Why is the normal distribution so normal?

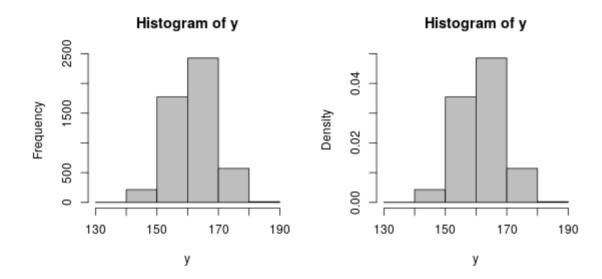
• and is it really so?

Søren Højsgaard

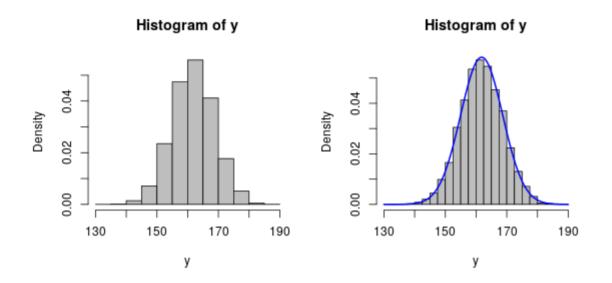
Department of Mathematical Sciences, Aalborg University

(updated:2019-04-19)

Height of women



If you divide into smaller groups, you can imagine that the histogram becomes a "smooth bell".



Described with the normal distribution density

$$f(y)=rac{1}{\sqrt{2\pi\sigma^2}} \mathrm{exp}\left[-rac{1}{2\sigma^2}(y-\mu)^2
ight]$$

But why is the normal distribution so normal?

So: Why can so many phenomena be described with a normal distribution?

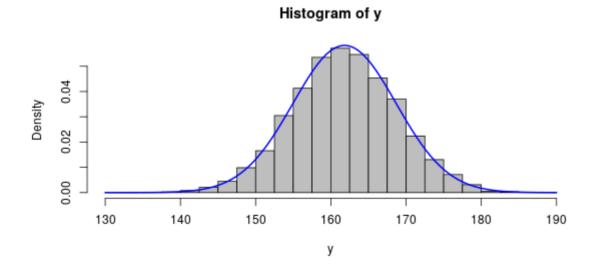
- The answer lies in the central limit value theory "the central limit theorem" or CLT.
- Resolved: The sum of many independent contributions is approximate normally distributed; and the approximation gets better the more contributions there is.

What determines a person's height?

- Genetics; a pile of small contributions
- Food
- Living conditions
- ...

A total of small (independent) contributions

Therefore, the height (with approximation) is normally distributed.



The central limit value setting

There are many different CLTs; the simplest is:

Let X_1, X_2, \ldots, X_n be independent random variables, each with the same mean $E(X_i) = mu$ and same variance $V(Y_i) = \sigma^2$.

Let

$$S_n = \sum_i X_i, \quad Z_n = rac{1}{n}S_n$$

Easy to prove that

•
$$E(S_n) = n\mu$$
, $V(S_n) = n\sigma^2$.

•
$$E(Z_n)=\mu$$
, $V(Z_n)=\sigma^2/n$.

CLT tells more: When $n \to \infty$ then the distribution of S_n and Z_n is approximately normal (written $S_n \sim_A N(,)$)

$$S_n\sim_A N(n\mu,n\sigma^2), \quad Z_n\sim_A N(\mu,\sigma^2/n)$$

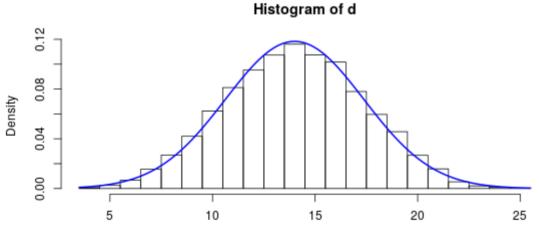
Example:

Experiment: Throw four dice and note the total number of eyes. Repeat experiment 10 times:

##		[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]
##	[1,]	5	6	2	5	3	5	2	1	3	4
##	[2,]	2	4	2	3	6	5	6	2	2	4
##	[3,]	3	2	3	5	6	1	2	3	5	1
##	[4,]	3	5	3	5	4	4	4	6	4	6
##	[1]	13 1	7 10 1	18 19	15 14	1 12 1	L4 15				

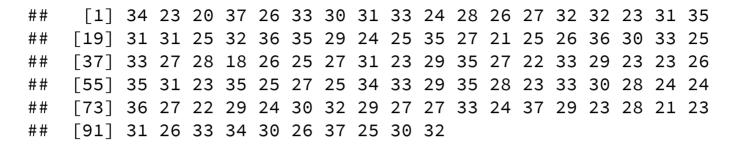
Instead, repeat the experiment 10,000 times. How do the number of eyes distribute?

