 # Sequence of integer numbers from 1 to 4

[1] 1 2 3 4

3:-3 # Sequence of integer numbers from 3 to -3

[1] 3 2 1 0 -1 -2 -3

seq(1,3, by=0.5) # Sequence from 1 to 3 with step size 0.5

[1] 1.0 1.5 2.0 2.5 3.0

seq(1,3, length=4) # Sequence of length 4 starting at 1 and ending at 3

[1] 1.000 1.667 2.333 3.000

rep(1:3, times=2) # Replicate 1, 2, 3 twice

[1] 1 2 3 1 2 3

rep(1:3, each=2) # Replicate each of 1, 2 3 twice

[1] 1 1 2 2 3 3

Random data can be generated as follows: Samples from 5 independent uniform random
random variables on [0, 10] are generated by runif():

23

runif(n = 5, min = 0, max = 10)

[1] 5.038 0.522 9.856 0.773 3.733

Samples from 5 independent normal random random variables with mean 1 and standard
deviation 2 are generated by rnorm():

rnorm(n = 5, mean = 1, sd = 2)

[1] -1.2286 2.2959 2.3896 0.3233 0.9772

1.8.9 Getting data into functions

If we want to plot production against year we can do

plot(prod ~ yr, data=oil)

This works because there is a version of plot() that takes data as an argument; above
data=oil. A function like smooth.spline(), however, does not take data as input:

args(smooth.spline)

function (x, y = NULL, w = NULL, df, spar = NULL, lambda = NULL,

cv = FALSE, all.knots = FALSE, nknots = .nknots.smspl, keep.data = TRUE,

df.offset = 0, penalty = 1, control.spar = list(), tol = 1e-06 *

IQR(x), keep.stuff = FALSE)

NULL

Hence we must provide data in another way. Can be done different ways:

• Using dollar sign

sm <- smooth.spline(oilyr, oilprod, df=4)

• or - more elegantly - using with()

sm <- with(oil, smooth.spline(yr, prod, df=4))

• or - but careful here - using attach and detach

attach(oil)

sm <- smooth.spline(yr, prod, df=4)

detach(oil)

The spline fit looks like:

24

plot(prod ~ yr, data=oil)

lines(sm)

●
●

●
●

●

● ●

●

1975 1980 1985 1990 1995 2000 2005

0
50

15
0

yr

pr
od

1.8.10 R as a programming language

In addition to the statstical and mathematical facilities, one virtue of R is that it is a
programming language. While large scale programming with R is not the main focus of this
book, we shall from time to time write small functions “on the fly” as we need them.

Example: Calculate the sum of the numbers 1, 2, 3, . . . , N . This sum can be computed as
N(N + 1)/2, but if we did not know that we could simply do:

N <- 100

result <- 0

for (i in 1:N)

result <- result + i

cat("The sum of the numbers from 1 to", N, "is:", result, "\n")
The sum of the numbers from 1 to 100 is: 5050

We can create a general purpose function that does the trick:

add1toN <- function(N){
result <- 0

for (i in 1:N)

result <- result + i

cat("The sum of the numbers from 1 to", N, "is:", result, "\n")
result

}
add1toN(1000)

25

The sum of the numbers from 1 to 1000 is: 500500

[1] 500500

add1toN(10)

The sum of the numbers from 1 to 10 is: 55

[1] 55

26

Chapter 2

Summarizing data

The following vectors are an excerpt from the mtcars dataset: Weight wt (in 1000 lbs) and
fuel efficiency mpg (in miles per gallon).

x <- wt <- c(2.6, 2.9, 2.3, 3.2, 3.4, 3.5, 3.6, 3.2, 3.1, 3.4, 3.4, 4.1,

3.7, 3.8, 5.2, 5.4, 5.3, 2.2, 1.6, 1.8, 2.5, 3.5, 3.4, 3.8, 3.8,

1.9, 2.1, 1.5, 3.2, 2.8, 3.6, 2.8)

y <- mpg <- c(21, 21, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8,

16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 32.4, 30.4, 33.9, 21.5, 15.5,

15.2, 13.3, 19.2, 27.3, 26, 30.4, 15.8, 19.7, 15, 21.4)

We shall look at measures of where is the ”location” or ”center” of the data and what is the
”spread” of data.

2.1 Notation

We have n observations in the vector x. We denote these symbolically by

x1, x2, x3, . . . , xn−1, xn

and they read “x one”, “x two” etc. For the sum x1 + x2 + x3 + · · ·+ xn we write

x. = Σn
i=1xi = x1 + x2 + x3 + · · ·+ xn

and the left hand side reads “x dot” and Σn
i=1xi reads “the sum of xi as i goes from 1 to n”.

The symbol x. is of course an arbitrary name for the sum.

27

2.2 Mesures of location

If we divide x. by the number of observations n we get the mean (or average). Again, we can
invent any name we like for this average, but it is quite common to write x̄:

x̄ =
1

n
x. =

1

n

n∑
i=1

xi =
1

n
(x1 + x2 + x3 + · · ·+ xn)

The most commonly used measure of location is the sample mean (as opposed to a
theoretical quantity defined later), (or empirical mean or average):

sum(x) / length(x)

[1] 3.206

mean(x)

[1] 3.206

The median is a related measure: We sort the data:

x2 <- sort(x)

x2

[1] 1.5 1.6 1.8 1.9 2.1 2.2 2.3 2.5 2.6 2.8 2.8 2.9 3.1 3.2 3.2 3.2 3.4 3.4 3.4

[20] 3.4 3.5 3.5 3.6 3.6 3.7 3.8 3.8 3.8 4.1 5.2 5.3 5.4

If the number of data points is odd, the median is the middle data point. If the number is even,
the median is the average of the two points in the middle:

median(x)

[1] 3.3

2.3 Measures of spread

The most common measure of spread is the sample standard deviation (as
opposted to a theoretical quantity discussed later) (or empirical standard deviation).

The squared distance of xi to x̄ is (xi − x̄)2. The average squared distance 1
n

∑n
i=1(xi − x̄)2 is

a measure of spread of data. For technical reasons we divide by n− 1 rather than n and obtain
the sample variance

s2x =
1

n− 1

n∑
i=1

(xi − x̄)2

28

If the units of the xis are, say meters, then the unit of x̄ is also meters but the unit of s2x is
“square meter”. This leads to the sample standard deviation which also has unit meter:

sx =
√
sx

var(x)

[1] 0.9496

sd(x)

[1] 0.9745

There are alternative measures of spread. One is the interquartile tange (IQR). Consider this

quant <- quantile(x); quant

0% 25% 50% 75% 100%

1.500 2.575 3.300 3.625 5.400

The 50% quantile is the median. The 75% quantile is the median of the highs and the 25%
quantile is the median of the lows. The difference between these two quantiles is the IQR:

quant[4] - quant[2]

75%

1.05

2.4 A practical interpretation and an empirical rule

A practical interpretation of the mean x̄ and and standard deviation sx is that for nearly
symmetrical mound shaped datasets, about 68% of data is within one standard deviation of the
mean and 95% is within two standard deviations of the mean.

Often we can get reasonable estimates of the sample mean and standard deviation by simply
looking at data:

If data is not highly skewed then the mean and median are roughly the same. An estimate of
the median is obtained by looking at the center of the (sorted) data vector:

x2 <- sort(x)

x2

[1] 1.5 1.6 1.8 1.9 2.1 2.2 2.3 2.5 2.6 2.8 2.8 2.9 3.1 3.2 3.2 3.2 3.4 3.4 3.4

[20] 3.4 3.5 3.5 3.6 3.6 3.7 3.8 3.8 3.8 4.1 5.2 5.3 5.4

29

● ●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

10

15

20

25

30

35

2 3 4 5

x

y

Figure 2.1: Correlated measurements.

median(x)

[1] 3.3

mean(x)

[1] 3.206

About 95% of the observations will fall in the interval x̄± 2sx.

If we say that 95% of the observations are “practically all observations” then practically all
observations fall in this interval

Hence the largest minus the smallest value is about 4 standard deviations and hence that a
crude estimate of the standard deviation is

(max(x) - min(x)) / 4

[1] 0.975

sd(x)

[1] 0.9745

2.5 Covariance and correlation

The measurements in x and y “co–vary”

library(ggplot2)

qplot(x, y)

30

A measure of how two variables co–vary is the sample covariance or
empirical covariance between x and y

sxy =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ)

Notice: If we replace yi by xi and ȳ by x̄ above then we get the sample covariance between x
and x which is the (sample) variance of x.

Closely related to the (sample) covariance is the (sample) correlation coefficient:

rxy =
sxy
sxsy

=

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

The correlation is always in the interval ±1. If the correlation is 1 or −1 there is a perfect linear
association between x and y. If the correlation is 0 there is no linear association at all.

cov(x, y)

[1] -5.126

cor(x, y)

[1] -0.8728

2.6 The measurement unit matters – sometimes

The weight x is in 1000 pounds (lbs). One pound is about 0.45 kg, so to get the weight in kg
we must multiply by 1000× 0.45, so the weight in metric tonnes is .45 times the weight.

Now consider weight data on the new and old scale:

x.metric <- .45 * x

mean(x)

[1] 3.206

mean(x.metric)

[1] 1.443

sd(x)

[1] 0.9745

sd(x.metric)

[1] 0.4385

var(x)

[1] 0.9496

var(x.metric)

[1] 0.1923

cov(x, y)

31

[1] -5.126

cov(x.metric, y)

[1] -2.307

cor(x, y)

[1] -0.8728

cor(x.metric, y)

[1] -0.8728

More generally: Take four numbers, a, b, c and d and create new variables ui and vi as

ui = a+ bxi, vi = c+ dyi

This corresponds to changing the scale and location of the data; for example changing
temperature measurements from Celcius to Fahrenheit.

Then for the new variables we have

ū = a+ bx̄, s2u = b2s2x, su = bsx, suv = bdsxy

but
ρuv = ρxy

Hence: mean, variance, standard deviation and covariance depends on the scale on which the
variables are measured but correlation does not.

2.7 Correlation and regression

Fig 2.1 suggests that y (mpg) is linearly related to x (wt). In linear regression we model
variation ib y as a function of variation in x by asumming a linear relation:

y ≈ β0 + β1x (2.1)

The parameters β0 (the intercept) and β1 (the slope) are to be estimated from data. The most
common method is the method of least squares: The estimates for β0 and β1 are those
values that minimizes the residual sum of squares

n∑
i=1

[yi − (β0 + β1xi)]
2

The estimated slope is closely related to the correlation coefficient:

β̂1 = rxy
sy
sx

=
sxy
s2x

=

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

32

The estimated intercept is
β̂ = ȳ − β̂1x̄

beta_1 <- cov(x, y) / var(x)

beta_1

[1] -5.398

beta_0 <- mean(y) - beta_1 * mean(x)

beta_0

[1] 37.4

The linear regression model in (2.1) and many other models with a similar structure can
be handled with the R function lm():

lm(y ~ x)

##

Call:

lm(formula = y ~ x)

##

Coefficients:

(Intercept) x

37.4 -5.4

The fitted values from the regression model are the points on the estimated line:

y.hat <- beta_0 + beta_1 * x

y.hat

[1] 23.363 21.744 24.983 20.124 19.045 18.505 17.965 20.124 20.664 19.045

[11] 19.045 15.266 17.425 16.885 9.328 8.248 8.788 25.523 28.762 27.682

[21] 23.903 18.505 19.045 16.885 16.885 27.142 26.062 29.301 20.124 22.284

[31] 17.965 22.284

We can plot data and fitted values as:

qplot(x, y) + geom_line(aes(x, y.hat))

33

● ●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

10

15

20

25

30

35

2 3 4 5

x

y

Figure 2.2: Correlation and regression are related topics.

