Diamond prices

```
library(tidyverse)
library(pander) # for prettier tables
library(scales) # for making prettier axes in plots
```

theme_set(theme_bw())

One exercise is marked with a *. It may be difficult (but also relevant).

Here, we focus on the diamonds dataset:

diamonds

```
## # A tibble: 53,940 x 10
```

##		carat	cut	color	clarity	depth	table	price	x	У	Z
##		<dbl></dbl>	<ord></ord>	<ord></ord>	<ord></ord>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	0.23	Ideal	Е	SI2	61.5	55	326	3.95	3.98	2.43
##	2	0.21	Premium	Е	SI1	59.8	61	326	3.89	3.84	2.31
##	3	0.23	Good	Е	VS1	56.9	65	327	4.05	4.07	2.31
##	4	0.290	Premium	I	VS2	62.4	58	334	4.2	4.23	2.63
##	5	0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75
##	6	0.24	Very Good	J	VVS2	62.8	57	336	3.94	3.96	2.48
##	7	0.24	Very Good	I	VVS1	62.3	57	336	3.95	3.98	2.47
##	8	0.26	Very Good	Н	SI1	61.9	55	337	4.07	4.11	2.53
##	9	0.22	Fair	E	VS2	65.1	61	337	3.87	3.78	2.49
##	10	0.23	Very Good	Н	VS1	59.4	61	338	4	4.05	2.39
##	# # with 53,930 more rows										

Read ?diamonds.

1 Exercises in data wrangling

1.1 Exercise

Construct a summary table of the number of diamonds of each cut like this: (Hint: the pander() function takes a big.mark = ',' argument and also a justify = c('left', 'right') argument.)

cut	n
Fair	1,610
Good	4,906
Very Good	12,082
Premium	13,791
Ideal	$21,\!551$

Construct the corresponding barplot:

1.2 Exercise

Construct a summary table of the number of diamonds of each clarity, but only for diamonds with cut = "Ideal" ordered descendingly by n like this:

clarity	n
VS2	5,071
SI1	4,282
VS1	3,589
VVS2	$2,\!606$
SI2	2,598
VVS1	2,047
IF	1,212
I1	146

1.3 Exercise

Construct a boxplot of the prices of the diamonds for each clarity and cut, e.g. like this:

1.4 Exercise

Assuming that the diamonds are rectangular cuboids ("boxes"), then what is the average volume for each cut? Order the table descendingly according to mean volume like:

cut	mean_volume
Fair	165
Premium	145.1
Good	136.3
Very Good	131
Ideal	115.4

1.5 Exercise

Do a scatter plot of carat vs price:

Do a log-log plot of carat vs price (scatter plot with both axes on a log scale: $http://ggplot2.tidyverse.org/reference/annotation_logticks.html)$ whre the points are transparent (e.g. with alpha of 0.05):

1.6 Exercise

What is the mean price per cut? You should get something like:

eut	mean_price
Fair	4,359
Good	3,929
Very Good	3,982
Premium	4,584
Ideal	3,458

1.7 Exercise

Construct a boxplot of the prices of the diamonds for each cut and include the average prices as points (hint: geom_point can take a data argument, a new mapping, a col and a pch), e.g. like this:

1.8 Exercise

For each cut, how many diamonds are at least 5 mm. in length, width or depth?

cut	xyz_gte_5	n
Fair	FALSE	144
Fair	TRUE	1,466
Good	FALSE	1,169
Good	TRUE	3,737
Very Good	FALSE	3,510
Very Good	TRUE	8,572
Premium	FALSE	3,974
Premium	TRUE	9,817
Ideal	FALSE	8,662
Ideal	TRUE	$12,\!889$

cut	$sum(xyz_gte_5)$
Fair	1,466
Good	3,737
Very Good	8,572
Premium	9,817
Ideal	12,889

What is the mean **price** per **cut** for diamonds that is at least 5 mm. in length, width or depth? You should get something like:

cut	mean_price
Fair	4,690
Good	4,946
Very Good	5,329
Premium	6,108
Ideal	5,226