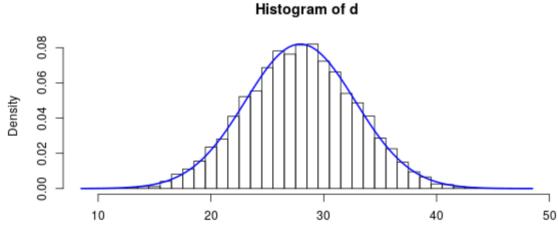
8 12 12 13 18 19 11 19 14 9 17 20 14 19 12 11 10 ## [1] 12 [19] 16 13 9 16 15 14 16 6 11 22 21 11 12 17 18 17 ## 8 15 18 10 16 6 18 20 14 12 13 7 18 15 17 10 17 14 14 8 ## [37] [55] 7 15 12 17 14 15 19 15 13 16 10 13 20 9 19 ## 12 10 9 [73] 13 10 14 11 17 15 11 12 12 14 13 9 12 15 ## 8 10 16 17 ## [91] 12 18 12 21 18 12 10 17 17 15



d

Instead, let the experiment consist of throwing 8 dice and noting the total number of eyes. Repeat this experiment 10,000 times:





d

Simulate data from a $N(\mu,\sigma^2)$ distribution.

fact:

- 1. A standard normal distribution is the normal distribution with mean 0 and variance 1, written N(0, 1).
- 2. All normal distributions are similar: Let $Y\sim N(\mu,\sigma^2)$ and X=a+bY.Then $X\sim (a+b\mu,b^2\sigma^2).$

Quiz:

- 1. If U is standard normally distributed, $U \sim N(0,1)$, then what is the distribution of $Y = \mu + \sigma U$?
- 2. If Y is $N(\mu,\sigma^2)$, then what is the distribution of $U=(Y-\mu)/\sigma$?

Hence, all normal distributions "look like" a N(0, 1) distribution.

Therefore: simulating from a $N(\mu, \sigma^2)$ distribution can be managed by simulating from N(0, 1) distribution.

Uniform distribution

Random variable Z has uniform distribution on the interval [a, b], written $Z \sim unif(a, b)$ if all values in the interval are equally probable and values outside the interval cannot occur.

Z values can be simulated with a wheel of fortune :)

In Excel, Z can be simulated with RAND () (it is called SLUMP () in the Danish version of Excel).

fact

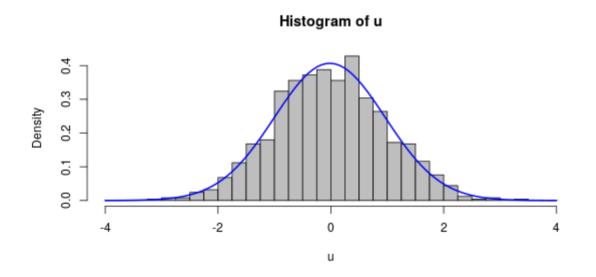
1. For a random variable $Z \sim unif(0,1),$ E(Z) = 1/2, V(Z) = 1/12.Quiz:

1. Prove the above.

Let $Z_1,\ldots Z_{12}$ be independent and unif(0,1) - distributed and let $U=\sum_{j=1}^{12}Z_j-6.$

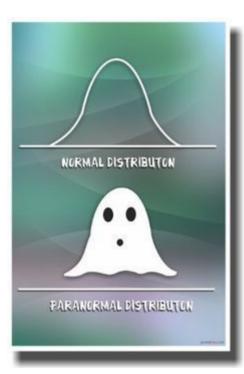
Then CLT gives $U\sim_A N(0,1)$

"Proof:" Simulate U many times and draw histogram; Then one should see the bell shape and get the right mean and variance



Mean: -0.0188. Variance: 0.9617

And maybe the normal distribution is not so normal anyway ...



Exercise 1 (computer)

Let Z_1, \ldots, Z_n be independent or uniformly distributed unif(0.1).

- 1. The sum of 2 independent contributions? Let $U = \sum_{j=1}^{2} Z_j$ Simulate many times and draw histogram. Does it look like a normal distribution?
- 2. The sum of 4 independent contributions? Let $U = \sum_{j=1}^{4} Z_j$ Simulate many times and draw histogram. Does it look like a normal distribution?

Exercise 2 (paper and pencil)

fact:

- 1. Let X be a binomial distributed random variable, $X \sim bin(N, \theta)$. Then E(X) = N heta and $V(X) = N heta(1 \theta)$.
- 2. Let $X_1\sim bin(N_1, heta)$ and $X_2\sim bin(N_2, heta)$ and let X_1 and X_2 be independent. So is $Y=X_1+X_2\sim bin(N_1+N_2, heta)$

Quiz:

- 1. Argue that X approximate normal distribution for large N
- 2. What is the approximate distribution of $\frac{X}{N}$?
- 3. What is the approximate distribution of $\frac{\frac{X}{N} \theta}{\sqrt{\theta(1-\theta)/N}}$?