34

Chapter 3

Linear models

Summary: Linear models are a super versatile tool and includes several clas-
sical analysis techiques such as linear regression, multiple regression, analysis-
of-variance, and t-test as special cases.

Linear models is the most commonly used class of statistical models. Linear models focus on
relating a quantitative response variable to one or more explanatory variables.
Many specific types of models that are known under other names in the litterature are really
linear models. Examples of this include linear regression, multiple regression and
polynomial regression (Sec. 3.1.1), analysis of variance or ANOVA, (Sec. 3.1.3)
and analysis of covariance or ANCOVA (Sec. 3.1.4).

The main difference between these models pertain to the nature of the explanatory variables,
namely whether they are purely quantiative (i.e. numerical), purely qualitative (i.e.
categorical) or a combination of these. In the litterature, a linear model is also known as a
general linear model.

3.1 What is a linear model?

Example 3.1.1 [Potatoes] This dataset contains weight and two sizes of 20 potatoes.
Weight in grams; size in milimeter. There are two sizes: length is the longest length and
width is the shortest length across a potato.

potatoes <- read.table("./data/potatoes.txt", header = TRUE)

head(potatoes, 4)

weight length width

1 22 38 29

2 41 46 34

3 24 40 31

4 16 33 28

35

Table 3.1: Some important Rfunctions for linear models introduced in this chapter.
Function Purpose

lm(y ∼ x, data = ...) Fit a linear model (y is a quantitative
response).

summary(fit) Get parameter estimates and stan-
dard errors as well as e.g. R2 value.

predict(fit) Get the estimated response.
confint(fit) Get the confidence interval for the

parameters.
residuals(fit) Raw residuals.
residuals(fit, type = "pearson") Standardised residuals.
anova(fit) ANOVA. Test?
drop1(fit, test = "F") Test dropping factors .
anova(fit1, fit2) ANOVA. Test?

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
10

20

30

40

20 30 40 50

length

w
ei

gh
t

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
10

20

30

40

15 20 25 30 35

width

w
ei

gh
t

Figure 3.1: Plot of weight against length and against width of potatoes.

We are interested in modelling how weight changes when length and width changes. We say
that weight is the response variable while length and width are
explanatory variables. A commonly used name for this setting is
multiple regression. If only one variable is included as explanatory, then the the setting is
called linear regression (or simple linear regression).

Initially, we plot weight against length and width to get an overview of the data, see Fig. 3.1.
The relationship between weight and length seems to follow an approximately straight line.
Likewise, it the relationship between weight and width appears to have a curvature, which can
perhaps be captured by a parabola. However, in both plots it is clear that the relationships are
not exact: Points scatter around a straight line and a parabola.

� �

Linear models can be described informally and formally. In the following we take an informal
approach and defer a more formal treatment to Chap. ??, p. ??. In a regression model, the aim
is to model how variation in a response y depends on variation in, say, three predictors or

36

explanatory variables or covariates x1, x2, x3. A linear model is a regression
model where it is assumed that y is related linearly to the predictors as

y = β0 + β1x1 + β2x2 + β3x3 + ε

where ε is an error term. The terms β0, . . . , β3 are unknown parameters which are to be
estimated from data. Ocasionally we shall refer to individual recordings by subscripting variables
with an i, i.e.

yi = β0 + β1xi1 + β2xi2 + · · ·+ εi, i = 1, . . . , n

Returning to the considerations Example 3.1.1, we may choose to consider the model

y = β0 + β1x1 + β2x2 + β3x
2
2 + ε

where y is weight, x1 is length and x2 is width. We shall think of
m(x1, x2) = β0 + β1x1 + β2x2 + β3x

2
2 as a function describing the systematic component

of the model whereas the error term ε refers to deviations between data and the systematic
component.

A word about the term linear in this context: Linear means that the parameters enter linearly,
but the predictors need not do so (in the model above we had width and width–squared): In the
setting above, suppose we have two sets of parameters β0, . . . , β3 and β̃0, . . . , β̃3. Then adding
the corresponding systematic components β0 +β1x1 +β2x2 +β3x

2
2 and β̃0 + β̃1x1 + β̃2x2 + β̃3x

2
2

gives (β0 + β̃0) + (β1 + β̃1)x1 + (β2 + β̃2)x2 + (β3 + β̃3)x
2
2 which has the same form as the

systematic component we started out with. Thus y = β0 + β1x
β2
1 + ε is not a linear model

(because β0, β1 and β2 do enter linearly in the systematic component m(x) = β0 + β1x
β2
1).

3.1.1 Linear regression

First consider the simple case with one explanatory variable x = length and the response
variable is y = weight. Mathematically, we write the relationship between y and x as

y = β0 + β1x+ ε. (3.1)

The unknown parameters β0 and β1 (which we collect into a vector β = (β0, β1)) are estimated
using the method of least squares, see Sec. 3.11.3, p. 79, using the lm() function. The
expression weight ~ length is an example of a model formula, where weight depends on
length. See Sec. 3.8, p. 64 for more about model formulae.

pot1_l <- lm(weight ~ length, data = potatoes)

tidy(pot1_l) ## In the broom package

A tibble: 2 x 5

term estimate std.error statistic p.value

<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -28.7 3.44 -8.35 1.33e- 7

2 length 1.37 0.0925 14.8 1.68e-11

37

Using R, we have now obtained, amongst other quantities, estimates of the unknown
parameters β0 and β1. The estimate of β0 (the intercept) is β̂0 = −28.7 and the estimate of β1
(the slope) is β̂1 = 1.4. The intercept of −28.7 is interpreted as the expected weight of a
potato with length 0 mm. Obviously, a negative value does not make sense. This is an example
of so-called extrapolation: We have only observed (collected) potatoes with length far
away from 0, hence we cannot expect our model to predict well outside the data that was used
to estimate the parameters. The interpretation of the slope is that when the length of a potato
is increased by 1 mm, we expect its weight to be increased by 1.4 grams. We will now discuss
this interpretation in more detail.

The model is illustrated in Fig. 3.2 (left). Above, β0 + β1x models the expected value of the
outcome for an individual with an observed x-value, and ε represents random noise and/or
measurement error. We can define m(x) = β0 + β1x, and we can think of m(x) as the
systematic part of the model, while ε denotes the random part of the model. Note that
m(x) is a straight line with intercept β0 and slope β1.

The interpretation of the parameters is as follows: If x = 0 then m(x) = β0 so β0 must be the
average level of y for subjects with x = 0 (which also means that the unit of β0 is grams). The
interpretation of β1 is that when x increases by one unit (milimeter in the potatoes example)
from some value x0 to x0 + 1 then the average value of y changes by m(x0 + 1)−m(x0) = β1
units (so the unit of β1 in the potatoes example is grams per milimeter), and this change is the
same for all initial values x0.

Estimated parameters are often denoted with a hat as β̂ = (β̂0, β̂1) to distinguish them from
the true but unknown values. Plugging the estimated values into β1 + β2xi gives the points on
the estimated regression lines; these are also denoted fitted values or predicted values.

Based on the graphs in Fig. 3.1, p. 36, we discussed in Sec. 3.1 the model

yi = β0 + β1x1 + β2x2 + β3x
2
2 + ε. (3.2)

where x1 is length and x2 is width. The model can be fitted to data with

pot1_lw2 <- lm(weight ~ length + width + I(width^2), data = potatoes)

tidy(pot1_lw2)

A tibble: 4 x 5

term estimate std.error statistic p.value

<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 8.84 7.26 1.22 0.241

2 length 0.831 0.135 6.16 0.0000137

3 width -2.62 0.570 -4.59 0.000299

4 I(width^2) 0.0681 0.0121 5.62 0.0000386

where the notation I(width^2) ensures that a quadratic effect is included in the model. The
notation will be explained in more detail in Sec. 3.8, p. 64, and corresponds to the model

Interpretation of the parameters become more involved: The function
m(x1, x2) = β0 + β1x1 + β2x2 + β3x

2
2 models the expected value of the outcome (weight) for

38

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

0

10

20

30

40

20 30 40 50

length

w
ei

gh
t

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
10

20

30

40

15 20 25 30 35

width

w
ei

gh
t

Figure 3.2: Left: lm(weight ∼ width, data = potatoes) is illustrated. Right: lm(weight

∼ width + I(width^2), data = potatoes) is illustrated.

an individual (a potato) with length = x1 and width = x2. First of all, β0 is the expected
weight of an infinitely small potato with zero length and zero width. The interpretation of β1 is
the effect on weight of changing length by one unit when width is fixed. The interpretation
of β2 and β3 is more subtle: Increasing x2 by one unit means a change in the expected value of
weight by

m(x1, x2 + 1)−m(x1, x2) = β2 + 2β3x2 + β3 = β2 + β3(2x2 + 1).

This means that the change in the expected value of x2 = width to x2 + 1 depends on the value
of x2 = width. For example, if x2 = width = 15, then m(x1, x2 + 1)−m(x1, x2) = β2 + 31β3,
and if x2 = width = 30, then m(x1, x2 + 1)−m(x1, x2) = β2 + 61β3.

There is an additional complicating fact: In practice, potatoes grow both in length and width.
Therefore the interpretation of β1 as the effect of increasing length by one unit while keeping
width fixed is not directly applicable. We treat this topic in detail in Sec. 3.7, p. 64.

An simplification of the model (3.2) is to omit length as predictor. Notice also that the linear
regression model in (3.1) can be seen as a simplification of (3.2) in which width and
width-squared is omitted:

pot1_w2 <- lm(weight ~ width + I(width^2), data = potatoes)

tidy(pot1_w2)

A tibble: 3 x 5

term estimate std.error statistic p.value

<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 25.2 12.0 2.09 0.0521

2 width -2.84 1.01 -2.80 0.0122

3 I(width^2) 0.0939 0.0203 4.63 0.000239

The model with just width as predictor and the model with width and width2 as predictors
are illustrated in Fig. 3.2.

39

At this stage we shall make a very simple comparison of some of the models: We calculate the
squared correlation between the observed and the fitted / predicted values. Calculating the
correlation may seem very natural, and the reason for squaring these correlations will be
discussed in Sec. 3.6.

pot1_l pot1_lw2 pot1_w2

0.9237 0.9771 0.9227

In all three models described above, the intercept (β0) is estimated to be far away from zero. It
is possible to force the intercept to be zero by including a "-1" in the model specification, i.e.
we may write e.g. lm(weight ~ -1 + length, data = potatoes).

3.1.2 Parameter estimates, standard errors etc

Consider again the model in (3.2)

y = β0 + β1x1 + β2x2 + β3x
2
2 + ε. (3.3)

The model is fitted with

pot1_lw2 <- lm(weight ~ length + width + I(width^2), data = potatoes)

tidy(pot1_lw2)

A tibble: 4 x 5

term estimate std.error statistic p.value

<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 8.84 7.26 1.22 0.241

2 length 0.831 0.135 6.16 0.0000137

3 width -2.62 0.570 -4.59 0.000299

4 I(width^2) 0.0681 0.0121 5.62 0.0000386

The Estimate column

The parameter estimates (in the Estimate column) are the values of β0 and β1 that minimizes

n∑
i=1

[yi − (β0 + β1xi1 + β2xi2 + β3x
2
i3]

2

The std.error column

The column std.error contains a measure of how much the estimates would vary if the study
was to be redone again under identical conditions. It is not possible to do these replications:
2015 is long gone, but we can mimic the situation. Consider the original data:

40

head(potatoes, 6)

weight length width

1 22 38 29

2 41 46 34

3 24 40 31

4 16 33 28

5 7 25 21

6 40 48 35

In another (hypothetical) replication of the study it could have been that the first row (potato)
would appear twice, the second row not at all, the third row could appear three times, row four
and seven would not appear at all etc. Such a dataset can be generated by sampling the rows
of the original dataset with replacement:

w <- sample(1:nrow(potatoes), replace=TRUE)

potatoes2 <- potatoes[w,]

head(potatoes2, 6)

weight length width

3 24 40 31

13 46 53 34

13.1 46 53 34

13.2 46 53 34

18 12 33 24

13.3 46 53 34

In this new dataset, row 13 from the original data set appears four times, so some rows from the
original dataset do not appear at all. Fitting the regression model to this new dataset gives:

m2 <- lm(weight ~ length + width + I(width^2), data=potatoes2)

coef(m2)

(Intercept) length width I(width^2)

18.76106 1.14083 -3.64775 0.07742

Now we repeat this scheme many times

N <- 9999

coefmat <- matrix(0, nrow=N, ncol=4)

for (i in 1:N){
potatoes2 <- potatoes[sample(1:nrow(potatoes), replace=TRUE),]

m2 <- lm(weight ~ length + width + I(width^2), data=potatoes2)

coefmat[i,] <- coef(m2)

}
head(coefmat, 4)

[,1] [,2] [,3] [,4]

[1,] 18.76 1.1408 -3.648 0.07742

41

[2,] 21.96 0.7606 -3.351 0.08023

[3,] 24.62 0.9620 -4.064 0.09242

[4,] 24.89 0.8711 -3.995 0.09438

Now calculate the standard errors of each of the set of parameter estimates

apply(coefmat, 2, sd)

[1] 12.26527 0.19138 0.93802 0.01825

Hence the standard errors of the estimates across (pseudo) replications of the study are in the
same ball park as the content of the std.error column:

tidy(pot1_lw2)

A tibble: 4 x 5

term estimate std.error statistic p.value

<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 8.84 7.26 1.22 0.241

2 length 0.831 0.135 6.16 0.0000137

3 width -2.62 0.570 -4.59 0.000299

4 I(width^2) 0.0681 0.0121 5.62 0.0000386

The statistic column

The statistic is simply the estimate divided by the standard error of the estimate. This
quantity says how many standard errors the estimate is from zero. To illustrate this, suppose we
change scale of the measurements: weight is measured in hundred grams instead of grams and
length in meters instead of milimeters:

potatoes3 <- potatoes %>% mutate(weight=weight / 100, length = length / 1000)

m3 <- lm(weight ~ length + width + I(width^2), data=potatoes3)

tidy(m3)

A tibble: 4 x 5

term estimate std.error statistic p.value

<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 0.0884 0.0726 1.22 0.241

2 length 8.31 1.35 6.16 0.0000137

3 width -0.0262 0.00570 -4.59 0.000299

4 I(width^2) 0.000681 0.000121 5.62 0.0000386

The estimates and their standard errors change but the statistic remains unchanged: The
statistic still measures how many standard errors the estimate is from zero – and this quantity
does not depend on the scale of measurement.

42

The p.value column

Often we are interested in testing the hypothesis that a specific parameter is zero. For
example, if β1 is zero in the model, then this corresponds to that length has no effect in
explaining the variation in weight (that is, when width and width–squared is in the model).
The statistic can be positive or negative. However, what is important is the numerical value of
the statistic, so we shall just assume the statistic is positive.

A large value of the estimate causes us to doubt this hypothesis, i.e. a large value provides
evidence against the hypothesis. On the other hand, a value of the sestimate close to zero
supports the hypothesis. But as shown above, the estimate can be made as small (or large) as
we want them; all we have to do is change the scaling on which length is recorded. The
statistic column, on the other hand, does not depend on the scaling; the statistic column shows
how many standard deviations the parameter estimates are away from zero. A large value of the
statistic makes us doubt that the corresponding parameter is zero. This poses the question:
When is the value of a statistic large? An answer to this is as follows: Compute the probabilty
of observing a value of the statistic larger or equal to the observed value of the statistic. If the
statistic is large, then this probability is small. So a small probability can be seen as evidence
against the hypotesis. This probability is called a p–value and is reported in the p.value

column. For historical reasons there is a tradition of comparing the p–value with preset fixed
values, such as 0.01 or 0.05: If the p–value is smaller than 0.05 one rejects the hypothesis
that the parameter is zero.

3.1.3 Analysis of variance (ANOVA) models

Example 3.1.2 [ToothGrowth] The response is the length of odontoblasts (cells responsible
for tooth growth) in 60 guinea pigs. Each animal received one of three dose levels of vitamin C
(0.5, 1, and 2 mg/day) by one of two delivery methods: orange juice (coded as OJ) or ascorbic
acid a form of vitamin C and (coded as VC).

head(ToothGrowth, 4)

len supp dose

1 4.2 VC 0.5

2 11.5 VC 0.5

3 7.3 VC 0.5

4 5.8 VC 0.5

We can treat dose as a numerical variable or we can think of dose as a factor with three levels.
To accomodate both we add an extra column to data:

ToothGrowth <- ToothGrowth %>%

mutate(dosef = factor(dose,

levels = c(0.5, 1, 2),

labels = c("LO", "ME", "HI")))

43

head(ToothGrowth, 4)

len supp dose dosef

1 4.2 VC 0.5 LO

2 11.5 VC 0.5 LO

3 7.3 VC 0.5 LO

4 5.8 VC 0.5 LO

Such grouped data can be visualized in different ways:

ggplot(ToothGrowth, aes(dose, len)) + geom_point() + facet_grid(~ supp)

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●●

●

●

●
●●

●
●●

●

●●
●

●

●

●

●
●●

●
●●

●
●

●●
●
●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

OJ VC

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

10

20

30

dose

le
n

The average length in each of the 2× 3 = 6 groups is:

tooth_avglen <- ToothGrowth %>%

group_by(dose, supp) %>%

summarise(val = mean(len))

tooth_avglen

A tibble: 6 x 3

Groups: dose [3]

dose supp val

<dbl> <fct> <dbl>

1 0.5 OJ 13.2

2 0.5 VC 7.98

3 1 OJ 22.7

4 1 VC 16.8

5 2 OJ 26.1

6 2 VC 26.1

An interaction plot is a graphical visualization of the group averages, see Fig. 3.3, where
also variability in each group is displayed:

ggplot(ToothGrowth, aes(x = factor(dose), y = len, colour = supp)) +

geom_boxplot(outlier.shape = 4) +

geom_point(data = tooth_avglen, aes(y = val)) +

geom_line(data = tooth_avglen, aes(y = val, group = supp))

44

●

●

●

●

●●

10

20

30

0.5 1 2

factor(dose)

le
n

supp

●

●

OJ

VC

Figure 3.3: Interaction plot for the ToothGrowth data. The average length for each group is a
dot. Boxplot outliers are crosses.

The plot shows us that the length increases with dose and that the sloop might be different for
the two supplements: They start out at different lengths for dose 0.5 but end around the same
length for dose 2.0.

� �

We can model these data using a regression model

y = β0 + β1x1 + ε,

where the predictor variable, xi1, is a dummy variable: Create a vector x1 which is 0 in
entries with supp = OJ and 1 in entries with supp = VC. So the effect of the dummy variable
is to “switch” the effect of β1 on and off.

tg <- ToothGrowth %>% filter(dose == 0.5) ## data where dose is 0.5

lm(len ~ supp, data = tg)

##

Call:

lm(formula = len ~ supp, data = tg)

##

Coefficients:

(Intercept) suppVC

13.23 -5.25

Since supp is coded as a factor with two levels in the data frame, lm() will know that supp
must be turned into a dummy variable (had supp had tree levels, then lm() would have created
two dummy variables).

The parameters in the model have a very simple interpretation: The intercept is simply the
average value of len in the OJ group and suppVC is the change in average when moving from
OJ to VC:

45

tg %>% group_by(supp) %>% summarise(mean(len))

A tibble: 2 x 2

supp `mean(len)`

<fct> <dbl>

1 OJ 13.2

2 VC 7.98

Next consider the whole dataset. We can treat dose as a numerical variable or we can think of
dose as a factor with three levels. We shall do the latter here:

ToothGrowth <- ToothGrowth %>%

mutate(dosef = factor(dose,

levels = c(0.5, 1, 2),

labels = c("LO", "ME", "HI")))

Because dosef is coded as a factor then the call

tooth2 <- lm(len ~ supp + dosef, data = ToothGrowth)

coef(tooth2)

(Intercept) suppVC dosefME dosefHI

12.45 -3.70 9.13 15.50

corresponds to the model
y = β0 + β1x1 + β2x2 + β3x3 + ε,

where x2 is 1 when dosef = ME and 0 otherwise and x3 is 1 when dose = HI and 0 otherwise.
The interpretation is straight forward: Think of a dummy variable as a way of switching a
parameter on and off. The mean effect, m(x1, x2, x3), becomes

m(x1, x2, x3) =

β0 if dose = LO and supp = OJ

β0 + β1 if dose = LO and supp = VC

β0 + β2 if dose = ME and supp = OJ

β0 + β1 + β2 if dose = ME and supp = VC

β0 + β3 if dose = HI and supp = OJ

β0 + β1 + β3 if dose = HI and supp = VC

The effect of the parameters on the mean value in each group can also be illustrated as in
Tab. 3.2.

Table 3.2: The effect of the parameters on the mean value in each group.
LO ME HI

OJ β0 β0 + β2 β0 + β3
VC β0 + β1 β0 + β1 + β2 β0 + β1 + β3

46

Hence β1 is the effect of going from OJ to VC and that effect is the same for any value of
dosef. Likewise, β2 is the effect of going from LO to ME and that effect is the same for any
value of supp.

Because of this structure where the parameter values are added together, we say we have an
additive model. Parallel profiles in Fig. 3.3 correspond to additivity of the effect of the
factors. As seen, the lines are not parallel for the high dose, hence the additive model may not
be suitable.

We can add the mean values obtained from the additive model, tooth2, as follows:

ToothGrowth %>%

mutate(pred2 = fitted(tooth2)) %>%

group_by(dosef, supp) %>%

summarise(mean(len), mean(pred2), mean(len - pred2))

A tibble: 6 x 5

Groups: dosef [3]

dosef supp `mean(len)` `mean(pred2)` `mean(len - pred2)`

<fct> <fct> <dbl> <dbl> <dbl>

1 LO OJ 13.2 12.5 0.775

2 LO VC 7.98 8.76 -0.775

3 ME OJ 22.7 21.6 1.11

4 ME VC 16.8 17.9 -1.11

5 HI OJ 26.1 28.0 -1.89

6 HI VC 26.1 24.2 1.89

An alternative to the additive model is then an interaction model

y = β0 + β1x1 + β2x2 + β3x3 + β4x1x2 + β5x1x3 + ε

where x1x2 is 1 when supp = VC and dosef = ME, and x1x3 is 1 when supp = VC and
dosef = HI.

The model parameters are estimated in Ras follows:

tooth3 <- lm(len ~ supp + dosef + supp * dosef, data = ToothGrowth)

coef(tooth3)

(Intercept) suppVC dosefME dosefHI suppVC:dosefME

13.23 -5.25 9.47 12.83 -0.68

suppVC:dosefHI

5.33

ToothGrowth <- ToothGrowth %>% mutate(pred3 = fitted(tooth3))

ToothGrowth %>%

group_by(dosef, supp) %>%

summarise(mean(len), mean(pred3))

A tibble: 6 x 4

Groups: dosef [3]

dosef supp `mean(len)` `mean(pred3)`

47

<fct> <fct> <dbl> <dbl>

1 LO OJ 13.2 13.2

2 LO VC 7.98 7.98

3 ME OJ 22.7 22.7

4 ME VC 16.8 16.8

5 HI OJ 26.1 26.1

6 HI VC 26.1 26.1

We see that the fitted values under the interaction model is the same as the group averages,
and as such the interaction model represents no simplification.

3.1.4 Analysis of covariance (ANCOVA) models

The purpose of ANCOVA is (usually) to compare two or more linear regression lines. It is a way
of comparing the y variable among groups while statistically controlling for variation in y caused
by variation in the x variable.

We could have chosen to think of dose as a numeric variable in the ToothGrowth data so that
we would have had one factor and one numerical variable, but since there are only three
different doses it would be a little speculative.

Example 3.1.3 [cricks] Walker (1962)?? studied the mating songs of male tree crickets. Each
wingstroke by a cricket produces a pulse of song, and females may use the number of pulses per
second to identify males of the correct species. Walker (1962) wanted to know whether the
chirps of the crickets Oecanthus exclamationis and Oecanthus niveus had different pulse rates.
See http: // www. biostathandbook. com/ ancova. html for details. He measured the
pulse rate of the crickets (variable pps) at a variety of temperatures (temp):

crick <- read.table("data/cricket.txt", header = TRUE)

summary(crick)

species temp pps

ex :14 Min. :17.2 Min. : 44.3

niv:16 1st Qu.:20.8 1st Qu.: 59.2

Median :24.0 Median : 76.2

Mean :23.6 Mean : 72.5

3rd Qu.:26.2 3rd Qu.: 84.5

Max. :30.4 Max. :101.7

head(crick, 4)

species temp pps

1 ex 20.8 67.9

2 ex 20.8 65.1

3 ex 24.0 77.3

4 ex 24.0 78.7

48

http://www.biostathandbook.com/ancova.html

●
●

●●
●●

●●
●
●

●
● ●

●

●
●●
● ●●

● ●●
●

● ●

● ●●
●

60

80

100

20 24 28

temp

pp
s

species

●

●

ex

niv

Figure 3.4: Sound of cricke: Pulse per second plotted against temperature for two species of
cricks.

ggplot(crick, aes(temp, pps, color = species)) + geom_point()

The main purpose here is to compare pps (more precisely the mean of pps) for the two species
when we take into account that the measurements were taken at different temperatures.
Consider this summary of data:

crick %>%

group_by(species) %>%

summarise(m_pps = mean(pps), m_temp = mean(temp))

A tibble: 2 x 3

species m_pps m_temp

<fct> <dbl> <dbl>

1 ex 85.6 25.8

2 niv 61.0 21.7

� �

A formal comparison (where we ignore temperature) can be made with a one–way ANOVA.
Introduce a dummy variable x1 with x1 = 1 if species = niv and 0 when species = ex.
The model and estimated parameters are then:

y = β0 + β1x1 + ε

crm1 <- lm(pps ~ species, data = crick)

tidy(crm1)

A tibble: 2 x 5

term estimate std.error statistic p.value

<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 85.6 3.17 27.0 1.36e-21

2 speciesniv -24.5 4.34 -5.66 4.64e- 6

49

The apparent large difference in group means of about 25 pps is, however, an artifact since the
two species were largely measured at different temperatures, and because pulse rate is highly
dependent on temperature as shown in Fig. 3.4.

1. This confounding variable means that we should worry that any difference in mean
pulse rate was caused by a difference in the temperatures at which you measured pulse
rate, as the average temperature for the O. exclamationis measurements was 3.6 ◦C
higher than for O. niveus.

2. We should also worry that O. exclamationis might have a higher rate than O. niveus at
some temperatures but not others.

We can control for or adjust for temperature with ANCOVA as follows: Fit two parallel
regression lines: Introduce x2 as the temperature:

y = β0 + β1x1 + β2x2 + ε

We can think of this as an additive model: The effect of changing temperature is the same
for each species.

crm2 <- lm(pps ~ species + temp, data = crick)

tidy(crm2)

A tibble: 3 x 5

term estimate std.error statistic p.value

<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -7.85 2.76 -2.85 8.36e- 3

2 speciesniv -9.90 0.786 -12.6 8.19e-13

3 temp 3.63 0.106 34.4 7.91e-24

Hence after controlling for the effect of temperature the difference in mean pps is about 10
units (compared to 25 when not controlling for temperature) which is also what the graphics
suggests.

ggplot(crick, aes(temp, pps, color = species)) +

geom_point() +

geom_line(aes(temp, predict(crm2)))

The interpretation of the model is that the mean difference in pps is about 10 for any
temperature. In this sense we can say that species and temperature have an
additive effect.

It is evident that the two regression lines are parallel, but suppose that was not the case: We
introduce a third dummy variable x3 which is 0 when species = ex and which is equal to
temperature when species = niv. Hence x3 is simply the elementwise product of x1 and x2,
i.e. xi3 = xi1xi2.

50

●
●

●●
●●

●●
●
●

●
● ●

●

●
●●
● ●●

● ●●
●

● ●

● ●●
●

60

80

100

20 24 28

temp

pp
s

species

●

●

ex

niv

Figure 3.5: Two parallel regression lines fitted to cricks data.

While not really relevant in this example, we notice that we can also work with non–parallel
regression lines:

y = β0 + β1x1 + β2x2 + β3 x3︸︷︷︸
x1x2

+ ε (3.4)

In this case, the effect of species depends on temperature. This can be seen by rearranging the
model formula:

y = β0 + (β1 + β3x2)x1 + β2x2 + ε (3.5)

As seen, the effect of species is β1 + β3xi2. So in this case a comparison of the species must in
general be made at specific temperatures (values of x2), see Sec. 3.2. We fit the model with:

crm3 <- lm(pps ~ species + temp + species:temp, data = crick)

tidy(crm3)

A tibble: 4 x 5

term estimate std.error statistic p.value

<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -11.0 4.22 -2.62 1.46e- 2

2 speciesniv -4.77 5.20 -0.916 3.68e- 1

3 temp 3.75 0.163 23.0 7.96e-19

4 speciesniv:temp -0.213 0.214 -0.998 3.28e- 1

and notice that the parameter estimate for speciesniv:temp is very close to zero
corresponding to that the two regression lines are close to being parallel (as the graphics
suggests).

51

3.2 Prediction, estimates and contrasts, LSmeans

Suppose a linear model contains the regression parameters β1, . . . , βp. One is often interested in
estimating a weighted sum of the model parameters

θ = λ1β1 + λ2β2 + · · ·+ λpβp =

p∑
j=1

λjβj

where λ = (λ1, . . . , λp) is a vector of known weights. We shall call such a weighted sum for a
linear predictor. After fitting the model the estimated linear predictor is

θ̂ =

p∑
j=1

λjβ̂j

Example: Calculate the estimated mean value on supp = VC and supp = OJ for dosef = ME.
We compute the prediction by creating a new data frame which contains the values for the
situations where we wish to compute the prediction:

coef(tooth2)

(Intercept) suppVC dosefME dosefHI

12.45 -3.70 9.13 15.50

new.data <- data.frame(supp = c("VC", "OJ"), dosef = "ME")

new.data

supp dosef

1 VC ME

2 OJ ME

predict(tooth2, newdata = new.data)

1 2

17.88 21.58

For the first observation where supp = VC for dosef = ME we get a predicted length of 17.88
while the predicted length is 21.58 for supp = OJ for dosef = ME.

An easier approach is as follows:

library(doBy)

at <- list(supp = c("VC", "OJ"), dosef = "ME")

K <- LE_matrix(tooth2, at = at)

K

(Intercept) suppVC dosefME dosefHI

[1,] 1 1 1 0

[2,] 1 0 1 0

linest(tooth2, K = K)

Coefficients:

estimate se df t.stat p.value

52

(Intercept) 12.455 0.988 56.000 12.603 0

suppVC -3.700 0.988 56.000 -3.744 0

dosefME 9.130 1.210 56.000 7.543 0

dosefHI 15.495 1.210 56.000 12.802 0

K2 <- LE_matrix(tooth2, at=new.data)

K2

(Intercept) suppVC dosefME dosefHI

[1,] 1 1 1 0

[2,] 1 0 1 0

[3,] 1 1 1 0

[4,] 1 0 1 0

Next, suppose the task is to compute the difference between dosef = HI and dosef = ME.
This can be obtained as a difference between two linear predictors. We notice that this
difference does not depend on supp and we get

lambda <- c(0, 0, -1, 1)

sum(coef(tooth2) * lambda)

[1] 6.365

In practice we always want standard errors of such quantities:

library(doBy)

esticon(tooth2, L = lambda)

beta0 Estimate Std.Error t.value DF Pr(>|t|) Lower Upper

[1,] 0.00e+00 6.37e+00 1.21e+00 5.26e+00 5.60e+01 2.35e-06 3.94e+00 8.79

3.2.1 Estimation averaged across linear predictors

Suppose the task is to compute the mean response for dosef = ME averaged across the two
supp methods.

We can obtain this by specifying λ manually (remembering that the coefficient for supp = OJ
is set to zero):

lambda <- c(1, 1 / 2, 1, 0)

esticon(tooth2, lambda)

beta0 Estimate Std.Error t.value DF Pr(>|t|) Lower Upper

[1,] 0.000 19.735 0.856 23.058 56.000 0.000 18.020 21.4

Such an average is called population averaged mean or population mean or
least squares mean or LSmean

53

library(doBy)

at <- list(dosef = "ME")

LSmeans(tooth2, at = at)

Coefficients:

estimate se df t.stat p.value

estimate 19.735 0.856 56.000 23.058 0

The rule is that

1. covariates not listed in the at–argument are fixed at their average and

2. an average is calculated over the levels of factors not listed in the at–argument.

To obtain the population means for all 3 levels of dosef when supp = OJ we do:

LSmeans(tooth2, effect = "dosef", at = list(supp = "OJ"))

Coefficients:

estimate se df t.stat p.value

[1,] 12.455 0.988 56.000 12.603 0

[2,] 21.585 0.988 56.000 21.841 0

[3,] 27.950 0.988 56.000 28.281 0

LSmeans(crm2, effect = "species")

Coefficients:

estimate se df t.stat p.value

[1,] 77.772 0.533 27.000 145.841 0

[2,] 67.874 0.493 27.000 137.639 0

LSmeans(crm2, effect = "species", at = list(temp = 27))

Coefficients:

estimate se df t.stat p.value

[1,] 90.094 0.500 27.000 180.218 0

[2,] 80.197 0.717 27.000 111.836 0

3.2.2 Summary information – summary()

summary(crm2)

##

Call:

lm(formula = pps ~ species + temp, data = crick)

##

Residuals:

Min 1Q Median 3Q Max

54

-3.129 -1.296 -0.175 0.939 3.747

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.855 2.761 -2.85 0.0084 **

speciesniv -9.898 0.786 -12.59 8.2e-13 ***

temp 3.628 0.106 34.38 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 1.81 on 27 degrees of freedom

Multiple R-squared: 0.99,Adjusted R-squared: 0.989

F-statistic: 1.28e+03 on 2 and 27 DF, p-value: <2e-16

There is a detail about summary(): A call to summary() returns an object (which is a list):

crm2.sum <- summary(crm2)

class(crm2.sum)

[1] "summary.lm"

names(crm2.sum)

[1] "call" "terms" "residuals" "coefficients"

[5] "aliased" "sigma" "df" "r.squared"

[9] "adj.r.squared" "fstatistic" "cov.unscaled"

These elements of the list can be accessed directly using $ and in some cases by accessor
methods:

coef(crm2)

(Intercept) speciesniv temp

-7.855 -9.898 3.628

coef(crm2.sum)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.855 2.7605 -2.845 8.365e-03

speciesniv -9.898 0.7861 -12.591 8.193e-13

temp 3.628 0.1055 34.378 7.912e-24

Table contains

• Parameter estimates

• Standard errors of estimates

• Test statitics for testing whether these parameters are zero

• Corresponding p–values

55

Notice that coef() acts differently when applied to a summary.lm and a lm object.

sigma(crm2)

[1] 1.805

3.3 Prediction and confidence intervals

3.3.1 Confidence interval – confint()

Confidence interval β̂i ± 1.96se(β̂i):

confint(crm2)

2.5 % 97.5 %

(Intercept) -13.519 -2.190

speciesniv -11.511 -8.285

temp 3.411 3.844

3.4 Testing hypotheses for linear models

Effects of factors are described by the “differences” their levels “cause” in the response.
Classically, the term “contrast” is used for such differences. Consider again the additive model
for the bacteria data

tooth2

##

Call:

lm(formula = len ~ supp + dosef, data = ToothGrowth)

##

Coefficients:

(Intercept) suppVC dosefME dosefHI

12.45 -3.70 9.13 15.50

An initial step is usually to test for removal of each effect by drop1(); i.e.

drop1(tooth2, test = "F")

Single term deletions

##

Model:

len ~ supp + dosef

56

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 820 165

supp 1 205 1026 176 14.0 0.00043 ***

dosef 2 2426 3247 244 82.8 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We have concluded that there is a significant effect of having dosef in the model. Next we go
one step further and try to find out where this difference comes from: The glht()multcomp
function in the multcomp package can do this and so can the esticondoBy from doBy.

We can compute all pairwise differences as:

library(multcomp)

ddd <- glht(tooth2, mcp(dosef = "Tukey"))

ddd

Multiple Comparisons of Means: Tukey Contrasts

Linear Hypotheses:

Estimate

ME - LO == 0 9.13

HI - LO == 0 15.50

HI - ME == 0 6.37

We can get confidence intervals for the contrasts with

Multiplicity adjusted confidence intervals:

confint(ddd)

Unadjusted confidence intervals:

confint(ddd, calpha = univariate_calpha())

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr

ME - LO == 0 9.130 6.215 12.045

HI - LO == 0 15.495 12.580 18.410

HI - ME == 0 6.365 3.450 9.280

If we want to control the familywise error rate use

57

summary(ddd, test = adjusted())

##

Simultaneous Tests for General Linear Hypotheses

##

Multiple Comparisons of Means: Tukey Contrasts

##

##

Fit: lm(formula = len ~ supp + dosef, data = ToothGrowth)

##

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

ME - LO == 0 9.13 1.21 7.54 <1e-05 ***

HI - LO == 0 15.50 1.21 12.80 <1e-05 ***

HI - ME == 0 6.37 1.21 5.26 <1e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Adjusted p values reported -- single-step method)

same as summary(ddd)

Similarly, we can compute all differences relative to the reference level:

ddd2 <- glht(tooth2, mcp(dosef = "Dunnett"))

summary(ddd2)

Model comparison with lm()

crm22 <- lm(pps ~ species + temp + species:temp, data = crick)

crm2

##

Call:

lm(formula = pps ~ species + temp, data = crick)

##

Coefficients:

(Intercept) speciesniv temp

-7.85 -9.90 3.63

crm22

##

Call:

lm(formula = pps ~ species + temp + species:temp, data = crick)

##

Coefficients:

(Intercept) speciesniv temp speciesniv:temp

-11.041 -4.766 3.751 -0.213

58

The additive model is a submodel of the interaction model: The additive model can be formed
by setting certain parameters to zero in the interaction model.

Most statistical programs produce standard output tables providing tests of several hypotheses.
We will consider three of these tables, which are available in R(Tab. 3.3).

Table 3.3: Three commonly used tables.
R-function Description
anova(model) Sequential ANOVA table.
drop1(model) Dropping effects.
coef(summary(model)) Parameter estimate table.

3.4.1 Dropping each term in turn using drop1()

The drop1() function provides a table, where effects are removed in turn – assuming that all
the other effects are contained in the model. Consider

drop1(crm2, test = "F")

Single term deletions

##

Model:

pps ~ species + temp

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 88 38.3

species 1 517 604 94.1 159 8.2e-13 ***

temp 1 3850 3938 150.3 1182 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The first row is a test for removing species from the model pps ~ species + temp; the
second row is a test for removing temp from the model pps ~ species + temp. Next consider

drop1(crm22, test = "F")

Single term deletions

##

Model:

pps ~ species + temp + species:temp

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 84.7 39.1

species:temp 1 3.24 88.0 38.3 1 0.33

Notice: When applying the drop1() function to the interaction model only the test for the
interaction is returned: This is because R obeys the principle of marginality for factors: Do not
test for a main effect if this is contained in higher order interactions.

59

3.4.2 Investigating parameter estimates using coef()

Some insight can be gained by looking at the parameter estimates, their standard errors and
derived quantities:

coef(summary(crm22))

Estimate Std. Error t value Pr(>|t|)

(Intercept) -11.0408 4.2219 -2.6152 1.465e-02

speciesniv -4.7658 5.2045 -0.9157 3.682e-01

temp 3.7514 0.1628 23.0380 7.961e-19

speciesniv:temp -0.2133 0.2138 -0.9975 3.277e-01

However, care must be taken here: Each test is a test for dropping a term from the model
assuming that all other parameters are present. For example spieciesniv is the the difference
in intercept between the niv and the ex spicies. It appears that this parameter can be removed
from the model with two different slopes. Hence the test is really a test for a model with
common intercept and different slopes against a model with different intercepts and different
slopes. But a model with common intercept (that is when temp = 0) depends on the
temperature scale: If temperature is changed from Celcisus to Fahrenheit, then the intercept
will change. To drive home this point further, consider

coef(summary(crm2))

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.855 2.7605 -2.845 8.365e-03

speciesniv -9.898 0.7861 -12.591 8.193e-13

temp 3.628 0.1055 34.378 7.912e-24

In a model with common slopes, there is evidently a difference in the intercepts - as Fig. 3.5,
p. 51 also suggests.

3.4.3 Which table to use?

All three tables provide a collection of tests. The most useful table is the table (produced by
drop1() in R) because it tests for each effect in turn whether it is necessary. This feature is
especially useful, if one starts with a large model containing several effects.

The sequential anova table is less useful because of the dependence of the tests on the
sequence of the model terms.

The least useful table (with respect to testing) is the parameter estimate table. It provides
(Wald) tests that each parameter is equal to zero. This can only be used as a test that the
complete effect can be dropped, if either the effect is a factor with only two levels or a
continuous covariate.

60

3.5 Underlying assumptions about linear models

The lm() function will fit a linear model to data as has been illustrated above. Now we shall be
more precise about what a linear model is.

We have observed data y1, . . . , yn, and for each yi there are p explanatory variables
xi1, xi2, . . . , xip.

We shall make assumptions about the random process that has generated these data
(sometimes called the data generating process):

1. We shall assume that each yi is a realization of a normal distributed random
variable Yi where

Yi ∼ N(µi, σ
2),

such that the mean of Yi is E(Yi) = µi and the variance of Yi is Var(Yi) = σ2 for
i = 1, . . . , n. Notice that we assume constant variance, i.e. the variance of each Yi
is the same (and does for example not depend on the explanatory variables), namely σ2.

2. We shall assume that that the mean µi can be written as a weighted sum of the
covariates

µi = β1xi1 + β2xi2 + · · ·+ βpxip (3.6)

Often we choose xi1 = 1 for all i such that β1 is the intercept .

3. We shall assume that the Yi’s are independent such that Cov(Yi, Yj) = 0.

These assumptions are very important as they make it possible to perform statistical inference
because the assumptions enables us to estimate the uncertainty in the estimated parameters
(the so-called standard error of a parameter estimate).

From a practical modelling perspective focus is almost always on the form of the mean µi in
Eq. (3.6) but there are many other underlying assumptions: normality, constant variance,
independence.

Notice that an equivalent way of writing the first two assumptions is that

Yi = β1xi1 + β2xi2 + · · ·+ βpxip + εi

where εi ∼ N(0, σ2).

We have seen that linear, multiple and polynomial regression falls under the category of linear
models as do ANOVA and ANCOVA models. Section Sec. 3.5.1 discusses how to check if these
assumptions are fulfilled.

61

●●

●●●●

●●●●

●
●

●●

●
●●●

●●

●
●●

●

●
●

●
●●●

60

80

100

60 80 100

pps

fit
te

d(
cr

m
3)

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

−4

−2

0

2

60 80 100

fitted(crm3)
re

si
du

al
s(

cr
m

3)

species

●

●

ex

niv

Figure 3.6: Diagnostic plots. On the left, the observed against the fitted values are shown. On
the right, the fitted values against the raw residuals are shown.

3.5.1 Model checking – residuals etc

Checking a model is in many ways an art more than a science. Typically, it cannot be verified
that the assumptions are satisfied. Instead, it can sometimes be demonstrated that the
assumptions are not satisfied. Although it takes quite some experience to decide when a model
does not fit adequately to data.

When we examine if a model fits the data we typically focus on the residuals. The residuals
are computed as the observed minus the fitted values, and hence the residuals measure how far
off the model is compared to the actual observed data.

ri = yi − µ̂i

If the model fits to data, then it is possible to show that the ri’s are approximately N(0, σ2)
distributed and approximately independent.

A minimum is to make the plots in Fig. 3.6.

Points should scatter randomly around the line (with no structure, e.g. the variance must not
increase) if the models hold. This is not the case here, and moreover the residuals show a
clustering according to treatment.

Figure Fig. 3.7 shows some example of residual plots when the model assumptions are not met.

(a) When things look right: A plot of what residuals could look like when the model
assumptions are met.

(b) When the mean is not adequately specified: If the systematic part of the model is not
adequate, i.e. if it does not account for all systematic variation in data, this can
sometimes be seen when plotting the residuals against the fitted values. Remedy: add a
covariate, here the square of the x-variable.

62

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●
●
●
●

●

●

●
●

0 20 40 60 80 100

−
2

−
1

0
1

2

(a) no model deficiency

●

●

●

●

●●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●●

●

●
●
●●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●●●
●

●

●

●
●

0 20 40 60 80
−

2
−

1
0

1
2

(b) a quadratic term is missing

●
●●●●

●
●

●

●●
●
●
●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

1 2 3 4 5 6 7

−
2

−
1

0
1

2
3

(c) errors are heteroskedastic

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

−
1

0
1

2
3

(d) distribution of errors is skewed

●

●

●
●●

●

●
●
●

●

●
●

●
●●●

●

●

●●
●●

●●
●
●
●●
●

●

●●●

●

●●

●

●

●●
●

●

●●

●●

●

●

●

●●
●

●

●●●

●●

●●

●

●

●

●●
●

●

●
●

●

●
●
●

●
●

●
●

●

●●●
●●●●

●●

●●
●●
●

●

●
●
●●●

●

●

22 24 26 28 30 32

−
2

−
1

0
1

2

(e) observations are correlated

Figure 3.7: Examples of model deficiencies.

63

(c) When the variance is not constant: In some cases the variability of data increases with
the mean such that the variance is not constant but increases with the mean. Figure 3.7,
(c), shows what the residuals could look in this case. Remedy: Transform the response or
use a generalized linear model with a variance function depending on the mean.

(d) When data are not normal: Fig. 3.7, (d), shows what residuals could look like if data
are not normal (but, in this case, right skewed). Remedy: use a different distribution for
the response with a generalized linear model or transform the response.

(e) When observations are not independent: Fig. 3.7, (e), shows what residuals could
look like if data are not indpendent. Remedy: general advice: account for the dependency
in the model, i.e. do not use a linear model, but for example a mixed model (see
Chap. ??).

3.6 Coefficient of determination etc

3.7 Colinearity

3.8 Model specification and model formulae

We have seen different specifications on the right hand side of a model formula in R, i.e. the
part that comes after the tilde (~).

We shall describe such specifications in more details based on this dataset where a and b are factors
and x, y and z are variables:

dat2 <- cbind(expand.grid(a = c("a1", "a2"), b = c("b1", "b2")),

x = 1:4, y = 11:14, z = 5:8)

dat2

a b x y z

1 a1 b1 1 11 5

2 a2 b1 2 12 6

3 a1 b2 3 13 7

4 a2 b2 4 14 8

• The right hand side of a formula consists of a series of terms separated by “+” operators.

• A term consists of variable and factor names separated by “:” operators and a term is
interpreted as the interaction of all the variables and factors appearing in the term.

• The “*” operator can be seen as a shortcut for creating many terms on the fly: Writing e.g.
a*x is by R understood to be a+x+a:x.

64

From a formula and a dataset, the model matrix can be generated using model.matrix(). Below
we use prmatrix() only to remove unimportant output.

prmatrix(model.matrix(~a + b:x, data = dat2))

(Intercept) aa2 bb1:x bb2:x

1 1 0 1 0

2 1 1 2 0

3 1 0 0 3

4 1 1 0 4

Default is to include a column of ones in the model matrix. This can be overwritten with

prmatrix(model.matrix(~ -1 + a + b:x, data = dat2))

aa1 aa2 bb1:x bb2:x

1 1 0 1 0

2 0 1 2 0

3 1 0 0 3

4 0 1 0 4

What does “a:a” now mean in this model language?

It means exactly the interaction between a and a which is a itself:

prmatrix(model.matrix(~ a : a, data = dat2))

(Intercept) aa2

1 1 0

2 1 1

3 1 0

4 1 1

prmatrix(model.matrix(~ x : x, data = dat2))

(Intercept) x

1 1 1

2 1 2

3 1 3

4 1 4

In addition to ”a * b” being interpreted as ”a + b + a : b” we have the following

• The ”^” operator indicates crossing to the specified degree.

For example ”(a + b + c)^2” is identical to ”(a + b + c)*(a + b + c)” which in turn
expands to a formula containing the main effects for ”a”, ”b” and ”c” together with their
second-order interactions.

65

• The ”-” operator removes the specified terms, so that ”(a + b + c)^2 - a:b” is identical
to ”a + b + c + b:c + a:c”. It can also used to remove the intercept term: when fitting
a linear model the form ”y ~ x - 1” specifies a line through the origin. A model with no
intercept can be also specified as ”y ~ x + 0” or ”y ~ 0 + x”.

3.8.1 Formulae with arithmetic expressions

• Formulae can also involve arithmetic expressions. The formula ”log(y) ~ a + log(x)” is
legal.

• When such arithmetic expressions involve operators which are also used symbolically in model
formulae, there can be confusion between arithmetic and symbolic operator use.

• To avoid confusion, the function I() is used to bracket those portions of a model for-
mula where operators are used in their arithmetic sense. For example, in the formula
”y ~ a + I(x + z)”, the term ”x + z” is to be interpreted as the sum of ”x” and ”z”.

Example

prmatrix(

model.matrix(~ x + z + I(x + z) + I(x^2) + sin(x + z) + log(x),

data = dat2))

(Intercept) x z I(x + z) I(x^2) sin(x + z) log(x)

1 1 1 5 6 1 -0.2794 0.0000

2 1 2 6 8 4 0.9894 0.6931

3 1 3 7 10 9 -0.5440 1.0986

4 1 4 8 12 16 -0.5366 1.3863

3.9 Polynomial regression

The function poly() is convenient for specifying a polynomial:

66

p1 <- prmatrix(with(dat2, poly(x, 3)))

1 2 3

[1,] -0.6708 0.5 -0.2236

[2,] -0.2236 -0.5 0.6708

[3,] 0.2236 -0.5 -0.6708

[4,] 0.6708 0.5 0.2236

p2 <- prmatrix(with(dat2, poly(x, 3, raw = T)))

1 2 3

[1,] 1 1 1

[2,] 2 4 8

[3,] 3 9 27

[4,] 4 16 64

In the first case, the columns are orthogonal; in the second case they are not (but the two matrices
span the same space).

A polynomium can put into a model formula in different ways:

prmatrix(model.matrix(~ x + I(x^2), data = dat2))

(Intercept) x I(x^2)

1 1 1 1

2 1 2 4

3 1 3 9

4 1 4 16

prmatrix(model.matrix(~ poly(x, 2), data = dat2))

(Intercept) poly(x, 2)1 poly(x, 2)2

1 1 -0.6708 0.5

2 1 -0.2236 -0.5

3 1 0.2236 -0.5

4 1 0.6708 0.5

Consider the polynomial model for the the potatoes data in Sec. 3.1.1

pot1_lw2

##

Call:

lm(formula = weight ~ length + width + I(width^2), data = potatoes)

##

Coefficients:

(Intercept) length width I(width^2)

8.8400 0.8310 -2.6180 0.0681

corresponding to the mathematical formulation

yi = β0 + β1xi1 + β2xi2 + β3x
2
i2 + εi.

67

If we have a linear relation between y and x, i.e. y = f(x) = α0+α1x then the interpretation is that
when x changes from x to x+h then y changes from α0+α1x to α0+α1(x+h) = α0+α1x+α1h.
Hence the change on the y–scale is f(x + h) − f(x) = α1h which is caused by a change on the
x–scale by h. This effect is the same no matter which x we start with.

If instead f(x) = α0 + α1x+ α2x
2 the interpretation is more involved. We have

f(x+ h) = α0 + α1(x+ h) + α2(x+ h)2

= α0 + α1x+ α2x
2 + α1h+ α2(h

2 + 2hx)

= f(x) + α1h+ α2(h
2 + 2hx)

Hence a change on the x-scale from x to x+h means a change on the y scale of f(x+h)−f(x) =
α1h+ α2(h

2 + 2hx) and this amount depends (linearly) on the value of x.

This change (along with standard errors) can be calculated in different ways, for example as follows.
First, let β3 = α2 and β2 = α1.

library(car)

deltaMethod(pot1_lw2, "b2*h + b3*(h^2 + 2*x*h)",

parameterNames = c("b0", "b1", "b2", "b3"),

constants = c(x = 5, h = 1))

Estimate SE 2.5 % 97.5 %

b2 * h + b3 * (h^2 + 2 * x * h) -1.868 0.445 -2.74 -0.9963

x <- 5; h <-1

doBy::linest(pot1_lw2, c(0, 0, h, h^2 + 2*x*h))

Coefficients:

estimate se df t.stat p.value

estimate -1.868 0.445 16.000 -4.199 0

Let us se the effect for a range of different x-values (speed)

68

f <- function(x.val){
deltaMethod(pot1_lw2, "b2*h + b3*(2*x*h + h^2)",

parameterNames = c("b0", "b1", "b2", "b3"),

constants = c(x = x.val, h = 1))

}
widths <- seq(0, 50, by = 10)

out <- lapply(widths, f)

out <- do.call(rbind, out)

out <- as.data.frame(cbind(out, widths))

rownames(out) <- NULL

out

Estimate SE 2.5 % 97.5 % widths

1 -2.5499 0.5583 -3.6442 -1.4556 0

2 -1.1869 0.3372 -1.8478 -0.5260 10

3 0.1761 0.1828 -0.1823 0.5345 20

4 1.5391 0.2664 1.0170 2.0612 30

5 2.9021 0.4756 1.9698 3.8343 40

6 4.2651 0.7066 2.8802 5.6500 50

names(out)[c(3, 4)] <- c("lwr", "upr")

out

Estimate SE lwr upr widths

1 -2.5499 0.5583 -3.6442 -1.4556 0

2 -1.1869 0.3372 -1.8478 -0.5260 10

3 0.1761 0.1828 -0.1823 0.5345 20

4 1.5391 0.2664 1.0170 2.0612 30

5 2.9021 0.4756 1.9698 3.8343 40

6 4.2651 0.7066 2.8802 5.6500 50

The effect of increasing width by one unit from 10 to 11 is -1.1869 while the effect of increasing
width by one unit from 20 to 21 is 0.1761.

Notice that the standard errors (confidence bands) of these predictions increase the further x moves
away from the center of data. See Fig.3.8.

qplot(widths, Estimate, data = out) +

geom_ribbon(aes(ymin = lwr, ymax = upr), alpha = .2)

69

●

●

●

●

●

●

−4

−2

0

2

4

6

0 10 20 30 40 50

widths

E
st

im
at

e

Figure 3.8: Applying the delta method to a polynomial regression. Gray indicate 95 %
confidence bands.

3.9.1 Summaries using broom

The standard Rsummary() is as follows:

crm22.sum <- summary(crm22)

crm22.sum

##

Call:

lm(formula = pps ~ species + temp + species:temp, data = crick)

##

Residuals:

Min 1Q Median 3Q Max

-3.703 -1.332 -0.124 0.867 3.628

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -11.041 4.222 -2.62 0.015 *

speciesniv -4.766 5.204 -0.92 0.368

temp 3.751 0.163 23.04 <2e-16 ***

speciesniv:temp -0.213 0.214 -1.00 0.328

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 1.81 on 26 degrees of freedom

Multiple R-squared: 0.99,Adjusted R-squared: 0.989

F-statistic: 854 on 3 and 26 DF, p-value: <2e-16

Shorter summaries using the broom package:

70

broom::tidy(crm22)

A tibble: 4 x 5

term estimate std.error statistic p.value

<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -11.0 4.22 -2.62 1.46e- 2

2 speciesniv -4.77 5.20 -0.916 3.68e- 1

3 temp 3.75 0.163 23.0 7.96e-19

4 speciesniv:temp -0.213 0.214 -0.998 3.28e- 1

broom::glance(crm22)

A tibble: 1 x 11

r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC

<dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <dbl> <dbl>

1 0.990 0.989 1.81 854. 4.39e-26 4 -58.1 126. 133.

... with 2 more variables: deviance <dbl>, df.residual <int>

sigma(crm22)

[1] 1.805

Output contains:

• Estimate σ̂ of the residual standard error.

• Degrees of freedom are number of observations minus number of regression parameters

• Coefficient of determination (R2 and adjusted R2): Percentage of variation in data explained
by the model.

• F–statistic: The result from comparing the model with the simplest possible model, namely
the model with 1 on the right hand side.

3.10 What if the model assumptions are not satisfied?

Consider this setting: A one way anova model for investigating, say a treatment versus a control.
We compare the means µ1 and µ2. Since we make the experiment by simulation, we know the
answer: We choose µ1 and µ2 to be identical:

71

N <- 5

mu1 <- mu2 <- 7

sd1 <- 1; sd2 <- 1

sd <- c(rep(sd1, N), rep(sd2, N))

mu <- c(rep(mu1, N), rep(mu2, N))

fact <- factor(c(rep("ctl", N), rep("trt", N)))

fact

[1] ctl ctl ctl ctl ctl trt trt trt trt trt

Levels: ctl trt

y <- rnorm(2 * N, mean = mu, sd = sd)

y

[1] 6.731 6.494 9.077 7.670 7.204 6.963 7.116 6.744 6.325 7.942

Compare treatment with control; is there a significant difference between means (short answer: no,
because we generated data that way). Null hypothesis: µ1 = µ2; alternative hypothesis: µ1 6= µ2.

At least two ways of making this test in R:

a <- t.test(y ~ fact); a

##

Welch Two Sample t-test

##

data: y by fact

t = 0.79, df = 6.4, p-value = 0.5

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.8573 1.6919

sample estimates:

mean in group ctl mean in group trt

7.435 7.018

p <- a$p.value

lm(y ~ fact) %>% summary() %>% coef()

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.4353 0.3744 19.8593 4.306e-08

facttrt -0.4173 0.5295 -0.7881 4.534e-01

Sometimes a hypothesis is rejected; even if the hypothesis is true. This is called an error of type I.
If we us a 5% significance level, then there is 5% probability of make an error of type I.

If we redo a study 100 times, then even if the hypothesis is true, we will in 5 cases (on average)
reject the hypothesis.

72

Nsim <- 1000

p.vec <- rep(0, Nsim)

for(i in 1:Nsim){
y <- rnorm(2 * N, mean = mu, sd = sd)

a <- t.test(y ~ fact, var.equal = TRUE)

p.vec[i] <- a$p.value

}

We see that we reject the null hypothesis about the right number of times:

c(sum(p.vec < 0.10), sum(p.vec < 0.05), sum(p.vec < 0.01)) / Nsim

[1] 0.091 0.044 0.010

3.10.1 Non–normality

Let now the setting be that observations do not come from independent normal distributions but
from independent Poisson distributions:

Nsim <- 1000

p.vec <- rep(0, Nsim)

for(i in 1:Nsim){
y <- rpois(2 * N, lambda = mu)

a <- t.test(y ~ fact, var.equal = TRUE)

p.vec[i] <- a$p.value

}

We see that we reject the null hypothesis about the right number of times:

c(sum(p.vec < 0.10), sum(p.vec < 0.05), sum(p.vec < 0.01)) / Nsim

[1] 0.104 0.062 0.009

3.10.2 Non–constant variance

Now let us imagine that the standard deviation in the treatment group is much larger than in the
control group.

73

N <- 5

sd1 <- 1; sd2 <- 5

fact <- factor(c(rep("ctl", N), rep("trt", N)))

sd <- c(rep(sd1, N), rep(sd2, N))

Nsim <- 1000

p.vec <- rep(0, Nsim)

for(i in 1:Nsim){
y <- rnorm(2 * N, mean = mu, sd = sd)

a <- t.test(y ~ fact, var.equal = TRUE)

p.vec[i] <- a$p.value

}

We still reject the hypthesis about the right number of times, but not quite: We reject the hypothesis
too often. This means that we are more likely to erroneously claim that we found a significant
difference that is not there.

c(sum(p.vec < 0.10), sum(p.vec < 0.05), sum(p.vec < 0.01)) / Nsim

[1] 0.126 0.075 0.025

Now make make the standard deviation in one group much much larger than in the other:

N <- 5

sd1 <- 1; sd2 <- 25

fact <- factor(c(rep("ctl", N), rep("trt", N)))

sd <- c(rep(sd1, N), rep(sd2, N))

Nsim <- 1000

p.vec <- rep(0, Nsim)

for(i in 1:Nsim){
y <- rnorm(2 * N, mean = mu, sd = sd)

a <- t.test(y ~ fact, var.equal = TRUE)

p.vec[i] <- a$p.value

}

We reject the null hypothesis too often

c(sum(p.vec < 0.10), sum(p.vec < 0.05), sum(p.vec < 0.01)) / Nsim

[1] 0.127 0.075 0.031

74

Tentative conclusion: We need a somewhat extreme situation before the tests become really mis-
leading (when it comes to tests).

3.10.3 Non–independence

Suppose the variance of all random variables is σ2 (constant variance), observations in different
groups are independent but observations within each group are all positively correlated with corre-
lation ρ.

N <- 5

rho <- 0.8

Vi <- matrix(rho, nr = N, nc = N)

diag(Vi) <- 1

V <- kronecker(diag(1,2), Vi)

V

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1.0 0.8 0.8 0.8 0.8 0.0 0.0 0.0 0.0 0.0

[2,] 0.8 1.0 0.8 0.8 0.8 0.0 0.0 0.0 0.0 0.0

[3,] 0.8 0.8 1.0 0.8 0.8 0.0 0.0 0.0 0.0 0.0

[4,] 0.8 0.8 0.8 1.0 0.8 0.0 0.0 0.0 0.0 0.0

[5,] 0.8 0.8 0.8 0.8 1.0 0.0 0.0 0.0 0.0 0.0

[6,] 0.0 0.0 0.0 0.0 0.0 1.0 0.8 0.8 0.8 0.8

[7,] 0.0 0.0 0.0 0.0 0.0 0.8 1.0 0.8 0.8 0.8

[8,] 0.0 0.0 0.0 0.0 0.0 0.8 0.8 1.0 0.8 0.8

[9,] 0.0 0.0 0.0 0.0 0.0 0.8 0.8 0.8 1.0 0.8

[10,] 0.0 0.0 0.0 0.0 0.0 0.8 0.8 0.8 0.8 1.0

Nsim <- 1000

Y <- MASS::mvrnorm(Nsim, mu = mu, Sigma = V)

head(Y)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 7.044 7.443 6.854 6.626 7.834 6.336 6.396 6.050 6.206 7.155

[2,] 7.506 7.529 8.018 7.504 6.748 6.449 7.394 6.389 7.506 7.015

[3,] 7.371 8.141 7.811 7.948 8.615 6.544 6.614 6.289 6.357 6.933

[4,] 7.929 7.991 7.870 7.778 7.711 7.821 8.420 8.455 7.901 8.547

[5,] 6.511 6.600 6.321 6.973 6.656 8.584 7.357 7.728 7.879 8.120

[6,] 7.621 6.508 6.470 7.448 7.384 7.446 6.824 7.392 7.160 7.830

p.vec <- rep(0, Nsim)

for(i in 1:Nsim){
y <- Y[i,]

a <- t.test(y ~ fact, var.equal = T)

p.vec[i] <- a$p.value

}

75

Now things go terribly wrong:

c(sum(p.vec < 0.10), sum(p.vec < 0.05), sum(p.vec < 0.01)) / Nsim

[1] 0.704 0.643 0.497

We reject a true null hypothesis way too often, so the risk of erroneously concluding that there is
a significant difference (when there is not) is very large.

The reason for this is that if we ignor are positive correlation then we pretend to have more
information than we really have:

Just look at the sample mean from group i (treatment or control):

ȳi =
1

N

N∑
j=1

yij

The variance of ȳi is

Var(ȳi) =
1

N2
Var(

N∑
j=1

yij)

If observations are independent then the variance of the sum is the sum of the variances and we
get

Var(ȳi) =
1

N2
Nσ2 = σ2/N

But this is not the case when observations are not independent.

It is always true that

Var(x1 + x2 + · · ·+ xn) =

N∑
i=1

N∑
j=1

Cov(xi, xj)

In the specific case we get

Var(
N∑
j=1

yij) = Nσ2 +N(N − 1)σ2ρ/2 = Nσ2(1 + (N − 1)ρ/2)

so

Var(ȳi) =
1

N2
Nσ2 =

1

N
σ2(1 + (N − 1)ρ/2)

which is larger than σ2/N .

It is interesting to ask the question: How many independent observations, say M , do the N
correlated observations correspond to? That is, which M will give

σ2

M
=

1

N
σ2(1 + (N − 1)ρ/2)

76

and the answer is

M =
N

1 + (N − 1)ρ/2

So for N = 5 and ρ = 0.8 we get

N <- 5

rho <- .8

M <- N / (1 + (N - 1) * rho / 2)

M

[1] 1.923

so we have about “two independent pieces of information” and not 5 as we pretended to have.

3.11 The mathematics of linear models

3.11.1 What is a linear model (II) - the assumptions

The lm() function will fit a linear model to data as has been illustrated above. Now we shall be
more precise about what a linear model is.

From the perspective of data, the situation is: We have observed data or responses y1, . . . , yN .
To each yi there are p explanatory variables xi1, xi2, . . . , xip.

We shall make assumptions about the random process that has generated these data:

1. We shall assume that each yi is a realization of a normal distributed random variable
Yi where

Yi ∼ N(µi, σ
2),

such that the mean of Yi is E(Yi) = µi and the variance of Yi is Var(Yi) = σ2 for i =
1, . . . , N . Notice that we assume constant variance, i.e. the variance of each Yi is the
same, namely σ2.

2. We shall assume that that the mean µi can be written as a weighted sum of the covariates

µi = xi1β1 + xi2β2 + · · ·+ xipβp (3.7)

3. We shall assume that the Yi’s are independent such that Cov(Yi, Yj) = 0.

From a practical modelling perspective focus is almost always on the form of the mean µi in (3.7)
but there many other underlying assumptions: normality, constant variance, independence.

77

Notice that an equivalent way of writing the first two assumptions is that

Yi = xi1β1 + xi2β2 + · · ·+ xipβp + ei

where ei ∼ N(0, σ2).

We have seen that linear, multiple and polynomial regression falls under the category of linear
models. So do ANCOVA models and so do ANOVA models.

When these assumptions are satisfied, there is a whole theory about “what to do”. in terms of
statistical inference.

This raises several questions:

1. What is this theory behind linear models?

2. How to verify that the assumptions are satisfied? This can usually not be done, but sometimes
we can do the opposite: Convince ourselves that the assumptions are not satisfied. This
requires subject matter knowledge and statistical techniques.

3. Which of the assumptions are most important? Normality, constant variance or indepen-
dence? And what goes wrong when these assumtions are not satisfied?

3.11.2 Matrix representation of a linear model

Return again to the linear model

y = β0 + β1x1 + β2x2 + β3x3 + e

If we have N cases in a dataset we can organize the y’s in the vector y = (y1, y2, . . . , yN) and the
predictors in the matrix X:

X =

1 x11 x12 x13
1 x21 x22 x23
...

...
...

1 xN1 xN2 xN3

If we let β = (β0, β1, β2, β3) and e = (e1, e2, . . . , eN) then we can write

y = Xβ + e

Notice that what is observed is y and X.

78

3.11.3 Least squares – a minimization problem

Weight and width of potatoes:

library(ggplot2)

qplot(width, weight, data=potatoes)

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
10

20

30

40

15 20 25 30 35

width

w
ei

gh
t

Perhaps an approximately quadratic relation between y=weight and x=width:

yi = β0 + β1xi + β2x
2
i + ei

X <- cbind(1, potatoes$width, potatoes$width^2)

y <- potatoes$weight

head(X)

[,1] [,2] [,3]

[1,] 1 29 841

[2,] 1 34 1156

[3,] 1 31 961

[4,] 1 28 784

[5,] 1 21 441

[6,] 1 35 1225

head(y)

[1] 22 41 24 16 7 40

Let β = (β0, β1, β2). One way of estimating β is by the method of least squares: The best β
is the vector that minimizes the sum–of–squares:

N∑
i=1

[yi − (β0 + β1xi + β2x
2
i)]

2

In R, this vector can be found using the lm() function:

79

mm <- lm(weight ~ width + I(width^2), data=potatoes)

beta <- coef(mm); beta

(Intercept) width I(width^2)

25.15450 -2.83987 0.09394

We can write
yi ≈ β0 + β1xi + β2x

2
i

in matrix form for all N observations:
y1
y2
...
yN

 ≈

1 x1 x21
1 x2 x22
...

...
...

1 xN x2N

 β0
β1
β2

or more compact

y ≈ Xβ

Let r = y−Xβ. Then the least squares criterion can be formulated as: Choose as β the vector
that makes the squared length of r (denoted by ||r||2) as small as possible.

The squared length is r>r is called the residual sum of squares denoted RSS so the task is
to minimize

RSS = (y −Xβ)>(y −Xβ)

One approach to doing so is to think of RSS as a function of β. We differentiate RSS with respect
to β and set the derivatives to zero.

This leads to a system of equations called the normal equations

(X>X)β = X>y

and the solution to this system of equations is

β = (X>X)−1X>y

Define X and y and find β

Multiplying X and β gives the vector of fitted values:

fv <- X %*% beta; head(fv, 3)

[,1]

[1,] 21.80

[2,] 37.19

[3,] 27.39

80

library(ggplot2)

qplot(width, weight, data=potatoes) +

geom_line(aes(width, as.numeric(fv)), col="red")

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
10

20

30

40

15 20 25 30 35

width

w
ei

gh
t

81

Index

::, 12
, 9

:, 23

??, 15

?, 13, 14

I(), 66

RSiteSearch(), 15

apropos, 15

args, 14

available.packages(), 15

browseVignettes(), 17

c(), 7, 18, 23

coef(), 60

confint(), 56

data(), 15

data.frame(), 10

demo(), 14

drop1(), 56, 59

edit, 17

esticon, 57

example(), 14

findFn(), 15

glht(), 57

head, 16

help(help), 13

help(), 13, 14, 16

help.search, 15

help.start(), 13

installed.packages(), 15

library(), 11, 15

lm(), 12, 33, 37, 61, 77, 79

ls.str, 16

ls, 16

matrix(), 22

model.matrix(), 65

packageDescription(), 16

plot(), 24

poly(), 66

prmatrix(), 65

q(), 6, 13

rep(), 23

rnorm(), 13, 24

rseek.org, 15

runif(), 23

search(), 16

seq(), 23

sessionInfo, 16

setRepositories(), 15

smooth.spline(), 24

sqrt(), 6

str, 16

summary(), 54, 55, 70

summary, 16

vignette, 17

which(), 8

with(), 24

add a column, 11

additive effect, 50

additive model, 47, 50

adjust for, 50

analysis of covariance, 35

analysis of variance, 35

ANCOVA, 35

ANOVA, 35

apply(), 23

assignment, 5

attach, 24

average, 28

confounding, 50

constant variance, 61, 77

control for, 50

correlation coefficient, 31

covariates, 37

82

data generating process, 61

delete a column, 11

detach, 24

dummy variable, 45

empirical covariance, 31

empirical mean, 28

empirical standard deviation, 28

error term, 37

estimates, 38

evidence, 43

explanatory variables, 35--37, 61, 77

extract a column, 11

extrapolation, 38

factor, 45

familywise error rate, 57

fitted, 33

fitted values, 38, 80

general linear model, 35

generalized linear model, 64

hypothesis, 43

independent, 61, 77

interaction model, 47

interaction plot, 44

intercept, 38

least squares, 32, 37, 79, 80

least squares mean, 53

linear, 37

linear model, 35, 37

linear predictor, 52

linear regression, 12, 32, 33, 35, 36

LSmean, 53

measure of location, 28

measure of spread, 28

median, 28

model formula, 37, 64

multiple regression, 35, 36

normal distributed, 61, 77

normal equations, 80

object, 5

OLS, 12

one--way ANOVA, 49

ordinary least squares, 12

parameters, 37

polynomial regression, 35

population averaged mean, 53

population mean, 53

predicted values, 38

predictors, 36

qualitative, 35

quantiative, 35

quantitative response, 35

random part, 38

random process, 61, 77

realization, 61, 77

regression model, 45

rejects, 43

residual sum of squares, 32, 80

residuals, 62

response, 36

response variable, 36

responses, 77

rowSums(), 23

sample covariance, 31

sample mean, 28

sample standard deviation, 28, 29

sample variance, 28

simple linear regression, 36

slope, 38

standard error, 61

sweep, 23

systematic component, 37

systematic part, 38

variable, 5

vectorized, 7

weighted sum, 61, 77

83

84

List of Corrections

Note: Need any, all, NA, is.na(); need also saplly and lapply; also class and is()/as()... 8

85

	Introduction to R
	R as a calculator
	Vectors and indexing
	Data frames
	Using add–on packages
	Plotting
	Simple (linear) regression
	Getting help
	Getting help on a function that you know the name of
	Finding a function that you do not know the name of
	Finding packages
	Getting help on variables
	General learning about R

	Technicalities
	On calling functions
	Vectors, lists, and data frames
	Vectors
	Lists
	Dataframes
	Matrices
	Iterating over rows and columns of a matrix
	Simulating random and systematic data
	Getting data into functions
	R as a programming language

	Summarizing data
	Notation
	Mesures of location
	Measures of spread
	A practical interpretation and an empirical rule
	Covariance and correlation
	The measurement unit matters – sometimes
	Correlation and regression

	Linear models
	What is a linear model?
	Linear regression
	Parameter estimates, standard errors etc
	Analysis of variance (ANOVA) models
	Analysis of covariance (ANCOVA) models

	Prediction, estimates and contrasts, LSmeans
	Estimation averaged across linear predictors
	Summary information – summary()

	Prediction and confidence intervals
	Confidence interval – confint()

	Testing hypotheses for linear models
	Dropping each term in turn using drop1()
	Investigating parameter estimates using coef()
	Which table to use?

	Underlying assumptions about linear models
	Model checking – residuals etc

	Coefficient of determination etc
	Colinearity
	Model specification and model formulae
	Formulae with arithmetic expressions

	Polynomial regression
	Summaries using broom

	What if the model assumptions are not satisfied?
	Non–normality
	Non–constant variance
	Non–independence

	The mathematics of linear models
	What is a linear model (II) - the assumptions
	Matrix representation of a linear model
	Least squares – a minimization problem

